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ABSTRACT. We define an order structure on a nonseparated n-manifold. Here, a

nonseparated manifold denotes any topological space that is locally Euclidean and

has a countable basis; the usual Hausdorff separation property is not required. Our
result is that an ordered nonseparated n-manifold X can be realized as an ordered

orbit space of a completely unstable continuous flow on a Hausdorff (n + 1)-
manifold E.
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I. INTRODUCTION
Nonseparated manifolds arise in a very natural way in the study of ordinary

differential equations and completely unstable flows. A topological space that is

non-Hausdorff, locally Euclidean and has a countable basis is referred to as a

nonseparated manifold. A flow on a manifold E is said to be completely unstable

if it has no nonwandering points. Such systems occur very naturally. For example,
2on any continuous flow without equilibria is completely unstable, and the

restriction of any flow to the complement of its set of nonwandering points is

completely unstable. All open manifolds admit completely unstable flows.

Let E x E be a completely unstable co flow on an (n + 1)-manifold E.
The orbit space of is the set E/ of all orbits of with the quotient topology

(the finest topology in which the natural projection E E/@ is continuous). If

admits local cross-sections at every point of E that are n-Euclidean, we say @ is

locally trivial. It is known that if either E and are c or n 2, then is

locally trivial ([1],[2]). Moreover, if is locally trivial, completely unstable

co flow then E/ is a nonseparated n-manifold. The ordered orbit space of is

obtained from this non-separated manifold by imposing an additional structure that

indicates the order in which the cross-sections of @ that correspond to the charts

of E/ are traversed by orbits of (precise definitions are given in [3]). We then

have the following classification theorem which shows that completely unstable flows

on manifolds can be classified completely in terms of their associated ordered orbit

spaces (Theorem 3.1, [3]).
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CLASSIFICATION THEOREM If and ’ are locally trivial, completely unstable
oc flows on m-manifolds M and M’, respectively, then (M,) and (M’,’) are topologi-

cally equivalent if and only if M/ is order isomorphic to M’/’.
Our interest here is in the question of realization" What nonseparated mani-

folds can be realized as the ordered orbit space of a completely unstable co flow on

some Hausdorff manifold? Some restrictiorl on the nonseparated manifold is undoub-

tedly necessary. However, it appears to be a difficult problem to characterize the

realizable ones. We present a preliminary result in this direction in the present

paper. We first define a restricted class of nicely ordered nonseparated manifolds.

We then prove that these manifolds are all realizable.

REALIZATION THEOREM. If X is nicely ordered, nonseparated n-manifold then X
can be realized as the ordered orbit space of a completely unstable continuous flow

(E,), where E is a Hausdorff (n + 1)-manifold.
Essentially the same result, in the case X is a one-dimensional simply connec-

ted variety and E =jR 2 is stated in Haefliger and Reeb [4]. It is also stated in

Neumann [3] for one-dimensional manifold X.
In {}2 below, we give most of the definitions and notation required in the proof

of the realization theorem; the proof itself occupies {}3 {}5. Finally, in {}6 we

prove the following corollary.

COROLLARY. Let X and E be as in the realization theorem. If n(X) O, then

n (E) 0 for n > 1. Moreover, if X is a one-dimensional simply connected nonsepar-
2ated manifold, then E is homeomorphic to m

2. PRELIMINARIES.

DEFINITIONS AND NOTATION. Throughout what follows, E denotes a Hausdorff

(n + 1)-manifold, E x jR1 E denotes a continuous flow on E, and X denotes a

nonseparated n-manifold with a countable basis (Vi, v i) where each V is homeo-

morphic to Dn, the compact unit n-disk. A topological space is a nonseparated

manifold if it is locally Euclidean and has a countable basis, the usual Hausdorff

separation axiom is not assumed For any set S C_E, T c_ m 1 S. T

toT}; x-T {x}-T; and for xcE and tcIRI, x-t Ct(x) (x, t). The orbit of xcE
is the set y(x) x .]1. The orbit space E/ is the set of all orbits of with

the quotient topology. Also, throughout what follows, for any set A contained in a

topological space, and X will denote the interior and the closure of A respec-

tively.

