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ABSTRACT. This paper extends the Meijer transformation, Mu’ given by
-2y B2 (2/pE
(Muf) (p) L f(t) (pt) Ku(2 pt)dt,

where f belongs to an appropriate function space, pe(-1,*) and K is the
modified Bessel function of third kind of order u, to certain general-
ized functions. A testing space is constructed so as to contain the
kernel, (pt)“/ZKH(Z/EE), of the transformation. Some properties of the
function space and its dual are derived. The generalized Meijer trans-
form, ﬁuf, is now defined on the dual space. This transform is shown

to be analytic and an inversion theorem, in the distributional sense, is

established.
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1. INTRODUCTION. In order to develop an operational calculus

. - +
for the Bessel differential operator B“ =t thl uD, where

é%, Conlan and Koh [1l] used the Meijer trans-
formation Muf given above. The operational formulas obtained

4 e (-1,~) and D =

mirrored those obtained by Koh [2] by means of a Mikusinski-type
calculus. The latter is algebraic in approach and allows for
certain convolution operators not covered by the classical
integral transform Muf' To remedy this situation, the Meijer
transformation has to be extended to generalized functions.
This is the object of the present work.

The idea is to construct a testing function space MH,Y
which contains the kernel (pt)u/zKu(Z/EE). The generalized

Meijer transformation ﬁuf is now defined on the dual space

M : feM?
Loy as follows for fe WY

= _ 2 H/2
(M,£) (p) = prilpy < £(8), (p0)™ K (2/BE)>, (1.1)

where pe(-=,1). rhe definition in (1.1) coincides

with the classical transformation whenever f is a regqular
distribution, that is, one that can be represented by a suit-
able integrable function. We note that there are various
extensions of classical transforms in which the operational

calculus is geared for other Bessel-type operators among which

are the K-transform [3] and the Hankel transform [3], [4], (5]
and [6].
In section two we shall describe the testing function

space M its dual and study some of their properties. While

TP
in section three we will give the definition of the generalized
Meijer transform, show its analyticity in some region of the
complex plane, and then derive an inversion theorem.

Throughout the sequel we shall make use of the following

notations and facts and are stated for the sake of completeness.
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We shall denote the interval (0,») by I, the Bessel differ-
ential operator tthl~“D by B_Ll and its k-iterate by BEU. It

follows that

2k tk—lDzk_l+cﬁtk-2D2k_2

k
£ +cl £ 5 N +...+cth]¢(t), (1.2)

X o(t) = (£5D

where the c¢'s are suitable functions of u only.

The modified Bessel functions IU(2/pt) and KH(prt) of first

and third kinds are defined by (see Watson [7])

® ( t)k+u/2
Iu(2/§E) = kzo e ¢ any real number, (1,3)
and \
k=-u/2 b k+u/2
1 (pt) (pt)
2sinull k§0 KIT(k+1-1) kzo ksrTEITIKT/ , H Mot an integer,
KH(Z/EE) =
—U-l =] -
1y (—l)k(-u—k-l)!( ) K2y H Y (pt) k7/2
2,5, k1 P Lok (mFK) T
1, K 1 THEk .
[-logc@ﬁf)+?( Z T + Z T)]' L integer (1.4)
i=1 i=1

c=e" (Y is Euler's constant) and the finite sums are taken to
be equal to zero whenever the upper limit is less than the lower
limit.

Further,

8BS, (e8) 2k (2/5E)) = pF o)/ %k (2/5D),  (L.s)
B, (o)1 (2/FE)) = o) %1 2/FD). (L6

Finally, the following asymptotic expansions of Ku(2/5€)

and IU(Z/EE) will be used repeatedly (see Watson [7]):

Ku(Z/EE) = %} (pt)_l/4e"2‘pt[l+0(!pt:_l/2)], -7 < argp ~ 1 (1.7)

and
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—l—(pt)-l/4(e2¢pt+ie-2“pt+lu")[l+0(|pt]-l/2)],
2/
I, (2/Pt) = /2 < argp <
(1.8)
L (pt) 1/ (2Pt 572 PEINT) o (fpe|T1/2 ),
2vm
-31/2 < argp < 7/2.
2. The Testing Function Space Mu Y and Its Dual. In this
!
section we shall define the testing functions space Mu v its
’
dual and study some of their properties.
Let Yy be any real number and ue(-«,1l). Define
M = c®(x) | 2" <o
b,y = LeECTIMIAL 4 (9) <=}
where
o) = sup [e"E L2 EE p(0) |, k=0, 1, 2, L.
Y. 0<t<® H
In view of the weight function eY/Etl-”one may think of the

elements of Mu Y as those smooth functions on I that grow no

r
Y/t

faster than the exponential function e for large t and

behave like power functions near the origin. As will be seen
in Lemma 2.1 below, the kernel of the Meijer transform is of
this type.

