
Internat. J. Math. & Math. Sci.
Vol. i0 No.2 (1987) 267-286

267

THE MEIJER TRANSFORMATION OF GENERALIZED FUNCTIONS

E.L. KOH

Department of Mathematics and Statistics
University of Regina
Regina, Canada $4S 0A2

E.Y. DEEBA

Department of Applied Mathematical Sciences
University of Houston-Downtown

Houston, Texas 77002

and

M.A. ALl

#1598, Way 510
Muharraq 205, Bahrain

(Received June 2, 19 86)

ABSTRACT. This paper extends the Meijer transformation, M, given by

I /2K2p f(t) (pt) (2 p)dt,(Mf) (p) (i+) 0

where f belongs to an appropriate function space, e (-1,) and K is the

modified Bessel function of third kind of order , to certain general-

ized functions. A testing space is constructed so as to contain the

(pt)/2K(2p), of the transformation. Some properties of thekernel,

function space and its dual are derived. The generalized Meijer trans-

form, f, is now defined on the dual space. This transform is shown

to be analytic and an inversion theorem, in the distributional sense, is

established.
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i. INTRODUCTION. In order to develop an operational calculus

I+D,for the Bessel differential operator B t Dt where

(-i,) and D d’ Conlan and Koh [i] used the Meijer trans-

formation M f given above. The operational formulas obtained

mirrored those obtained by Koh [2] by means of a Mikusinski-type

calculus. The latter is algebraic in approach and allows for

certain convolution operators not covered by the classical

integral transform M f. To remedy this situation, the Meijer

transformation has to be extended to generalized functions.

This is the object of the present work.

The idea is to construct a testing function space (

which contains the kernel (pt)/2K(2p). The generalized

Meijer transformation M f is now defined on the dual space

q’ as follows: for feI’
U,y

2p(Mf) (p) < f(t) (pt)/2K (2 p)> (i.i)

where e(-,l). The definition in (I.i) coincides

with the classical transformation whenever f is a regular

distribution, that is, one that can be represented by a suit-

able integrable function. We note that there are various

extensions of classical transforms in which the operational

calculus is geared for other Bessel-type operators among which

are the K-transform [3] and the Hankel transform [3], [4], [5]

and [6].

In section two we shall describe the testing function

space its dual and study some of their properties While,
in section three we will give the definition of the generalized

Meijer transform, show its analyticity in some region of the

complex plane, and then derive an inversion theorem.

Throughout the sequel we shall make use of the following

notations and facts and are stated for the sake of completeness.
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We shall denote the interval (0,) by I, the Bessel differ-

ential operator tDtl-D by B and its k-iterate by B
k

It

follows that

B
k k 2k tk-l_ 2k-i tk-2.2k-2 t

k
_u(t) [t Dt +cI Dt +c D + +CkD ](t), (i 2)

where the c’s are suitable functions of u only.

The modified Bessel functions I (2 p) and K (2 p) of first

and third kinds are defined by (see Watson [7])

(pt) k+/2I (2 p/) [ k’F(k+l+) any real number,
k=0

(1,3)

and

(pt) k-/ k+/pt)
k!F (k+l-) k! i+) not an integer,

K (2 p)
si Z k=0 k=0

+

1 (-l)k(-b-k-1) k+/2 - (pt)k-/2
k 0 k’ (pt) +(-i) k’ (-$-)

k=0
-+k i1 1 [ T) integer (1.4)[-logc (-) + +

i=l i=l

c e ( is Euler’s constant) and the finite sums are taken to

be equal to zero whenever the upper limit is less than the lower

limit.

Further,

k /2KBk_ ((pt) /2K (2p))= p (pt) (2 p/), (1.5)

B
k /2 k /2((pt) I (2 p)) p (pt) I (2 p) (i 6)

Finally, the following asymptotic expansions of K (2-[)

and I (2 p) will be used repeatedly (see Watson [7])

K (2 /) "--- (pt) e- i+0 pt -1/2 ], - < argp . (i.7)

and
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l(pt)-i/4(e2P+ie-2P+i) [l+0(Iptl -I/2) ],
2/{

3n-/2 < argp < T’
(1.8)

-1/4(e2p_i -2p-i -1/2e [l+0(Iptl

-3/2 < argp < /2.

