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ABSTRACT. In this paper, an operational procedure is established to evaluate Hankel
dtype integrals. First, an operator L(8), 8 e -x is constructed, which defines the

integral. Then making use of some basic properties of this operator, an elementary

procedure is developed for evaluating integrals for a special class of analytic

functions. A fe example are given to illustrate the technique.
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1. INTRODUCTION.

We consider the singular integral of the type

f(xt)Ju(2t)dt, (1.1)
o

1where Ju is the usual Bessel function of the first kind of order u, u 5’ and f(x) is

a suitable function. This integral can be viewed as defining the Hankel transform of
dthe function f. In this note, our main aim is to construct an operator L(8), 8 -x ,

so that L(8)[f(x)] defines the integral (I.I), [cf. I, t9.5; 2]. We then establish

properties of the operator L(8), and with these help of the properties, we shall obtain

an operational procedure to evaluate the integral (1.1).

2. TI OPERATOR.
dIt is an easy matter to see that the differential operator 8n, where 8 m -x and

n a positive integer, is such that

sn[xa] (-a)nx

for some constant a. Then pn(8), a polynomial of n
th

pn(e)[xa] pn(-a)xa.
degree in 8, gives

Consequently,
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p(8)[xa] lira pn(p)[xa]

lira Pn (-a)x

p(-a)x

where p(s) lim Pn(S), limit of a polynomial. Thus the operator p(O), is a

differential operator of infinite order and has the property that when applied to a

power function, simply replaces it with a multiplier. With this understanding, we may

write, symbolically,

-0 -0 In N (-In n)k ok lim ), say.n e lim Z k! PN(O

Then,
-o x-Sn lim pn(0)[x-S] lim pn(S)x-S

N- N-
-sn

for some

If further

Next we write

or

n
pn(O) E (-l+2k+O), and s o + it, then

k=l

pn(o)[x-s] (v-l+2k+0)[x-s]
k=l

(p-l+2k+s)x
k=l

a- e
a- 0

1 -s 1
a- O (a-O)[x a- ’a-s’x-

(2.I)

(2.2)

property parallels that of the operator which is a polomial or limit of a olFnomial
in O. By a repeated application of an operator of the tpe (2.3), we have

n 1 -sn 1 ix-S] (2.4)(p_l’+2..) (vl+2ks)X
k=l k=l

for some s, except where s o 1 + 2k, k 1,2 ,n.

Combining the results (2.1), (2.2) and (2.4), we construct the operator

k*(l-O) I -8 n .-l+2kO.
n

n _1+2k_8)
k=l

such that

k* (l-O) x-s k* (l-s)x-s
n n

where

k* (l-s) I -s
n n

n u-s+2k+s.(.._-zrmrz__) s o + it, < < (R).

k=l

(2.5)

(2.6)

that when applied to a power function, simply reproduces it with a multiplier. This

1 Ix-s] (_s)x-s, (2.3)a- 8
1for some constants a and s. This defines an operator of the type

a_---, in the sense
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Next, we shall establish properties of the function k* (l-s).

I. [k* (l-o-i)[ n- 0(I) as [r[n

This is quite obvious.

2.

289

lira k* (l-s) exists and is uniform on every compact set of the s-axis.
n

PHOOF. From above,

Consider the product

J (I+
k=l

Now,

n
k* (l-s) 1 -s In n t-l+2k+s
n

e "-l2k-s"k=l

1 s(l+"’’+IInn n) n

=-e k--1

28 e-S/k(I + u-l+2k-s

28 e_S/k
n 28 e-S/k

u_l+2k_s
/ [I + (I + _l+2k_s) I]
k=l
n

[i + ak(s)].
k:l

k2ak f( 28 e-S/klim (s) lim k2..l + _I+2_s) I]
k k

2
lira k2 [(1 + 28 1

k-#=
-l+2k-) (I + ., k- I]

2 rl_ s
2

2kI k(-l+2k-s)2 klira k2[s(u_1+2k_s g) + (,- + O( )]
k--,=
1 s(l-u)

Or, ak(s) (l-u)o(1), as k --, for all finite S, hence the infinite product

convergence uniformly on every compact set of the s-axis. Also

s(1+" "+-Iin n)n Ts
e ---, e as n m,

T being the Ruler’s constant; hence the result.

l --SIn fact, lim kn
$

(l-s) lim n

using Ruler’s product for F-functions, [3, p. II].