The family {As,k|k=0,1,2,...} is a countable multinorm.

Indeed, AH is a semi-norm for each k and A" is a norm on
Y.k Y,0
Mu v We assign to Mu Y the topology generated by this family
’ ’

of multinorms. Thus Mu Y is a countably normed space (a fund-
14

amental space and members of the dual space M’ are generalized

H,Y

if M
p,y 1E oM,y for

all v and for every k = 0, 1, 2, ..., x$'k(¢v-¢§) + 0 as v,§ +

functions). A sequence {¢_} is Cauchy in M
v

independently. We shall now show that the kernel, (pt)“/zxu(Zth),
is a member of M .
HeY
Lemma 2.1l. For any fixed complex number p such that p # 0,
-T < arg p < 7 and Re2/p > vy, (pt)u/zKu(ZMpt)eMu v
I

Proof. Under the hypothesis on p, Ku(2¢pt) is an analytic



MEIJER TRANSFORMATION OF GENERALIZED FUNCTIONS 271

function of t on the right half plane and hence a smooth function
on I. It remains to show that A$ k((pt)u/zKu(Z/EE)) <o for

k=0,1, 2,... . From (l1.5), we have

Y/Etl-upk

u u/2 -
AY'k((pt) Ku(z/ﬁf)) sup|e . (2.1)

(pt) "%k (2/pE)
tel H

We will consider two cases: for small t and for large t. For
t small and u not equal to an integer the asymptotic expansion

of KU(Z/BE) in (1.4) yields

- t +u-1 1- 2-
|eY/Etl upk(pt)U/zKu(Z/pﬁ)IsApeY‘thlk e A = R T B> R P

t +u-1
+ Cpew—lplk ML pt )+ pt | 2 pe P (2.2)
where Au and Cu are functions of uy only. Since p < 1, there
exists a real number T < 1 such that for |pt| < T, the right
hand side of (2) is bounded by a constant. For t small for
for v = 0, -1, -2, ... the expansion in (1.4) yields

vE, 1-u k, - -
e et THp \pt)“/ZKu(Zth)I sAL'leY'/ElpIk+p l[lpt[+lpt|2+...+[ptl His

|1ogc (pt) | []pt| L™+ [pt |2 P pt |3 .. ]

vE,  k+p-1
TEp<TH

+ Ege Upt| 27 H e pt |2 He pt |3 Hel L (2.3)

where, Aﬁ

Applying L'HOpital's rule to the second term in (2.3) and

’ C; and Ep are constants depending upon u only.

using the fact that py < 1, we imply that there is a real
number T < 1 such that for |pt| < T, the right hand side of

(2.3) is again bounded by a constant. Thus the left side of (2.2)
is bounded for small t and u <1 for all k =0, 1, 2, ...

We now consider the finiteness of (2.1) for large t. By

employing (1.7), we obtain, for -m < arg p < m and for |pt| > T,
- - - vt 3/4-u/2
|ey/Et1 “pk(pt)“/2K“(2/EE)| < Eﬁlplk+“ 1, (Y-Re2/P) tlpt] /4=u/

[1+0(|pt| /%]
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where EL is a constant depending upon u only. Since u <1
and Y< Re 2V/p, the right hand side of the last expression is
bounded by a constant for |[pt| > T.

Thus in either case we have shown that As'k((pt)“/zKu(Z/EE)) <
for all k = 0, 1, 2, ... . Therefore, (pt)u/zKu(Z/EE)eMulY.
By employing the following fact

D, [(pt) %k (2/B0)] = -p(pt) /272 | (2/5D)

and by arguments similar to the proof of Lemma 2.1, we have
Lemma 2.2. For p # 0, -7 < arg p < 7m and Re 2Vp > vy,

Dt[(pt)u/zxu(z/ﬁf)l € MU,Y' Further, by symmetry, it follows

(Dk is the k-iterate of D).

w,Y°
In the next few lemmas we shall investigate some properties

that D;[(pt)“/zKu(Z/BE)] e M

of the space MU'Y and its dual.

