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ABSTRACT: Let my,m be any numbers and let V o be the class of

2 m,,m,

functions of analytic in the unit disc E={z:|z|<1l} for which
m
(s](2))
£'(z) = ——nwn
"2
(s5(2))

where Sl and 82 are analytic in E with Si(0)=(Sé(0)=l. Moulis [1]

gave a sufficient condition and a necessary condition on parameters

m, and m, for the class V to consist of univalent functions 1if
1 2 ml,mz

S1 and 82 are taken to be convex univalent functions in E. In fact

he proved that if fev where S, and S, are convex and
120 1 2
_ k+2 -~io - k-2 ~-ia
m= Ty e (1-p)cosa , m, —Z—(l-p)e cosa, 2|ml+m2|§.1,
then f is univalent in E.
In this paper we consider the class Vm o in more general way and
1’72

show that it contains the class of functions with bounded boundary
rotation and many other classes related with it. Some coefficient
results, arclength problem, radius of convexity and other problems
are proved for certain cases. Our results generalize many previously

known ones.
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1. INTRODUCTION.
Let Vz(p) be the class of all functions f, analytic in
E={z:|z|<1}, £'(0)=1, £(0)=0, f£'(z)# such that for z=reie, 0<r<1

2‘" 10' f’ 1
£ 'Re e (zf'(z))'~pcosqa

1-p |d95kw cosqa,

where k>2, O<p<l,a real and ,a] < 5
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The class Vz(p) has been introduced and studied by Moulis in [1]. For
p=0, we obtain the class Vz introduced and studied in [2]. p=0 and a=0

give us the well known class V., of functions with bounded boundary rota-

tion first introduced and discEssed by Paatero [3] and Lowner [4]. Func-
tions in Vg and Vz(p) may not possess boundary rotation.

Also a class Tz(p) of analytic functions which is a generalization
of Vt(p) has been discussed in [5]. A function f, analytic in E,f(0)=0=

f'(0)-1 is in TIO:(O) if for zeE, there exists a function g in Vz(p) such that

£'(z)
Re ——5—%+>0
¢ g (2)
The cases when p=0 and p=0, 0=0 have been discussed in [6] and [7]
respectively.
Definition 1.1

Let m, and m, be any numbers and S, and S, be analytic functions

1 2 1 2
=(0= ' =1=9"
in E with Sl(O)-O 82(0) and Sl(O) 1 82(0)' Then fele’m2 if and only if
m
1
(Si(Z))
£'(z) = —_— (1.1)
2
A
(s5(2))
We have the following special cases.
Case A. Let m = X*2 5 - k=2 457 45 (1.1). Then
—_—— 1 4 72 4 > "= O
(i) Vm m =Vk’ the class of functions with bounded boundary rotation if
1°72

S1 and 82 are convex univalent functions. This was proved by Brannan in

[8].

(ii) Vv =0 _ towe -
m;,m, Tk(O) = Tk if Sl and 32 are close-to-convex univalent func

tions, see [7].

(iidi) Vm n coincides with Vt if zSi and zSé are Q-gpiral-like functions.
’

This result“is shown in [2].

. _ .0 o - o0
(iv) le,m2 -Tk if S1 and SZ€T2(0), see [6] and le,mz— Tk(p) if S1 and
o

SzeTz(p), see [5].

Case B. Let S1 and 52 be convex univalent functions in (1.1). Then we

have the following subcases:

(i) If m, = k+2 e—iacosa, m,= k-2 e_iacosa , then feva in (1.1). see [2].
b b -ia k=2 -ia_ Kk a

(ii) If m, = -z—(l-p)e cosa mw,= = (1-p)e cos0 , then fEVk(o) in

relation (1.1). This is shown in [1].
2. MAIN RESULTS

We now proceed to prove the main results for the class Vm ,m. " Where-
ver needed, certatin restrictions on the parameters oy and m, and“on ana-
lytic functions S1 and S2 will be imposed.