2. The Testing Function Space M and Its Dual. In this

section we shall define the testing functions space M its,y’
dual and study some of their properties.

Let be any real number and e(-,l). Define

,,y {eC (I)lly,k(#)<}
where

(#) sup lel’k 0<t<

In view of the weight function eY/tl-one may think of the

elements of as those smooth functions on I that grow no

faster than the exponential function eYet for large t and

behave like power functions near the origin. As will be seen

in Lemma 2.1 below, the kernel of the Meijer transform is of

this type.

The family {I k:0 1 2 is a countable multinorm
y,k

Indeed, 1 is a semi-norm for each k and 1 is a norm on
y,k y,0

We assign to the topology generated by this family
,Y ,Y

of multinorms. Thus is a countably normed space (a fund-

amental space and members of the dual space M’ are generalized

e forfunctions). A sequence {#9} is Cauchy in

all 9 and for every k 0, I, 2, y,k

independently. We shall now show that the kernel, (pt)/2K (2 p),

member of

Lemma 2.1. For any fixed complex number p such that p 0,

arg p < n and Re2/ > y, (pt) /2K (2p) e,
Proof. Under the hypothesis on p, K (2 p) is an analytic
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function of t on the right half plane and hence a smooth function

on I. It remains to show that l
y,k

((pt) ’2K/
(2/)) < for

k 0, i, 2 From (1.5) we have

1 ((pt)/2K (2 p)) suple/tl-pk(pt)/2K (2 p) I. (2 I)y,k tEI

We will consider two cases: for small t and for large t. For

t small and not equal to an integer t/e asymptotic expansion

of K (2p) in (i 4) yields

eYtl-pk (pt) W/2K (2p/) -<AReY/t IPl k+-i [IPtl i-+ iptl 2-+ +

+ CeY/Iplk+-l[Iptl+Iptl2+Ipt 13+ (2 2)

where A and C are functions of only. Since W < i, there

exists a real number T < 1 such that for ptl < T, the right

hand side of (2) is bounded by a constant. For t small for

for 0, -i, -2, the expansion in (1.4) yields

le/tl-pk(pt)/2K (2 p/) _<A,eY/ k+-i 2

+ CeY/{Iplk+-lllogC(pt) [Iptll-+ltl2-ptl3-+...

+ Ee/l p k+-i pt i-+ pt 2-+ pt 3-+... (2.3)

where, A’ C’ and E are constants depending upon only.

Applying L’Hdpital’s rule to the second term in (2.3) and

using the fact that < i, we imply that there is a real

number T < 1 such that for Iptl < T, the right hand side of

(2.3) is again bounded by a constant. Thus the left side of (2.2)

is bounded for small t and < 1 for all k =0, i, 2,

We now consider the finiteness of (2.1) for large t. By

employing (1.7), we obtain, for - < arg p < and for Iptl > T,

le/tl-pk(pt)/21< (2p) < E’ Iplk+-le(-Re2/)/{Iptl3/4-/2

[I+0 IPtl-i/2)]
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where E’ is a constant depending upon only. Since < i

and y< Re 2, the right hand side of the last expression is

bounded by a constant for Iptl > T.

Thus in either case we have shown that ((pt)/2K (2 p)) <
y,k

for all k 0, I, 2 Therefore, (pt)/2K (2 p)eM,y"
By employing the following fact

Dt[(Pt)+/2K (2p) -p(pt)-+/2-1/2K (2 p)

and by arguments similar to the proof of Lemma 2.1, we have

Lemma 2.2. For p 0, - < arg p < and Re 2/ > y,

k /2K (2p)] e M Further, by symmetry, it followsDt[(Pt)
k[(pt)/2K (2 p)] e (Dk is the k-iterate of D).that Dp ,Y

In the next few lemmas we shall investigate some properties

of the space M and its dual.
,Y

Lemma 2.3. The space is complete.
,Y

Proof. Let {# be a Cauchy sequence in Then
9 ,y

(#) < for all k 0, i, 2 Hence on every compacty,k
ksubset K of I, B_() converges uniformly for each

k 0, i, 2, Let (t) be a smooth function on I and s
t

fixed point of I. Define (D-I)(t) r
| (T)dT. Thena
s

-1DtD (t) (t) (s). It can be verified that

s l-Dst l+D-lt-B_(t) Dt(t) () (s) (2.4)

and

D-It-I+D-It-B_(t) (t) (s) Ls(t)Ds$(s) (2.5)

where

Ls(t) Fs -(t-s 0

s(int ins) 0.