Lemma 2.3. The space MU:Y is complete.

Proof. Let {¢v} be a Cauchy sequence in Mu,Y' Then
A$'k(¢v) < » for all k=0, 1, 2, ... . Hence on every compact

subset K of I, BEU(¢v) converges uniformly for each

k=0,1, 2, ... . Let ¢(t) be a smooth function on I and s

t

a fixed point of I. Define (0 Lo) (¢) = J ¢(t)dt. Then
s

D-lDt¢(t) = ¢(t) - ¢(s). It can be verified that

-l+u =1 _-u - - (81w

t D "t "B_¢,(t) = Do, (t) (£)7 "Dgo,, (s) (2.4)
and

=1 -l+p -1 _-p -

D "t D "t "B_,¢,(t) = ¢,(t) - ¢,(s) - L (£)D ¢, (s), (2.5)
where

ﬁsl'”(t”-s“), LFEO

\

L (t) =

s(lnt - 1lns) , u = 0.
Since multiplication by a power of t or the application of p~t

preserves uniform convergence on K, it follows from (2.5) that

Ds¢v converges on K. From (2.4), it follows that
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Dt¢v converges uniformly on K as v+«. Now the convergence of
Dt¢v and B-u¢v imply the uniform convergence on each K of

Di¢v. Repeating the same argument with ¢v and B_u¢v replaced

by Bfu¢v and B§:l¢v respectively, we deduce that, for each

k=0,1, 2, ..., Dt¢v converges uniformly on K as v-«,
Therefore there exists a smooth function ¢ on I such that for
each k = 0, 1, 2, ... and each teI, D:¢v(t) converges to

Dt¢(t) as v-+o, We will be done if we can show that ¢(t)eMu .

Y
Since {¢v} is a Cauchy sequence, it follows that for each k

such that if v, > N
leY/Etl_“BE

and each € > 0 there is Nk

u - .
Xy,k(¢v ¢E) < ¢/2. Further, since

kl
u(¢v-¢ﬂ* 0 as

Y/Etl'“Bf

v > ®», we have for each teI and £ > N, that |e

k p(¢€-¢)'<5.

Hu : H H H
A - ®, S A < A - + A
Thus Y,k(¢§ $)+0 as &~ ince Y,k(¢) < y,k(¢£ %) Y,k(¢€)'
it follows that ¢eM . Hence M is a complete space.
H,Y H,Y
(Indeed Mu Y is a Fréchet space).
’

Now if Yy and o are any real numbers withy < a, then it
is clear that M is a subspace of M . Further, the
H,a H,Y

restriction of feM! to M belongs to M' . This implies
H,Y H,Q H,0

that there is a real number o_ such that the restriction of f

f

. . ' . . . L} .

to Mu,Y is in Mu.Y if y > Og and is not in MU:Y if y < O
The real number O¢ is called the abscissa of definition

of £,

For any real numbers y and o with y < a, we know that

Mu,a is a subspace of Mu,v’ However,

Lemma 2.4. If y < a, then Mu o is not a dense subspace
’

of M .
H,Y

Proof. Let ¢(t) be a smooth function given by

0 ;0 < t<1,
o (t) =

YRV o .

We claim that ¢>(t)e:Mu v Indeed,
’

AY ((8) < sup |eY/Etl'“Bfu¢(t)| + sup |eY/Et1'“Bfu¢(t)l. (2.6)
' 1<t<2 2<t<e
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Since ¢(t) is a smooth function, it follows that the first
term on the right hand side of (2.6) is bounded. Moreover,

from (1.2) and the observation that

-1 l/Z]t-l+ue-y/t

K™Y Bt 't

D, (

B -1
- = [p (£ 7) +q_(t

- - . . -1
where pk(t l) and qk_l(t l) are polynomials in t
Thus, the second term on the right hand side of (2.6) is bounded.

Hence A$ k(¢) < » and ¢ € Mu ¥ Let N a neighborhood of ¢ be
’

’

given by
= - M _
N =Ny o(0) = lyeM AL (¥-6)<1/2}.