Theorem 2.1
Let f EVm such that

1°™2
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(s1(2)) !
£'(2) = ———r0
2
(s',(2))
where Sl and 82 are convex univalent in E. Let
2w
i
IA(r)= f% s [£'(re 9)]Ade.
0
where 0<r<1l and 2m1A>l; ml,m2>0
Then
2mlk—l
lim Sup (l-r) I, (r)<A(m ,m,, )
r+1 -
where
2m A
2 2 I(m A+ %)
A(m19m2,>\) Y
i (ZmlA—l)F(mlk)
Proof mlk
- L [27ls1 2|
Ik(r) = 5 Xde’ Sl’ 82 are convex functions,

0 m
s (2)] 2

Then |Sé(z)lz L

and Si is subg%jigate to (l-z)_2 in E. Consequently
1 2m, A [T 2m, A
IA(IXi??(l+r)
16
oll-re™”|

Now it has been shown by Pommerenke in [10] that

I'(p-1) 1

J (r) = p>1 r>1l
P 2P Ir2(n)  (1-r)P7l’ ’
1 1
TG+ 1
-nTG a-nPT

497

(2.1)

>
m2 0.

by the distortion theorems for convex functions [9]

2
—*°————~EEI]de = (1l+r) szlx(r), say (2.2)

(2.3)

using the recurrence and duplication formulae for the Gamma function.

Substitution of (2.3) in (2.2) completes the proof.
Corollary 2.1

- kt2 = k-2
Let ml— 7 m2 7 Then fevk
and
1
(Ek-l)k—l
lim Sup (1-r) IA(r)iA(k.A), where
r->1
1
(5k=-1)A
2 2 I‘(%k)\-f- %x + %)
A(k,))

5 1 Ts 1
m (Ekk+k—l)r(4kk+ 2 A)
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This result was proved in [8].

Theorem 2.2

Let feV , and S_,S. be convex functions. Let L(r) denote the
ml,m 1’72
i0
length of the arc f([z[ =r) given by the formula for z=rel .
2m
L(r):{ ‘zf'(z)lde
0
1
Then , for m1>-§, m2> 0, we have
L(r)=0(l), — —5———3
( _r)2m1 1

where 0(1l) is a constant depending only on L and m,.
The proof follows immediately from Theorem 2.1 by taking A=1.
From Theorem 2.1 and the standard inequality [9,p.11].

e 1
fa l<s 1,(1- ),

. we have the following.

Theorem 2.3 ©
Let fev and be given by (1.1) with f(z)=2z+ I a 2" where S, and
mpaT, n=2 !
32 in (2.1) are convex, mlfé,m2>0. Then for n>2
2m
2 1
e T'(m,+ =)
lim Sup n2-2m1|a l: T 1.2
n>e ® T (2m - T ()

Corollary 2.2
k+2 n. = k-2

If my== " 2 - in Theorem 2.3 then fst and
1
=k
- 3k e 2?1k + 1)
lim Sup [n |a I]i N
n>® n TR + )

This result was proved in [8].
Theorem 2.4

> >
Let fevml’mz with S1 and 82 convex and m, 1, m, 0. Let f be given by
Lo
f(2) z + 2 a z". Then for n>1
n=2
2m1-3
| ageal- lanlkic(ml’mZ)n g

where C(ml,mz) is a constant depending only on o, and m,.

Proof
For zlsE and nzl, we have
|(n+1)z a L
1 n+1l
2mr

2T 16
ae1- M2, 1= J |z-zll|zf'(z)]de, z=re

™
2m [s3(2) |
£ ey e
2mr 0 [s',(2)"2

(2.4)
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It is known [9] that for convex univalent functions S2

1
[S!(z) |>—— (2.5)
2 _(1+r)2

Also, by a result of Golusin [11], there exists a zl€E with |zll=r

such that for all z, |z| =r
* 2 r? (2.6)
lz=z |8 (2) < 55>
1 1 - 2
-r
*
where Sl(z) = zSi(z) is univalent
Using (2.5) and (2.6), (2.4) becomes
2m 2m
2 2 m, -
2r 1
| (n+1)z a _ -na_|<3FL__ 2 ) | |51 ()| d8
1 n+l n 2Trrn--l 1-r2 1
0
2m2-1
< (1+r) . 1
- n-3 2m. -2
mr (1-1) 1
where we have used subordination for the function Si.
Putting 'zl] =r, r= ;%T' we obtain the required result.
Corollary 2.3
k+2 k-2
= 2L =< >
Taking m, G DyT s k>2, B-_z
2
- <
we obtain fevk and Han+1| Ian|L_C(k) n , where C(k) is a constant

depending only on k.