A set U E is said to be wandering (with respect to ) if there exists
1to tim such that U.tFU for each t with It12 to A point xcE is nonwandering

if it has no wandering neighborhood. Equivalently, xcE is nonwandering if xcJ+(x),
here J+(x) denotes the set of limits of sequences {xn tn}, where {xn} converges to

x and tn tends to (R). The (closed invariant) set of all nonwandering points of

is denoted as f(). A flow is said to be completely unstable if () . A
1

cross-section of is a set S c_ E for which the mapping h’S x m E defined by

h(s,t) s.t is a homeomorphism of S x m l onto a subset of E.
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3. STATEMENT OF THE REALIZATION THEOREM.
In order to state our main result, we first need to define the following order

structure.

DEFINITION 3.1. Let X be a nonseparated n-manifold with a countable atlas

Vi’ i where each V is homeomorphic to Dn (the compact unit n-disk), and
o
{Vi}i> forms an open cover for X. We say that X is nicely ordered if there exists
a collection of continuous functions hij’ViC Vj {-I,I} satisfying:

(a) hij(x) -hji(x) for every xViC Vj;

(b) If xV C Vj Vk with hij(x) +1(-1) and hjk(X +1(-1), then

hik(X) +1(-1)

(c) If {xn} is a sequence in V Vj V
xVi, and xVj, then xVk.

k (i<j<k) converging to

The order structure defined as above is a generalization of the order structure
on a nonseparated 1-manifold, as given by Neumann in [5]. However, the property (c)
of the order structure as above is slightly more restrictive than the property (3)
of the order structure given by Neumann (see 3.5 below), and thus the phrase
"nicely ordered" is used.

Our main result is the following Realization Theorem.
REALIZATION THEOREM. 3.2. If X is a nicely ordered, nonseparated n-manifold,

then X can be realized as the ordered orbit space of a completely unstable continu-

ous flow (E,), where E is a Hausdorff (n + I) -manifold.

REMARKS 3.3. () This result in the case X is a one-dimensional simply
connected variety and E =JR2 is stated in Haefliger and Reeb [4]. It is also stated
in Neumann [3] for one-dimensional manifold X.

(B) Properties (a) and (b) of the order structure defined in 3.1 above will be
used implicitly throughout the proof of the realization theorem.

OUTLINE 3.4. We shall prove the realization theorem by induction on the
number of charts in X in the following two steps.

(1) We first show that X can be realized as a base space of a bundle
B < E,p,X >, where E is a Hausdorff (n + 1) -manifold.

(2) We then define a flow on E, show that it is completely unstable and
finally show that X is the orbit space of the dynamical system (E,).

The first step, that is to show the existence of the bundle B= < E,p,X >, is the
major step in the proof of the realization theorem.

DISCUSSION 3.5. We would like to point out that the direct generalization of
the order structure given by Neumann for nonseparated 1-manifold in [5] would be:
(a) and (b) same as in the definition 3.1 above and replace (c) by a less restric-
tive condition (c’) as follows:
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(c’) If {xn} is a sequence in Vi Vj Vk such that

() hij(xn) and hjk(xn) for each n, and

(B) xn/ xV with xVj, then x Vk.

Moreover, if is a completely unstable co flow on the (n + 1) manifold E and

admits cross-sections that are locally Euclidean, then E/ can be ordered in this
sense" choose a covering system {Si}i> of cross-sections for the dynamical system

0
(E,) (see 4.2, 4.3 of [3]). Set V P(Si) for each i. Then vi}i> forms an open

be defined as in the proof of the classifi-cover of E/. Let fij" Vi Vj ,
cation theorem (Theorem 3.1, [3]). Set hij(x) sgn(fij(x)) xV Vj. Using the
properties of fij (see [3]), it is now immediate that hij satisfy the properties

(a), (b) and (c’) above.