Now for large t, A$ 0(w-¢) < 1/2 implies that [y (t)| > %e-y/gt_l+“.
’

a/Etl-u 1 (a-y)vt

Thus |e y(t)| = e“/Etl'“lw(t)l > 3e which implies

that Az o(\p) remains unbounded as t+*» . Hence no element of
’

N lon to M . Th fore M is den in M .
be gs Lo erefo 0,0 not dense i wLy

Finally, we shall discuss the adjoint of the operator

Bfu . It is rather clear that Bfu is a continuous linear
operator on M . Let feM' and ¢eM . We define the
P T T oMy

k

—u by the equation

L *k
adjoint B_u of B

*
<B_t £, ¢> = <f, Bfu¢> k=0,1,2, ... .
Lo . . k . . *k '
The continuity and linearity of B-u will imply that B_u feMu y
r

*
and B_t is a continuous and a linear operator on M; v Further
’

*
in lieu of equation (1.2), the expression for B_t is given by

*k _ |k k+1 k-1 _2k-1 k_2k
BLy = C Dy + Cp_1tDp — + ...+ Ciet T DI T e Dl (2.7)

where the C's depend only on u. Moreover, we can show that

k

*
the adjoint operator B_u

is Bt. Indeed if k = 1, then (1.2)

. _ 2 . * 2
yields B_p = tD, + (1-w)D, while B_p = tD_ + (1l+u)Dt). Thus

. . *k k

* =B ., I = .

B_u u nductively, we obtain B_u Bu

We end this section by the following remarks.

Remark 2.1. 1If f(t) is locally integrable on I and

f(t)e-Y/Et-l+“ is absolutely integrable on I, then f(t)

generates a regular member f of Mﬁ Y via
’
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<f,¢> = J f£(t)p(t)dt, o¢eM . (2.8)
0 u,y

Remark 2.2. The space D(I), of all smooth complex valued
functions on I whose support is contained in a compact subset

K of I equipped with the seminorms
pn(9) = suplD2¢(t)l,
tel

where ¢eD(I) is such that supp ¢ < K is a subspace of Mu v
’

Further, the restriction of any feMu to D(I) belongs to

'Y
D' (I).

3. The Generalized Meijer Transform. In this section we shall

give the extension of the Meijer transfonnMuf to generalized
functions belonging to ML.Y' We shall also prove the analyticity
of the transform and exhibit an inversion theorem which is a
generalization of the classical inversion formula (see [1]).

For feM&’Y, ue(-=,1) and pef; = {Pet|Re 2/p > vy > Ogr P # O
|arg p|<m}, we define the Meijer transform of generalized
function by

(H,£) (p) < £(t), (pt)U/zKu(Z/EEP. (3.1)

= _2p _
T (1-u)

In (3.1) if f£(t) is a regular generalized function (see Remark

2.1) then we obtain the classical Meijer transform

_ 2 ® u/2
M) (p) = r—u%r [0 £(t) (pt) "/ %k (2/PE)at (3.2)

where ue(-1,»).

Theorem 3.1. Let faHﬁ_Yand (ﬁuf)(p) be the Meijer
’

transform in (3.1) for peQ Then

£
— k k—
M =
u(Buf)(P) p Mu(f)(p).
Proof. For ple, k=20,1, 2, ..., we have

5 (K 2
B, (BI) () = By < BYE(e), (pe) ¥ %K (2/5) >
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- 2 k u/2
= TTTgET < £(t), BZ  (pt)" K (2/p%) >

= 2 k u/2
- fTTgET < £(t), p (pt) Ku(z/EE) >

pkﬁu(f)(p)

by equations (1.5) and (3.1) respectively.
Remark 3.1. Theorem 3.1 is the basis for an operational

calculus for the operator Bu. It is the generalized function
analogue of the differentiation theorem of Conlan and Koh ([1l]
Theorem 2, page 149).

We shall next prove the analyticity of the transform
ﬁu(f). However, we need the follow lemma.

Lemma 3.1. Let Yy be any real number and p be a fixed
point in Qf. Then

le"'E

sup

) W2 (/58| < c (1+|p| W2t YY), (3.3)
0<t<e H - H

where Cu is a constant depending only on u.