Now we give the radius of convexity problem for the class Vm o

1’72

where the functions S1 and S2 are in Vk'
Theorem 2.5
Let fevV n such that
10T
m
1
\

(Sl(z))

o
(s5(2))"2

f'(z) =

1,SZEVk and m, s,
r is the least positive root of

where S mZzO and real., Then f is convex for |z| <r where

[1+m, (1~ %)]-k(ml+m2)r+[2m1—m2(l+ %)-1]r2 =0 (2.7)

Proof

From definition it easily follows that

' ' (z83(z))' (zS!(z))"'
g - m — - m, — * (-my + my)
z s1(2) 53 (2)

Now, for slevk it is known [12] that

(281 (2" 1 yr4r?

1 —_—
Sl(z) 1-r2

Re (2.8)
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Also, by the Paatero representation theorem [3] we have, for Szevk,

(zs)(z))"' _
2 k2 ) -k 2y (2), Reh,(2) >0 , i=1,2, and h,(0) = 1
' 4 1 4 2 i - i
Sz(z)
so that
A LR I L 2 DA e,
€ 57(2) 57(2) 17 It

Thus, using (2.8) and (2.9) , we have

[1+m, (1 - %)]—k(m1+m2)r+[2m1-m2(1+ %)-11r2

l—r2

and this gives us the required result.

Corollary 2.4
If k=2, then Sl,SzeV2=C, the class of convex functions and equation

(2.7) reduces to

2
1-2(m1+m2)r+(2m1-2m2—1)t =0

and in this case if m, = Eil , m, = k-2 then V reduces to V., and
1 4 2 4 my,m, k
equation (2.7) reduces to the known result
1-kr+r2 =0
which was given in[12].
Corollary 2.5
If m, = a>0, m2=0, then f is convex for |z|< r, where r is the least
positive root of
1-kar + (2a- l)r2 =0
This result has been proved in [13].
Theorem 2.6
Let fxgvml’“1 such that m1
(Si(Z))
f'(z) = —————
™2
\]
(Sz(z»
> -m _<
and Sl,SZEVk N ml,mZ_O, m mz_l.
Then feV,,, where k' = {ml(k-2)+m2(k+2)+2 }
From the above result, we deduce the following:
k+2 k-2
(i) 1If Sl,SZEVZ, then f€v4m2+2 and in this case if my P W
we have the well known result [8] that fGVk.
= = <a< .
(ii) If m, a, m, 0, 0<a<1l, then feva(k-2)+2



9.
10.

11.

12.

13.

SOME CLASSES OF ANALYTIC FUNCTIONS 501

REFERENCES
MOULIS, E.J. Generalization of the Robertson functions, Pacific J.

Math., 81 (1979), 169-74.

MOULI1S, E.J. A generalization of univalent functions with bounded
boundary rotation, Trans. Amer. Math, Soc. 174 (1972): 369-381.

PAATERO, V. Uber die Konforme Abbildungen von Gebieten deren Rander
von beschrankter Drehung sind, Ann. Acad. Sci. Fenn. Ser. A.
33 no.9 (1931).

LOWNER, K. Untersuchungen uber die verzerrung die Konformen Abbildun-
gen des Einheitschreises |z|<l, die durch Funktionen, mit nicht

ggricgwindender Ableifert geleifert werden, Leip. Ber. 69 (1917),
-106.
NOOR,K.I. and AL-DIHAN N. On a generalization of functions with bounded

boundary rotation, to appear.

NOOR,K.I. and AL-OBOUDI, M. A generalization of a class of functions
of bounded boundary rotation, Expo. Math. 1 (1983), 279-281.

NOOR,K.I. On a generalization of close-to-convexity, Int. J. Math. and
Math. Sci. 6 (1983), 327-334,

BRANNAN D.A. On functions of bounded boundary rotation, Proc. Edin.
Math. Soc., 2 (1968/69), 339-347.

HAYMAN, W.K. Multivalent functions, Cambridge University Press, 1958.

POMMERENKE CH. On the coefficients of close-to-convex functions, Michi-
gan Math., J. 9 (1962), 259-269.

GOLUSIN, G.M. On distortion theorems and coefficients of univalent fun=
ctions, Mat. Sb. 19(1946): 183-203.

ROBERTSON,M.S. Coefficients of functions with bounded boundary rotation,
Canadian J, Math. XX1 (1969), 1477-1482.

NOOR, K.I. and MADIFER H. Some radius of convexity problems for certain
classes of analytic functions, Int, J. Math. & Math. Sci., 7 (1984),
713-718.