4. EXISTENCE OF A BUNDLE B < E, p, X >.

In the setting of the existence theorem (Theorem 3.2 of [6]), to show the

existence of a bundle B=<E, p, X >, we seek the coordinate transformations {gij} in

the space X, with the structure group the group T of all translations of ml. In
particular, we seek the maps:

gij" Vi f Vj T satisfying"

(a) gij(x) ogjk(X) gik(X) for each x V C VjC Vk (compatibility
cond t on

(b) If {xn} is a sequence in ViNVj such that {xn} converges to both x V
and xj e Vj with x xj, and hij(xn) +1(-1) for all n, then

gij(xn)(t) + (-) as n (for every t il).

We define gij in terms of the translations fij as follows"

gij" V i-C Vj T

x gij(x)- / such that

gij(x)(t) t + fij(x); x V I (.iC Vj and t m

Where

fij" ViF’) Vj IR
are to be defined so as to satisfy:

(A) fij(x) + fjk(X) fik(X) for each x ViF VjC Vk; and

(B) If {xn} is a sequence in X such that {xn} converges to both
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xi i and xj j with x
i

p xj, and hij(xn) +I(-1) for all n, then

fij(xn) + (-) as n .
If we assume that fij satisfying (A) and (B) exist, then gij
ally satisfy (b). For (a), fix x V F Vj Vk and t ]R

Then using (A) for fij, we have

defined by (*) trivi-

gij(x) o gjk(x)(t) gij(x)(t + fjk(X)) t + fjk(X) + fij(x) t + fik(X)
gik(x)(t) as desired.

Thus, to show the existence of the coordinate transformations {gij}, we need to

show the existence of the translations {fi_i satisfying (A) and (B) above. We show

the existence of {fij by induction on the number of charts in X. Note that since

each chart is Hausdorff and X is not, X can not have a single chart.

REMARK 4.1. One should note that the existence theorem (Theorem 3.2 of [6])
not only gives the existence of a bundle B < E, p, X > but also its uniqueness up

to bundle equivalence.

NOTATION 4.2. In What follows, B1 denotes the set of all non-Hausdorff points

of X and Vij(i # j) denotes the set of all those points x B1C V such that there

exists a sequence {xn} in V Vj with {xn} converging to x and also to another

point xj Vj with x P xj. Note that Vij is the set of all those non-Hausdorff

points in V that can not be separated from some point in Vj.
PROPOSITION 4.3 For any # j, the set Vij is a closed subset of the metric

space Vi.

PROOF" Let {yk be a sequence in Vij such that {yk converges to y c Vi. We

want to show that y c Vij. Without loss of generality, let Yk eB (y) for each k,

where B 1 (y) is an open ball in the metric space v
i

Moreover, for each k, let

{x} be a sequence in V C Vj such that {x} converges to Yk and also to another

point y Vj, with Yk # Y" Since Vj is compact, the sequence {y} has a

convergent subsequence {y} /y’ Vj. As above, let y B{__(Y’) for each

2

where B{ (y’) is an open ball in Vj. By induction, there exists Nm > Nm_1

2

Nm mXkm
e B1(y)B1(y)" Now the sequence {x m} is in Vi2/Vj and obviously

2m 2m

in z+ such that

y Vij as desired.

converges to both y and y’. Moreover, it can be easily seen that y # y’. Hence
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EXISTENCE OF fij FOR TWO CHARTS 4.4. If X has only two charts, say V and V2,

then {fij} (I < i, j < 2) satisfying (A) and (B) above exist for these two charts.

Let X’ (V 11] V2) I V12 (disjoint union). Note that X’ is a metric subspace

of the metric space VI. Define f" X’ [0,1] by

f’(x) I + d(x, V12
x X’.

Then f’ is a continuous function, and since V12 is a closed set (4.3), f’(x) 1 if

and only if x V12. Define f2" X’ [0,(R)] by f2(x) tan# (f’(x)). Then f2is
continuous and f2 (x) if and only if x V12. Now set f12 f12 Vlr V2,
where f121V1/ V2 indicates the restriction of the function f12 on the set V1f V2.