Proof. The idea of the proof is similar to that of
Lemma 2.l1. Since Ku(2/pt) is analytic except at t = 0 and
YVt 1-u/2

t = », we need only to show the boundedness of e (pt)

/_-
Ku(2 pPt)
as t - 0 and as t » », Employing the series expansion of

KU(Z/EE) (1.4) with u # 0, -1, -2, ..., we obtain

T - - - -
e"E o0 172, /BB | < A e" ELlpe] gt 2 e e e

+ a1e" i lpt |+ [pe| 24 lpt [+,

where Au and Aﬁ are constants depending upon u only. For T < 1
such that |pt| < T, the right hand side of the last expression

is bounded by a constant R, independent of p and t. Similarly,

U
if we employ (1.4) with w = 0, -1, -2, ..., then, for Ipt < T,
we have

[eY/E(pt)l_U/zKu(Z/EE)I <9

where Qu is independent of p and t.
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For t large we employ (1.7) to obtain
- —Woy 3 - T
ley/E(pt)l “/ZKU(2/§E)I < Lulptl 72+ 74 (Y-Re2/p) vVt

where Lu is again a constant independent of p and t. Let

E =m .
y aX{Ru’Qu’Lu} Then

- - Woy 3 -
sup |eY/E(pt)1 u/zxu(z /pt) | i Eu(l""Ptl /2+ /4e(Y Re2/§) /E)
0<t<»

- H 3 _ —
< B, (1+[p] u/2+3/4 Y2+ ¥4, (y-Re2/p) VE

) (1+|t]” )
and since Re2vp > y and pe(-«,l), it follows that the right
hand side of the above expression is less than Cu(l+|pl-u/2+3/4)

with Cu a constant depending upon p. This completes the proof.

We will now show that ﬁuf is analytic. Namely,
Theorem 3.2. Let feuﬁ Y and (Mf) (p) is the Meijer transform
’

of f and pefg. Then (ﬁuf)(p) is analytic in Q. and

- 2 u/2 /5E
= — < t >,
Dp(Muf)(p) oy < BB Dpp(p )7UTR (2/pE)
Proof. For pefl;, let C be the circle about p of radius r so
chosen that it lies entirely in @ and let [ap| < r; < r for

some I,.
1

(ﬁuf)(p+AP)-(ﬁhf)(p)

_ 2 u/2
5 Iy <E(®).Dop(pt) K, (2/p%)>
= <E(), 9y, (£)>, (3.4)
h ¥ 5
vhere (P+APH(P+Ap)t]2Ku(2/(P+AP) -p(pt)“K (2/pt )
®pp (8 =TIy ! 5P

B
2 =
- Dpp(pt) Ku(2vpt) 1.

In order to prove the result, it suffices to show that ¢Ap(t) +0
. u/2
as Ap »+ 0 in Mu,Y' Since by Lemma 2.2 Dpp(pt) Ku(2¢pt)eMu’Y,

it follows that (3.4) is well-defined. Further, since for

k=0, 1, 2, ...
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k u/2 k+1 u/2 —
D =
B_“ pp(pt) Ku(2/pt) Dpp (pt) Ku(2/pt)

by equation (1.5), it follows that B§u¢‘p is an analytic function

of p on Qf. By Cauchy Integral formula, we have

k _ 1 k+1 u/2
B-H¢Ap(t) = TS [5 (Et) Ku(Z/E_E) x
c
1 1 1 1
laplemp=np ~ =) - — 314t
Ap gE-p-Ap  &-p (£-p)
¢ &5 e M %k (2vED)
= Ap u ate
mil (1-u) )

l (E-p)z(E-P‘AP)

Y/t

Since [g-p| = r, |&-p-Ap| > r - r, and e

'“/2 +

L (€6) 7%k (/2 is

3
74y it follows that

B3

2 4

bounded by Cu(l+|£|

c 1
leY/Etl-uBfu¢Ap(t)| < u]Apl (1+]&]

k+u
(el™™"
- “r(l_u) ldgl

le-p|?|€-p-sp]

culApI 2
T (1-u) r(r—rl)

[k+u k+u/2+3/4)

+g|

in

sup (lg
geC
which converges to zero as Ap + 0 and this completes the proof.

The rest of this section is to prove a generalization of
the inversion theorem for the classical Meijer transform (3.2)
due to Conlan and Koh [l]. Our result is restricted to generalized
functions belonging to the space D(I) (Remark 2.2). In particular,
we shall prove the following inversion theorem

Theorem 3.3. Let (ﬁuf)(p) be the Meijer transform of

feM! £ .
EMH,Y or peﬁf Then

£(¢) = 1im Lllok) fel M £) (p)p L (pt) M1 (2/pE)dp (o)
61411' _el H u

2 .
where p(6) = %releseczg and vy is a fixed real number in Qf.
(The limit is to be understood in the sense of convergence in

D'(I)).
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The proof of Theorem 3.3 will be developed in a sequence
of lemmas. We will state the lemmas and give them their proofs
in the Appendix.