Since multiplication by a power of t or the application of D-i

preserves uniform convergence on K, it follows from (2.5) that

Ds$ converges on K. From (2.4), it follows that
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Dt converges uniformly on K as +=. Now the convergence of

and B imply the uniform convergence on each K ofDtv -Repeating the same argument with # -D v and B # replaced

by B
k

and Bk+l respectively, we deduce that for each- - k
k 0, i, 2, Dt# converges uniformly on K as /.

Therefore there exists a smooth function on I such that for

each k 0, i, 2, and each tgI, Dtk(t) converges to

Dtk(t) as +. We will be done if we can show that (t)M,y.
Since {#} is a Cauchy sequence, it follows that for each k

and each > 0 there is N
k such that if , > Nk,

Iy,k(-) < e/2. Further, since e7’r6tl-Bk_(-)l 0 as

, we have for each teI and > N
k

that leYCrtl-Bk ( -#)

Thus 1 (-)+0 as +. Since 1 () < 1 ( ) + 1 ()y,k y,k y,k y,k

it follows that eM Hence is a complete space.
,Y ,Y

(Indeed M is a Fr4chet space),y

Now if y and e are any real numbers with y < , then it

is clear that is a subspace of M Further, the, ,Y

restriction of fe’ to belongs to ’ This implies
,Y , ,"

that there is a real number such that the restriction of ff

to ,y is in ’ if y > and is not in ’ if y <
,Y f ,y f"

The real number of is called the abscissa of definition

of f.

For any real numbers y and e with < e, we know that

M,e is a subspace of , However,
,Y

Lemma 2.4. If y < , then is not a dense subspace

of M
,Y

Proof. Let (t) be a smooth function given by

(t) I 0

e-7/t-l+u
We claim that (t)e Indeed,

,Y

% (#) < sup le/tl-UBk (t) + sup IeY/tl-UBk #(t) (2 6)"y,k l<t<2 -la 2<t< -
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Since (t) is a smooth function, it follows that the first

term on the right hand side of (2.6) is bounded. Moreover,

from (1.2) and the observation that

k /t-l+ -iDt(e- [Pk(t +qk-i (t-1) t-I/2 t-l+e-/

-i -1 -i
where Pk(t and qk-l(t are polynomials in t

Thus, the second term on the right hand side of (2.6) is bounded.

Hence (#) < and e M Let N a neighborhood of # be,k ,y

given by

N NO 1/2 () {eM1,yl. y,0
(-) <i/2}.

(-) < 1/2 implies that l(t) > 21--e-Y/t-I+NOW for large t, X,O
e/tl- (e-Y) /Thus ee/tl-@(t) e l(t) > which implies

that () remains unbounded as t+ Hence no element of,o

N belongs to M Therefore is not dense in M, , ,y"

Finally, we shall discuss the adjoint of the operator

Bk It is rather clear that Bk is a continuous linear

operator on M Let feM’ and e We define the,Y ,Y ,Y
*k Bkadjoint B of by the equation

<B*k Bkf > <f > k 0, l, 2,

*kThe continuity and linearity of B will imply that B fe’- ,y
*k

and B is a continuous and a linear operator on ’ Further- ,y
*kin lieu of equation (1.2), the expression for B is given by

*k k
t

.k-I 2k-i k 2kB_ CkD + Ck_itDt
k+l + + Clt Dt + t Dt (2.7)

where the C’s depend only on . Moreover, we can show that

*k Bkthe adjoint operator B is Indeed if k 1 then (i 2)-yields B tD + (I-)D
t while B tD + (l+)Dt) Thus

*k
BkB* B Inductively, we obtain B

We end this section by the following remarks.

Remark 2.1. If f(t) is locally integrable on I and

f(t)e-Y/t-I+ is absolutely integrable on I, then f(t)

generates a regular member f of ’ via
,Y



MEIJER TRANSFORMATION OF GENERALIZED FUNCTIONS 275

<f,> f (t) (t)dt, #eM
0 ’Y

(2.8)

Remark 2.2. The space D(1), of all smooth complex valued

functions on I whose support is contained in a compact subset

K of I equipped with the seminorms

Pn () suplD(t)
teI

where #eD(I) is such that supp K is a subspace of M,y
Further, the restriction of any fe to D(I) belongs to

,7

D’ (I).