Finally, the set f12’ f21 -f12’ and fii O(i 1,2) is the desired set of

f.. (1 < i, j < 2), satisfying (A) and (B) above. This completes the construction

of fij in the case X has only two charts.

REMARK 4.5. In the construction of f12 above, observe that f12(x) > 0 for

every x VIF V2. In the rest of the proof, we would construct fij so as to

s’atisfy (A) and (B) above and also the following added property"

(C) If j i, then fij (x) > 0 for every x V FI Vj.

INDUCTION STEP 4.6. Suppose that we can define {fij} (1i, j<n) satisfying

(A), (B), and (C)above in the case X has n-charts say V1, V2, V3 Vn, we show

that {fij satisfying (A), (B), and (C) above can be defined in the case X has

(n + I) -charts V1, V2 Vn, Vn+ I.
In order to show the existence of {fij} in the case X has (n + 1) charts, we first

need to show the existence of {fij} in the case X has only three charts, which in

turn requires the following lemma"

LEMMA 4.7. Let A and B be closed subsets of a metric space Y. If g- A
[0,1] is a continuous map such that g(x) 1 if and only if x AB, then g can be

extended to a continuous map " Y [0,1] such that (x) 1 if and only if x B.

PROOF: Define

gA LP B (x)

gAL) B" ALB [0,1] by

g(x) if x A;

1 ifxB.

It is obvious that gALpB is a well-defined map that extends g. Also, it is contin-

uous by glueing lemma ([7], page 50). Moreover, gAtPB(X) if and only if x B.

In order to extend gAUB to the whole of Y, we observe that A LB is a closed

subspace of the metric space Y. Therefore, there exists a continuous function

u’Y [0,1] such that u(x) if and only if x AU B. Moreover, by Tietze

Extension Theorem, there exists a continuous extension g’-Y [0,1] of gAU B such

that g’(x) if x B.
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Finally, define " Y [0,I] by (x) u(x) g’(x) for x Y. It can be

easily seen that is the desired map. This completes the proof of the lemma.

EXISTENCE OF fii FOR THREE CHARTS 4.8. If X has only three charts, say V1,
V2, and V3, then {fij} (1<i, j<3) satisfying (A), (B) and (C) above can be defined

for these three charts.

Let f2" (V1( V2)L] V12 [0, ] be the function as obtained in the case of

two charts (cf. 4.4). Define f3" (V2CV3)LJ V23 [0, ] analogous to f2" Here,

V23 is a set as defined in 4.2.
In order to define f3" (Vl C V3)L] V13 [0, ], let A123 V1C V2cV3 and

define V123 to be the set of all those points x BIC V1, such that there exists a

sequence {xn} in A123 with {xn} converging to x I and also to another point x3 in V3
with x # x3, (B1 is the set as defined in 4.2 above). Observe that V123C_ V13.
We claim"

THEOREM 4.9. If x V123 then either x V12 or x V23.

PROOF" If x V123 then there exists a sequence {xn} in A123 such that {xn}
converges to x and also to another point x3 in V3 with x # x3. Since V2 is

compact, {xn} has a convergent subsequence {x k} x 2 V 2. If x2 x I # x3, then x 1

V23, otherwise xI V12.
We now define f{3" A123 U V123 [0, -] by

f3(x) f2(x) + f3(x); x A123U V123. (4.2)

and are finite onThen f13 is a well-defined continuous map Since both f12 f23
A123, it follows from 4.9 above that f3(x) if and only if x V123. We want to

extend f3 continuously to f3" (VlC V3) U V13 [0, (R)] such that f13(x) if and

only if x V13. (Note that the extension of f3 is also denoted as f3 ).

In the setting of the lemma 4.7 above, we have Y (VIN V3) U V13, A A123
U V123 and B V13. Assuming A to be a closed subset (proved below) of Y, define

g- A [0,1] by g(x) 2_ arc tan (f3(x)) where f3 is defined by (4.2) above. Let- Y [0,1] be an extension of g as obtained in the lemma 4.7. Define f13 Y/[O
x To com-(R)] by f13 tan ((x)). Note that f3(x) if and only if x B VI3.

plete the definition of f3’ we still need to show:

THEOREM 4.10 The set A A123U V123 is a closed subset of Y (VlFV3)U V13.