Lemma 3.2. Let ¢eD(I) and feM; . Then, for a fixed,
’

§
ele(o.ﬂ).
(9 w/2
| Tamp < £t), (p6)*/ 2k (2/FE) > dp (o)
_el 6
- 1 u/2
= <£(t), f A(p)p(pt) "/ 2K (2/FE)dp(0) >
_el
where

-]

A(p) = f ¢(t>(pt)’”/zp'llu(2/§E>dt,
0
y > max(o,of) and Re2v/p > 0.

Lemma 3.3. Let ¢eD(I) be such that supp¢ < [A,B] and ©
be a real number such that 0 < o < A, Then for any Y > 0

such that Re2vp = vy, set

(/?+0)2

Q (t) = f L
2,8, (/?-0)2 0

(t,7)B% ¢(t)at,
l -H

where
t-u/ZTu/Z

L -

(t,1) = %;[ VP (VEI /EE)Ku(z/E?)

u+l(2

p(8,)
+ V/TI_(2/pE)K (2vp1)) ) .
u U+l
P(-el)

Then W, (1) = eY'/? Tl—u[Q (‘t)--Bk ¢ (1)) converges uniformly
91 2,9l -u

to zexoon 0 < T < @ ag 8, + w,

1
Lemma 3.4. Under the same hypotheses of Lemma 3.3 let
(VT-0) 2
= k
Qllel(r) = I Lel(t,T)B_u¢(t)dt.
0

Then S, (1) = eY/? rl-qu g. (T) converges uniformly to zero
1 1

on 0 < T < » as 61 -+ T,

Lemma 3.5. Under the same hypothese of Lemma 3.3, let
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Q3 5 (1) = ] Ly (¢, 1)B% o(t)at.
S 2 V1 Lo
(YT+0)

Then R, (T) eY/? rl_uQ3 g (1) converges uniformly to zero

el ‘1
on 0 < T < ® as 61 - T,
Finally,

Lemma 3.6. Let ¢(t)eD(I). For a fix y = Re2/p, let

6 [ _
H, (1) = L J L (pr)“/zK (2Vp1) J ¢ (t) (pt) W/2y (2v/pt)dtdp(e).
<] mioJ_ M 0 "
1 el
Then for any positive real number Yy

Hal(t) converges in Mu,y to ¢(7) as el - 7,

Proof of Theorem 3.3. Let ¢(t)eD(I). We show that

)
i f L@ (et ee) V2 (/BB dp(9), 6(8)> (3.5
-6 H u

1

converges to <f(t), ¢(t)> as el + ., Since (pt)-u/qu(Zth) is
a smooth function on I, the integral in (3.5) is locally
integrable with respect to t, it follows that (3.5) can be

written as

o 8
Ly Jo ¢(t)L1 ®,£) (0)p () /%1 (2/PE) dp(0) at

8

6 2 [

S g (1" g ep w21, (/R0 ity €0, o0, /B0
-0 0

1

dtdp(8) (3.6)

by Fubini's Theorem and (3.1). For any real number Yy such

that vy > max(o,of) Lemma (3.2) implies that (3.6) is equal to

0 f°° - 2
T (p1) ¥/ &, (2/F%) | (%) () W/21 (2/B%)atap (6)>
i) 0
el
which converges uniformly to <f(1),(T)> in Mu,Y as el + m by

Lemma 3.6. Equation (3.5) will then imply that
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(0

£(e) = lim TP L @ ) (prp7hee) 21 (2/BE) ap (e
&,>m -0
1 1

which completes the proof of the theorem.

Remark 3.1. 1If (Muf)(p) and (ﬁug)(p) are the Meijer
transforms of £ and g for ple and png respectively and if
(Huf)(p) = (ﬁpg)(p) for plean, then f = g in the sense of
equality in D'(I). This uniqueness property is a consequence
of Theorem 3.3.

APPENDIX. In this appendix we shall give the proofs of
Lemma 3.2 through Lemma 3.6.