3. The Generalized Meijer Transform. In this section we shall

give the extension of the Meijer transformM f to generalized

functions belonging to ’ We shall also prove the analyticity
,Y

of the transform and exhibit an inversion theorem which is a

generalization of the classical inversion formula (see [i])

For fe’ e(-,l) and pelf {PEIRe 2/ > y > o,r p 0
,Y

arg P l<n}, we define the Meijer transform of generalized

function by

2P < f(t) (pt)/2K(2p)>(Mf) (p) F’(I-) (3.1)

In (3.1) if f(t) is a regular generalized function (see Remark

2.1) then we obtain the classical Meijer transform

(Mf) (p) I f(t) (pt)/2K(2p)dtr (I-) 0
(3.2)

where Je(-l,).

Theorem 3.1. Let f&.(’,y and (%f) (p) be the Meijer

transform in (3.1) for pef. Then

k pkS (B f)(p) (f) (p)

Proof. For pelf, k 0, i, 2, we have

(Bkf) (p) 2p < Bkf(t) (pt)/2K (2p) >
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2p < f(t) Bk (pt)/2K (2p) >r (i-) -2p < f(t) pk /2 (2p) >F’(I-) (pt) K
pkM (f)(p)

by equations (1.5) and (3.1) respectively.

Remark 3.1. Theorem 3.1 is the basis for an operational

calculus for the operator B It is the generalized function

analogue of the differentiation theorem of Conlan and Koh ([i]

Theorem 2, page 149).

We shall next prove the analyticity of the transform

M (f) However, we need the follow lemma.

Lemma 3.1. Let y be any real number and p be a fixed

point in f. Then

sup eY/ (pt) I- /2K
0<t<

(2p)l <_ c (+Ipl-/2+ 4 ). (3.3)

where C is a constant depending only on .
Proof. The idea of the proof is similar to that of

Lemma 2.1. Since K (2p/) is analytic except at t 0 and

t , we need only to show the boundedness of eY/(pt)l-/2K (2/)

as t 0 and as t m. Employing the series expansion of

K(2 p/)__ (1.4) with 0, -i, -2, we obtain

leY/E(pt) I-/2K (2p)l < A eYF

Y[Iptl+Iptl=+Iptl +..-]+ AI
where A and A’ are constants depending upon only. For T < 1

such that Ptl < T, the right hand side of the last expression

is bounded by a constant R independent of p and t. Similarly,

if we employ (1.4) with 0, -I, -2, then, for Iptl < T,

we have

ey/E(pt) i-/2K(2p) < Q
where Q is independent of p and t.
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For t large we employ (1.7) to obtain

le/(pt) I-/2K (2p) _< L1l pt /2+ 3/4e (y-Re2)

where L is again a constant independent of p and t. Let

E max{R,Q,L}. Then

sup
0<t<

(pt)l-/2K (2 p/) < E (l+Iptl-/2+ 3/4 (y-Re2)/
U e

< EU (l+IPl -u/2+3/4) (l+Itl /2+ 3/4
e (v,-Re2)/

and since Re2/ > y and pe(-,l), it follows that the right

hand side of the above expression is less than Cp(l+Ipl -p/2+3/4)
with C a constant depending upon p. This completes the proof.

P

We will now show that M f is analytic. Namely,
U

Theorem 3.2. Let feW’ and (f) (p) is the Meijer transform

of f and pef. Then (pf)(p) is analytic in f and

2 2KpDp(Sf) (p) F(1-b)- < f(t) Dpp(pt) / (2 p/{)>.

Proof. For pelf,let C be the circle about p of radius r so

chosen that i lies entirely in f and let gpl < rI < r for

some rI

(f) (p+Ap)- (f) (p)

Ap
2 <f(t),D p(pt)/2K (2p)>

P U

where

<f(t),#Ap(t)>, (3.4)

2
(p+Ap)[(p+Ap)t] 2K (2/(’+AP-p(pt)2K (2/)

(t) (i-p) Ap

Dpp(pt) 2Ku (2) ].