PROOF" As in proposition 4.3, it can be seen that V123 is a closed subset of

Y. Thus, to complete the proof, it suffices to show that the closure of A123 in Y

is contained in A.

Let {xn} be a sequence in A123 such that {xn} xI Y. Since Y

(V1N V3) U V13 (disjoint union), either xI V1 C V3 or x I V13. Let us first

consider the case x V1N V3. Since V2 is compact, {xn} has a convergent subse-

quence {xk} x2 V2. We claim that x2 V and thus x2 x 1. If not, then x I
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V2, Thus by property (c) of the definition of order structure, we have xI V3, a

contradiction. Hence, in his case, x A123A.
If x V13, then x # V3. Also, since V3 is compact, therefore the sequence

{x n} admits a convergent subsequence {x k} x 3 V3. Hence x V123 c_A, as
des red.

Finally, f13 fi31V1FV3’ f12 f21VlF) V2, f23 f31V2 V3’
fiiv -fiJ (1 i, j < 3) and fii O(i 1,2,3) is the desired set of {fii} satisfy-

ing (A), (B) and (C) above Here, fjlVi. F V
i

denotes the restriction of fi. on
V 0 Vj(I < i, j 3). This completes the construction of fii in the case X has
three charts

We now return to our induction step. We want to define {fij} (1 < i, j < n+l)
satisfying (A), (B) and (C) in the case X has (n + I) charts VI, V2 Vn+I,
knowing that {fij} (I-< i, j < n) satisfying (A), (B) and (C) have already been

defined in the case X has n charts V 1, V2 Vn. For convenience sake, we will

use the following notation in the rest of the proof.

NOTATION 4.11. Any extension of fj will be denoted as fj. For any i, j and

k, Aij k denotes the set V iF VjC Vk, and Vij k denotes the set of all points x in

6’1C V (B is the set of all non-Hausdorff points in X) such that there exists a

sequence {xn} in Aij k with {xn} converging to x and also to another point xk in Vk
with x x k. Moreover, for any # j, Aij denotes the set V C Vj.

REMARK 4.12. For any i<j<k, the set AijkU Vij k is a closed set in AikLJ Vik
(cf. 4.10) and it would be denoted as Bij k. This remark would be used implicitly

throughout what follows.
We now start defining fij for (n + 1) charts. Define f’n n+l" An n+lUVn n+1

[0,-] as in the case of two charts (cf 4 4) Next define f’n_l n+1" Bn-1 n n+1
[0, (R)] by

f’n-1 n+l (x) f-I n (x) + f’ (x); x Bn_n n+l 1 n n+l (4.3)

as in 4 9 for three charts. Here f’ has been defined at the induction step.n-1 n
Using lemma 4 7, extend f’n-1 n+1 to fn-1 n+l An-1 n/1 -) Vn-1 n+1 [0,(R)] as was

done in the case of three charts. We next define the function f’n-2 n+l as follows

Define

f’ (x) f’ (x) + f’ (x); xn-2 n+1 n-2 n n n+l Bn-2 n n+1’ and (4.4)

f’n-2 n+l (x) f’ (x) + (x); x Bnn-2 n-1 fn-1 n+l -2 n-1 n+l (4.)

where f’ and f’ have been defined at the induction step and f’n-2 n n-2 n-1 n-1 n+l is

obtained above. Using the induction hypothesis and (4.3) above, it can be easily

seen that f’ is well defined that is f’ defined by (4 4) coincidesn-2 n+l n-2 n+l
with fn-2 n+l defined by (4.5) on the intersection (Bn_2 n n+l ’ Bn-2 n-1 n+l )"
Finally, using lemma 4.7 with Y An_2 n+l ) Vn-2 n+l’ A Bn_2 n n+lBn-2 n-I n+l,
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and B Vn_2 n+l extend f’n-2 n+1 to f.2 n+l An-2 n+llJVn-2 n+l
done in the case of three charts.