Proof of Lemma 3.2. Set

[S]
N(T) = J 1 A(p)p(pr)“/zxu(2/5?)dp(e).
(3]

. This follows from Lemma 3.1

Clearly N(-r)eMulY

0
A$’k(N(r)) <c, [ ; 1a(e) | 1o (14 o] M/2*3/4) |ap (o) | < =. (al)
1

Let R(t,m) be the Riemann sums for N(t1) given by

m-1
e . . .
Reem =2 1 aed®)pdd wpdd)¥/ % @/pedd).
j=-m

We need to show that for fsML Y,<f(t),R('t,m)> converges uniformly
r

to <f(t),N(1)>. Equivalently, since fEM; yr we need to show
’

that R(t,m) converges in Mu to N(1) as m » », That is,

'Y

G(t,m) = eY/? Tl-uBE

y (N (D) =R(T,m))
converges uniformly and absolutely to zero on 0 < T < ® as m > =,

Since kﬁ k(N('t)) <», it follows that for a given ¢ >0 one can
’

choose a real number T such that for 1 >T

/T 1-
supleY T l-mgk N(t)| < e/2 (A2)
>T —H

and for all m
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0
sup|e ¥’ B R(rm | < E/z(f L jap) fapen Tt 2 x
™>T ;)
m-1 .
I Iae@ (A3)
j=-m

which implies that there is m, such that for all m > m, (A3) is

0 0

less than €/2. Thus from (A2) and (A3), we have sup G(t,m) < e,forxn>nb.
T>T
Now for 0 < 1 < T and by employing the series expansion of

Y/?pk l-u/2

Ku(2¢pr) as 1T > 0, e (p1) Ku(2/pr) converges uniformly

to zero on p(-el) < p(o) < p(el). If we redefine this function

to be zero at T = 0 for the given p(6), then eY’/?pk(pT)l“U/2

KH(ZVpT)
becomes uniformly continuous on (t,p) with 0 < T < T and
p(-el) < p(o) < p(el). Thus R(T,m) will converge to the

integral and hence there exists my such that for all m > m;,

sup (G(t,m)) < €.

0<T<T

Therefore, for all m > max (mg,m;), sup |G(t,m)| < €.
0<T<>

That is, G(1,m) converges uniformly to zero on 0 < T < = as
m > o,
In the next three lemmas we shall investigate the boundedness
of the integral

® k
L. (t,1)BX ¢(t)at
Io 1 W

where Lel(t,T) is as defined in Lemma 3.3. Since the proofs
of Lemmas 3.3, 3.4 and 3.5 are essentially similar, we shall
only give the detailed proof of Lemma 3.3. The idea of the
proofs is to use the asymptotic expansions of Ku(z/ﬁE) and
IU(Z/EE) and get appropriate bounds on the resulting terms.

Proof of Lemma 3.3. Since supp ¢(t) < [A,B], it follows

that Q, o (1) = 0 if either (\/?+o)2 < Aor (/?-0)2 > B. Thus
’

1
we consider (I/A-o)2 <t < (/B+0)2. Further, since

2 iel 2 91
p(e,) =L e sec“ —=, it follows that

1 4 2
2!
[2/pE| > |y sec TTI YA > =, as 6, > 7

and

|2vpT|

| v

|y sec == | /A-0| + =, as b, > T .
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Employing the asymptotic expansionsof Ku(2/§€)(see(l.7)) and

of Iu(2/§E) (see (1.8)), we have

wel(r) =3, ¥ 3, + 35+ 3, (A4)
where R
3 2 757 E (/BT — 6
1 _y/T 4 ‘% r(VT+0)° t e’ T Sin(Y(/t-/?)tan7?)
Jl = 2—_"3 T — — x
(/?_0)2 v/t-/T
x 13k ¢ (t)dt
-u
6
L E 3/aeus2 (VT+0) 2 t'“/z’l/‘leY('/E'ﬁ)sinY((/E-/?)tan_zl)
JZ = 7nc T [ 2 X
(YT-0) Ve - /T
1 1 _1 1
BX o (e)0(fpt] Z+o(lprl Hy+o(lpel) 2o(lpr]) Hat

and
Jy = ‘2117 T A2 0 (e |2 )
(VT+0) 2 t-u/2-1/4e-y</z+/?)cos(Y(/qujtani% —pm
I(/?-cnz VE+ /T
-B% o (t) (1+0([pt| T/ jat
I, = YT Tl‘“BEH¢(r).