In order to prove the result, it suffices to show that Ap(t) 0

as Ap 0 in U,y. Since by Lemma 2.2 Dpp(pt)O/2K(2/)e,,
it follows that (3.4) is well-defined. Further, since for

k=0, i, 2
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Bk Dpp(pt)/2K (2p) D pk+l(pt)/2K (2)- v p v

by equation (1.5) it follows that B
k

is an analytic function
-U Ap

of p on f. By Cauchy Integral formula, we have

Bk (t) 1 Ik+l-V Ap iF (i-)
C

(t) V/2K (2 /f)

1 1 1 2]dE(_p_ A--- _p (-p)

Ap ,: k+l(t) V/2K(2)
iF (l-b) 2

C (-P) (-p-Ap)

Since I-Pl r l-p-Apl > r- rI and eY/(t) I-V/2K (2 /6) is

bounded by C (l+ I -/2 + 3/4 it follows that_
+3

leY/tl-Bk CI.Apl f (l+ll 2 4

C

< Ap, 2 k+ k+/2+3/4
F(I-) r(r-rI) sup (II +II

c
which converges to zero as p 0 and this completes the proof.

The rest of this section is to prove a generalization of

the inversion theorem for the classical Meijer transform (3.2)

due to Conlan and Koh [1]. Our result is restricted to generalized

functions belonging to the space D(I) (Remark 2.2). In particular,

we shall prove the following inversion theorem

Theorem 3.3. Let (Mf) (p) be the Meijer transform of

fe’ for pefif. Then
V,Y

f(t) lim F(I-) I% (vf) (p)p-l(pt)2i -OOl 1

-V/2I
v (2p) dp 8

2
where p(O) iO 20sec and is a fixed real number in f.
(The limit is to be understood in the sense of convergence in

D’ (I)).
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The proof of Theorem 3.3 will be developed in a sequence

of lemmas. We will state the lemmas and give them their proofs

in the Appendix.

Lemma 3.2. Let eD(I) and feM’ Then, for a fixed,
,Y

81 (0,),

1 A(p)p < f(t) (pt)/2K(2p) > dp(8)
-%

1 8
<f(t), I 1 A(p)p(pt)/2K (2p)dp(8)>

1

where

I /2p-1A(p) #(t) (pt)-
0

I (2) dt,

y > max(0,of) and Re2 > 0.

Lemma 3.3 Let ED(I) be such that supp [A,B] and

be a real number such that 0 < < A. Then for any Y > 0

such that Re2/ y, set

/-{+( 2

() I 2 L (t,)B_k(t)dt,Q2,81 (/_) 81

where

L8
(t ) [t-/2u/2

1
t-r (/-Iu+I (2p)K (2p/)

+ /I (2p) (2p))]
p(81)

K+I p (-81

Then WSl() e/ I-[Q2’81()-Bk-#()] converges uniformly

to zero on 0 < < as @ .
1

Lemma 3.4. Under the same hypotheses of Lemma 3.3 let

QI,8I() I LSl(t’)Bk-(t)dt
0

Then S%1() e
Y/ I-QI, 8

on 0 < < as @ .
1

() converges uniformly to zero
1

Lemma 3.5. Under the same hypothese of Lemma 3.3, let
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Q3,8 () I L8 (t,)Bk (t)dt.
1 (/+ 2 1 -

Then R8
() e7/ I-Q

3
() converges uniformly to zero

i ’81
on 0 < < as 81 .

Finally,

Lemma 3.6. Let #(t) eD(I). For a fix Re2/, let

I e i() 1 (p)/2K (2 p/) #(t) Cpt)H81 -81 0
I (2 p)dtdp(O).