[0,(R)] as was

Continuing this process we obtain f’ f’n-3 n+l’ n-4 n+l’ and f n+l
tively. Finally, define f n+l as follows"

induc-

+ f’f n+l f n n n+l on B n n+l’

f n+1 f n-1
+ f’n-1 n+l on B 1 n-1 n/l

f n+l f13 + f n+l on B13 n+l’ and

f n+l f12 + f n+l on BI2 n+l’

where f’.
n+l (i 2,3 ,n) are the functions obtained above and f’lj (J 2,3,

n) are the functions that have been defined at the induction step. Using the

induction hypothesis and the definition of the functions f! n+1 (2<i<n) it can be

seen that f n+1 is well defined. Finally, using lemma 4.7 with Y A1 n+IL)V1 n+l’
n

A iU=2(Bli n+l and B VI n+l’ extend f n+l to f n+l A1 n+lLPVl n+l +[o,(R)]

as was done in the case of three charts.

We now let fij f}jlViCVj’ fji -fij and fii 0 for i, j=1,2 n+l.

We claim that the set {fij}(1 < i, j < n + I) so obtained is the desired set of

functions satisfying (A), (B) and (C). From the construction of {fij} it is obvious

that the functions {fij} satisfy both (B) and (C). For (A), we need to show that

fij(x) + fjk(X) fik(X) for each x V C Vj Vk and for any i, j and k where

1 <i, j, k < n + 1. In view of induction hypothesis, we only need to prove it in

the case when one of the i, j or k is n + 1.

If n + 1, we need to show fn+l j(x) + fjk(X) fn+l k (x)" If k > j, then

fn+l j(x) + fjk(X) -fj n+l(X) + fjk(X) -(fjk(X) + fk n+l (x)) + fjk(X) -fjk(X)
fk n+1 (x) + fjk(X) fn+l k (x) as desired. If j > k, then fn+l j(x) + fjk(X)

-fj n+l (x) fkj (x) -(fkj (x) + fj n+l (x)) "fk n+l (x) fn+1 k (x) as desired.

The cases when j or k equals (n + I) are analogous.

This completes the induction step and hence the construction of {fij} for i,

jl.

Hence, by the existence theorem (Theorem 3.2, [6]), we get a bundle

B <E,p,X> with the base space X and the coordinate transformations {gij}. Also,

any two such bundles are equivalent. Moreover, since X is an n-manifold, E is an
(n + 1) manifold. We finally show that

THEOREM 4.13 E is a Hausdorff space

o
PROOF: If not, let e and e’ be two nonseparated points in E. We have {Vk}kaI

covers X, and since for each k there exists a homeomorhism k" Vk x 1 p-l(Vk)
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([6], page 7), each p-l(vk) is Hausdorff. Consequently, there exists j > i, such

that e p-l(v i) and e" p-l(vj) with p-l(vi) p-1(Vj) # B. Moreover, there

exist x I’ x’ jand t, t’ m I, such that i(x, t) e and j(x’,t’) e’. Let

n{vn.} and {V} be neighborhood systems at e and e’, respectively, with V
n>l n>l

o
p_l(vi)o and Vn.J C_ p-I(vj) for all n. Since e and e’ are nonseparated points, there-

n nfore, for each n, there lexists Yn Vi ( Vj. Let Xn P(Yn Vi Vj for each n.

Then there exists tn ]R such that Yn i(Xn’tn ’j(Xn’gji(Xn)(tn )) for each n,

where gij are the coordinate transformations as constructed above.

Since Yn converges to both e i(x’ t) and e’ j(x’,t’) and both i and j
are homeomorphisms, it can be easily seen that xn converges to both x and x’;

tn t;l and gji(Xn)(tn) t’ as n . Since tn t, therefore there exists

< to for all n. Consequentlyto IR such that tn

gji(Xn)(tn) gji(Xn)(to) for all n.