(2.7)

Note that the function

the ellin transform of Ju(2x), s o + it, < T < (R), and 0 < o < +I, [4,

,l[Ju(2x),s], (2.8)

p. 326].

Now, we define the operator
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k*(1-0)
r(

K*(1-O)[x-s] k*(l-s)x-s, where k*(l-s) is defined above.

k*(1-e)[x-s] lira k*(1-8)[x-s] where by using Euler’s product for
n

n
r-functions, k*(1-,) lira k:(1-p) =1/2 lira n-n- n- --1

---1-p_), as in (2.5) above.

Now, using the results (2.6) and (2.7) we have

k*(l-e)[x-s] lira k* (l-S)[x-s]

lim k* (1-s)x-s
n

k*(l-s)x-s,
as desired.

3. THE INTEGRAL.

THEOREM I. Let f(x) be such that f*(s)
k(x) J(2x), _> and 0 < o < + I. Then

k*(l-S) If(x) [ f(xt)Ju(2t)dt,
o

where k*(1-@) is the operator defined by (2.8) above.

and

(3.1)

PROOF.

due to Lemma 3.

Since f*(s) defines the Mellin transform of f(x), we may write

I o+isk*(1-e)[f(x)] k*(1-8) f*(s)x-Sds
o-is

:lira k:(1-e) +i(R) f,(s)x_Sds
n- o-is

1 io+is f, k:(l-S Ix-s dslim-f (s)

lim f*(s)k (1-s)x-d,

jtify bringing the operator k(1-e) inside the integral si, weTo

have simply to show that the resulting integral

+i(R). f,(s)k:(l_s)x_Sds (3.2)

is uniformly convergent for all finite x. This is so, since

[+is ---i’r

o-is
f*(s)k:(l-s)x-Sds[ I-f*(o+ir)k:(l--ir)x id’l

0(n-)x- If*(o+ir) ldr < s,

for x > O, o > O, since f*(s) I. (o-is,o+is) and by using tahe results of La 1. In

fact the integral (3.2) converges absolutely, as well. Together with the results of

Lemma 2 and 3, we can then apply Lebesgue’s limit theorem, to obtain
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I f+i(R) f, s)k: l-s)k*(l-e)[f(x)] lira x-Sds

1 f*(s)[lim k*(l-s)x-Sdsn
I +i* f*(s)k*(l-s)x-sds

f(xt)Ju(2t)dt,
O

due to the Parseval theorem for Mellin transforms [5, chapt. II], and since k*(s)
A[Ju(2t) s]. Hence the theorem.

Thus the equation (3.1) defines k*(1-#) as an integral operator, having the property

that

k*(1-0)[xa] k*(l+a)xa
for soe a, due to Lepta 3. In light of the operational calculus generated by the

operator k*(1-0), one can no evaluate the integrals of the Hankel type, using the

operational procedures. For instance if f(x) is analytic and expressed in a poer

series

f(x) Z C xn+ Ixl < r
n:o

for soe r and a, then

k*(1-O)[f(x)] k*(1-e) Z C xx’
n

n=o

Z C k*(1-e)[xn+a]
n=o

Z C k*(l+n+a)xn+a Ix[ < R,
nn=o

for some R, where

1k* (l+n+a)

The above analysis is justified provided

lim C
n

0(1).