We show now that (A4) converges uniformly to zero
on 0 < T < ®, Adding Jl and J4, replacing x = VYt - YT and adding

and subtracting the term

8
: 1

_ 0 sin(yxtan—-)
LY/T [ 1-Hgk o (1) J 2 4y,
™ -u -G X

we obtain

Al

g 61
J v(x,t)sin(YxtanTT)dx
-0

!
[} sin(Yxtan?r)

+

YT Tl‘UBEu¢(I)[% [ x - 1] (AS)

X
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where
¥ (E + 1) TH2EK (g ey ) -BX 0 (1)

Y/T _l-u VT -
e T X

v(x,1) =

v(x,T) has a removable singularity at x = 0 and is bounded

on the domain {(x,t)|- %? < x < %;, % <1< (/B + %;)2}. so

given any € > 0 we can make the first term in (A5) less than

€/3 by choosing ¢ small enough, say 0 = o1 The second term

of (A5) converges to zero as el + w. Thus Jl + J4 < g/3.

-1/2 -1/2)

In J, the terms repregented by 0(|pt] ) and 0(]|pt|

are bounded by C/|1+i tan ?%I for C sufficiently large. This

implies that
sin(Y(/E-/?)tani%)

E- T

-1/2

0(|pt| )| < c'

0
sin(y(/f-/?)tanjé)

-1/2
0(]| (p1) [y| <c*
/e - /T

where C' and C" are constants independent of 61. Therefore the

integrand of J2 is bounded on the domain

{(t, 1) |A<t<B; (/K—o)2<1<(/§+0)2}.

This implies that given any € > 0, we can choose 0 sufficiently

small, say 0 = 0, such that |J2| < g/3.

By a similar argument, for € > 0 we can choose ¢
sufficiently small, say ¢ = 05. such that [J3| < e/3.
Let 0 = min(01,02,03). Then for a given € > 0 there exists

a 8§ > 0 such that wy (1) < € whenever Iel-ﬂl < §. Equivalently,

1
Wo (1) converges to zero on 0 < T < » as el - T,
1
Finally, we shall prove lemma 3.6.

Proof of Lemma 3.6. Since ¢(t) has a compact support and

since the integrand is smooth, it follows that

o "

k 1 (%1 .k 2 f -

By (1) = 5% J_e BZ, (pt) "/ K, (2/pT) J0¢(t)(pt) “/21“(2/5E)dtdp(e).
1
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Using (1.5) and (1.6), we obtain

®©

e r -
Bk = X f : (pT)U/ZKu(z/E?) J ?(e) (pt) ™" Bfu(pt
- 0

u/2
_uHe (T) mTi ) I
1 el

u(2/§€)dtdp(€

Integrating the inner integral by parts 2k times, we get

(8 “ - _
BX . (1) = & | T et %k (2vp1) f (pt) ™21 (2/BE)BX 4 (t)atap(9)
-8y i -6, u 0 H —u

and upon interchanging the order of integration

Bk H

NS U R SV
-u 6 (0 mi
1

JLote0

K, (2/BT) (pt) /%1 (2/B0)8K o (t)ap(o)at.

Now, by observing that

6 - i}
L0 o0 ™ K AT T, /DR () = L (80

vl

(see Erdélyi [2], Equation 9 page 90) where Ly (t,1) is as in
1
Lemma (3.3), we obtain

o

k f k
B Hy (1) = J L, (t,T)B] ¢ (t)dt.
LRS! 01 H
If supp¢(t) is contained in [A,B), then, for ¢ a real number

such that 0 < ¢ < a, Bque (1) can be written as

1
X (/?—0)2 (/?+c)2 o
B Hy (1) = J ... dt + f <. 5 dt + J ... 5 dt
S 0 (VT-0) (VT+0)
=Q (t) +Q (t) + Q (1)
1,61 2,6l 3,61
where Qi 9 (t) i =1, 2, 3areas in Lemmas 3.4, 3.3 and 3.5

1

respectively. Now eY/? Tl_“

YT L1-n

Qllel(T) and e Q3’el converges

uniformly to zero on 0 < T < = as el > m by Lemma 3.4 and

Lemma 3.5 respectively. Moreover, e'”' ‘rl-u[Q2 o (T)-BEH¢(T)]
’
1
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converges uniformly to zero on 0 < T < » as 61 -~ m. Hence

H, (1) converges in M to ¢(1) as 6, > m. This completes
el W, Y 1
the proof of Lemma 3.6.
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