But from our construction of gij’ we have that for any t i, gji(Xn)(t) as n

(because j i). Thus, gji(Xn)(to)/ and consequently gji(Xn)(tn)/ as

n /-,. Also, gji(Xn)(tn)/ t’ (finite); a contradiction. Hence, E is Hausdorff.

This completes the proof of Step I.
5. X AS AN ORDERED ORBIT SPACE.

We now show that we can define a completely unstable continuous flow on E and

that X can be realized as an ordered orbit space of the dynamical system (E, ),
where E is the Hausdorff manifold obtained in {} 4 above.

mTo define a flow @- E x E. Fix (q, s) E x Since v.i’Vj x

-1p (Vj) is a homeomorphism for each j and {Vj} cover X; therefore, there exists
j>l

some k > with x Vkand t such that q Vk(X, t). Define

(q, s) k(X, t + s). (5.1)
We first show that is well defined; that is, if q also equals j(x’,t’) for some

j # k, x’ V
i

and t’ mI, then k(X, t + s) j(x’, t’ + s).

Since k(X, t) q j(x’,t’) k(X’, gkj(X’)(t’)) and k is a homeomorphism;

therefore, x x’ and gkj (x’)(t’) t, and hence

j(x’,t’ + s) k(x’,gkj(X’)(t’ + s)) k(x’,gkj(X’)(t’) + s) k(x,t + s)

as desired.

We next show that is a continuous flow. It is obvious that is a continuous

function. Moreover, satisfies the group law for (q,0) k(x,t + 0) q; and

((q,sl),S2) (k(x,t + Sl), s2) k(X, t + s I + s 2) (x, s + s2).
We finally show that is completely unstable and that X is the orbit space of

the dynamical system (E, @). To show that is completely unstable, fix q E. We

want to show that q admits a wandering neighborhood. Let q k(X, to for some x
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Vk and to IR Fix 0 and let Wj k(Vk, (to , to
+ E)). Then Wj is

the required wandering neighborhood of q as (Wj t)( Wj } for all t such that

Itl 2. In order to show that X is an orbit space of (E, q), fix q E. If

]R ]Rq k(x t) for some x Vk and t then for any s we have @(q,s) k(X,
t + s). Thus, p((q, s)) p(k(X, t + s)) (po’k)(X, t + s) x.

Moreover, from the construction of the bundle < E, p, X in the existence

theorem (Theorem 3.2, [6]), it can be seen that the topology of X as a base space is

equivalent to the quotient topology. Thus, X is the desired orbit space of the

dynamical system (E, 0).
As we have mentioned in the introduction, an ordered orbit space of can now

be obtained from the orbit space X by imposing an additional structure that indi-

cates the order in which the cross-sections of that correspond to the charts of X,
are traversed by orbits of (precise definition of the order structure is given in

[3]).
Hence, X can be realized as an ordered orbit space of a completely unstable co

flow on the Hausdorff (n + I) -manifold E. This completes the proof of the realiza-

tion theorem.

6. COROLLARY.

Let X and E be as in the realization theorem. If n(X) O, then n(E) 0 for

n I. Moreover, if X is one-dimensional simply connected nonseparated manifold,

then E is homeomorphic tom2.

PROOF. We consider the exact homotopy sequence

A i,(I i, P*/ (X) n (I (ml P*
n n (E) n -I 2 (X) 71 I (E)

1 (x)I of the bundle B E, p, X >. Since for each n e I. n (X) 0 and

n(ii)=O, it follows that n(E) 0 for each n e 1. In particular, E is simply

connected.

Now from the isomorphism theorem of Hurewicz ([6], page 91), we know that the

first non-zero homology group and the first non-zero homotopy group have the same

dimension and are isomorphic. Thus, we conclude that Hn(E) 0 for each n e 1, that

is, E is acyclic.

If X is a one-dimensional simply connected nonseparated manifold, then from the

proof of the Realization Theorem, E is a two-dimensional Hausdorff manifold.

Moreover, from above E is simply connected. Therefore, E is homeomorphic to S2 or
2 2 2But S is not acyclic and hence E is homeomorphic to m
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