Then for any positive real number y

HI() converges in MU, to () as 0l "
Proof of Theorem 3.3. Let (t)eD(I). We show that

<F(1-) 181 (p)p-l(pt)-/2
2hi -8

(f)
1

I (2p)dp(8), (t)> (3.5)

Since (pt)converges to <f(t), #(t)> as 81 I (2 p-E)is

a smooth function on I, the integral in (3.5) is locally

integrable with respect to t, it follows that (3.5) can be

written as

F(I-) I #(t) 1 (f) (p)p-l(pt)-/2i(2p)dp(e)dt2i
0 -e

1

; ; -i -/2 (2p) <f() (p)/2X (2p/)>_F(I-) 81 (t)p (pt) I "F(I-)
2i -e 0

1

dtdp e (3.6)

by Fubini’s Theorem and (3.1). For any real number 7 such

that > max(0,f) Lemma (3.2) implies that (3.6) is equal to

el /2K
r -/2, (t) (pt) I<f(), (p) (2p)J0

1

(2 p)dtdp(8)>

which converges uniformly to <f (T) , (T) > in M,y

Lena 3.6. Equation (3.5) will then imply that

as el n by
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f(t) lim
F(I-u) rJSl ( )(P)P-I(pt)-U/2Iu (2 p/)dp(8)

%1/
"-2i

_81
which completes the proof of the theorem.

Remark 3.1. If (Muf)(p) and (Mug)(p) are the Meijer

transforms of f and g for pelf and peg respectively and if

(u f) (p) (Mug)(p) for pefng, then f g in the sense of

equality in D’ (I). This uniqueness property is a consequence

of Theorem 3.3.

APPENDIX. In this appendix we shall give the proofs of

Lemma 3.2 through Lemma 3.6.

Proof of Lemma 3.2. Set

N(Y) A(p)p(p)U/2K (2 p/)dp(8)
_% U

1

Clearly N()EM This follows from Lemma 3.1

U (N (r)) < C 1
XY’k -8

1

IA(p) Ipl k+u(l+Ipl -]/2+3/4) Idp(8) < =0. (A1)

Let R(t,m) be the Riemann sums for N() given by

m-i. A(p( ))p( (Yp( )/2K (2/
3=-m

We need to show that for feM’ ,<f(t) ,R(,m)> converges uniformly
,Y

to <f (t) ,N () >. Equivalently, since fe;’
,’ we need to show

that R(,m) converges in M to N() as m That is,U,Y

G(,m) eY/? TI-Bk (N(Y)-R(,m))

converges uniformly and absolutely to zero on 0 < r < as m .
Since l U (N(T)) < it follows that for a given > 0 one canr,k

choose a real number T such that for > T

Y/ I-UBksuple N() < e/2 (A2)
>T -

and for all m
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suple l-Bk 18T R(T,m) < e/2( 1

>T - -8

m-i

iA(p idp(8))-i 8
m

(A3)

which implies that there is m
0

such that for all m > m
0

(A3) is

less than e/2. Thus from (A2) and (A3), we have sup G(,m) < ,for m>.T>T
Now for 0 < < T and by employing the series expansion of

K (2-) as T 0 e/pk(pT)l-/2K (2p) converges uniformly

to zero on p(-8 I) < p(8) < p(81). If we redefine this function

Y/ k I-/2K (2p/)to be zero at 0 for the given p(8), then e p (p)

becomes uniformly continuous on (T,p) with 0 < < T and

p(-8 I) < p(8) < p(81). Thus R(T,m) will converge to the

integral and hence there exists mI such that for all m > ml,
sup (G(T,m)) < e.
0<<T

Therefore, for all m > max(m0,mI) sup
O<T<oo

That is, G(,m) converges uniformly to zero on 0 < < as

In the next three lemmas we shall investigate the boundedness

of the integral

IL8 (t,)Bk (t)dt
0 1 -where L 8 (t,T) is as defined in Lemma 3.3. Since the proofs

1
of Lemmas 3.3, 3.4 and 3.5 are essentially similar, we shall

only give the detailed proof of Lemma 3.3. The idea of the

proofs is to use the asymptotic expansions of K (2p) and

I(2p) and get appropriate bounds on the resulting terms.

Proof of Lemma 3.3. Since supp (t) [A,B], it follows

(T) 0 if either (/?+c)2 < A or (/_c)2 > B. Thusthat Q2,81
we consider (/_c)2 < T < (r+s)2. Further, since

2 i81 2 81
(81) e sec --, it follows thatP

81

and

el12pl _> I’ sec -I
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Employin the asymptotic expansions of K (2p- (see(l.?) and

of I (2p) (see (1.8)) we have

W8 () Jl + J2 + J3 + J4’ (A4)
1

where

1
Jl

3__U
4 2

2

t 2 4e 81
sin ( (/-/) tan-)