Hence we nm have an operational procedure for evaluating the given integrals, in fact,

f(xt)Jp(2t)dt Z Cnk*(l+n+a)xn+a (3 3)
o n:o

where f(x) Z C and k*(s) l[Jp(t):s]
n=o n r(l)

4. SPECIAL CASgS AND EXAMPLES.
1Consider the csse when u 5" Then from (3.1), we have

__1_ [ f(xt) sin(2t)_ dt k*(1-e)[f(x)]
J o Jt

(4.1)
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1 r() If for instance, we let f(x) x, I1 < ] thenwhere k*(1-e)2 r()
1 3 1

o

r()

or,

x/a

4 r()o t"- sin(2t)dt -- r(/>1
Putting gives us the classical result,

sin(2t) dtt 5"
O

ISimilarly, by letting u xn (3.1), we have

_I_ f(xt) cos(2t)_ dt k*(l-e)[f(x)],
J o 4t

where

And if f(x) x/, II < 1/2, we have from above

f t- r(

o
cos(2t)dt =-

Putting 0, give us the well-known result,

f c.OS(2t)_ dt =-o Jt
We no consider a few examples to illustrate the procedure given in formula (3.3).

1. Let f(x) xe-x Then from (3 3) we have

(xt)e-xt J (2t)dtu (i.I 1 1 )xo n=o n’ r

(4.2)

(4.3)

The series on the right-hand side converges absolutely for Ixl < 2, where lul < l+# and

luJ - Using the functional equation r(z)r(l-z) W

sinz and splitting the series

2n+l

into odd and even terms. We obtain from the right hand side of (4.3),

=0 nr(n)
Hence,



te-XtJu(2t)dt
0
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2
+ sin :<o>rf

293

(4.4)

due to the result (3.3).

can easily be derived.

analytic continuation.

2. Let f(x) x-AJ(n). Then from (3.3), we have

. (-l)nr(1/2++++n)x2n+-

Some special cases of this result such as when u and 0

The range of the result (4.4) can be extended to x > O, by

(-I)msi(I-u+-A)
(-I)"r()r()

Therefore the right hand side of (4.5), then gives

(4.5)

II 1 1 1 1 1 1 nr(=+.-^+)r(++.-^+)
Z n.’r(l++n)n=o

2
2FI(A,A;I+#;),

where Ix[ < 2, Re(+u) + I > Re ^ >-I, [6, p.48].

As a special case if A u-/a-l, then

Or

Then

- 2--ix2-u+1 2
(xt)-u++Ij#(xt)Ju(2t)dt r(u-)’ 2Fl(l-u+’l+;l+;

0

2--1x2+1 2 u-#-I

r(u-) (I ) Ixl < 2.

k k
f(x) __I I J __(aix), M X -xu’’ a.x > 0 and 0 < Re u < P M + +Let

i=l *i i=l

k -#if(x) "-x x
i=l

n 1 2n+ik (-I) ai 2n+u-I
J/ai(aix) Z x

i=l n=O n!r(n+#i+l

n ai 2n+#i
(xt)u-M-1 J (aixt)Ju(2t)dt k*(l-O)

_
Z

o i=l /i i-1 n=o n:r(n+i+l)
n ai 2m+#ik (R) (-1) (-.-) )x2n+u_l

i=l n=oZ n:(’n+i+’l)" k*(2n+

x2n+-1]
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1 k (_l)n(_)2n+,ir(u+n)a 2n+u-1

i 1n=OZ n:r(n+i+l)r(1-n)
x

)ir( a
i 2n+

1 k x_l[( (-1)n(-) ir(+n)
il r(i+l

+ z
n=l n !r(n+i+l)F(l-n)

ai ik C-)-1 il P("i+I)
[6, p.54]

4. Finally we will derive a general result formally.

Let

Then

f(x) x2A Gm’n [ex21al ap] + < 2(+n).p,q bI ,bqJ
p q

x2n+, 1

with the usual conditions on parameters, [6, p.91].

cSx2S+2^ds
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