283

Bk (t)dt

y3/4-/2 I (’?+’) 2 t-/2-1/4eY (/-/) 81
siny (/{-/T) tan-)

1 i 1 1

B
k (t)(0(Ipt 2)+0(Ip 2)+0(Iptl) 20(Ip 2)at

and

y ,/’" 3/4-/2 -1/2J3 [l+0(Ipl

(/T+ 2 t-/2-i/4 -7(/+/)
e

81
cos ( (/{/ tan- -

Bk (t) [l+0(Iptl-1/2)]dt

_eYF l-Bk ()J4 -
We show now that (A4) converges uniformly to zero

on 0 < < . Adding Jl and J4’ replacing x F- /T

and subtracting the term

81
-ely/T l-Bk #() I sin(yxtan-)dXx

we obtain

i I v (x, t) sin (yxtan--) dx

+ eY/{
e
1

l-Bk #() 1 I sin(yxtan--)- [ _
x dx i]

and adding

(A5)
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eYX(X__ + I)-+I/2Bk ((x+/{)2)_Bk ()
Y/ i- /{

v(x,) e T
x

v(x,T) has a removable singularity at x 0 and is bounded

/ / A / 2on the domain (x,Y)I- - < x < , < r < (/ + --) }. So

given any e > 0 we can make the first term in (A5) less than

e/3 by choosing small enough, say o i" The second term

of (AS) converges to zero as 81 . Thus J1 + J4 < e/3.

In J2 the terms represented by 0(Iptl -I/2) and 0(IpI -1/2

81are bounded by C/ll+i tan I for C sufficiently large. This

implies that

81sin (y (/-/) tan)
0({ptl -I/2) < C’

and
01sin (y (/-/) tan--)

0(I (P)-I/21) < C"

where C’ and C" are constants independent of 8 I.
integrand of J2 is bounded on the domain

(t,) IA<t<B; (/_)2<< (/+)2}.

Therefore the

This implies that given any e > 0, we can choose sufficiently

small, say o 2 such that IJ21 < e/3.

By a similar argument, for e > 0 we can choose

sufficiently small, say 3. such that J31 < e/3.

Let min(l,O2,o3). Then for a given e > 0 there exists

a 6 > 0 such that w8 (T) < whenever 181-I < 6. Equivalently,
1

wA (r) converges to zero on 0 < T < as 81 .
1

Finally, we shall prove lemma 3.6.

Proof of Lemma 3.6. Since (t) has a compact support and

since the integrand is smooth, it follows that

Bk H8 () 1 Bk (pr) (2p) (t) (pt)-/2I (2 p/)dtdp(8)- 1 -%1
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Using (1.5) and (1.6) we obtain

-! I@l U/2K f=(t) (pt) -U Bk (pt)U/2I (2 p)dtdp(@Bk_UHSI() -81(P) (2 p) ]0 -
Integrating the inner integral by parts 2k times, we get

Bk H () 1 (p) (2p) (Pt)-/2I (2)Bk
(t)dtdp(0)

and upon interchanging the order of integration

Bk H (%) (pT) K (2 p)(pt)-/2I- 81 0 -8
1

(2 p)Bk
(t)dp(8)dt

_
Now, by observing that

2} (t,T)(p)/2(pt)-D/ (2p)I (2 p/)dp(8)

(see Erd41yi [3], Equation 9 page 90) where L
8 (t,) is as in
1

Lemma (3.3) we obtain

Bk_H8 (T) Ls_(t,T)Bk_
1 0 1

(t)dt.

If supp(t) is contained in [A,B), then, for o a real number

such that 0 < o < A Bk H8 (T) can be written as- 1

(/{-o) 2 (/+o) 2

BkH8 (%)= I dt + ; dt + ; dt

QI,8I() + Q2,01(%) + Q3,81(%)

where Qi 8 () i i, 2, 3 are as in Lemmas 3.4 3 3 and 3 5
l "f/’ I-QI Y/? i- convergesrespectively Now e ,81() and e Q3,81

uniformly to zero on 0 < < as 81 by Lemma 3.4 and

Semma 3 5 respectively Moreover e
/ i- ()_Bk% [Q2,Ol _(%)]
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converges uniformly to zero on 0 < < as @ z. Hence1
() converges in .{,y to () as 01HSI . This completes

the proof of Lemma 3.6.
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