
Internat. J. Math. & Math. Sci.

Vol. i0 No. 4 (1987) 757-776

757

SOME THEOREMS ON GENERALIZED POLARS
WITH ARBITRARY WEIGHT

NEYAMAT ZAHEER

Mathematics Department
King Saud University
Riyadh, Saudi Arabia

and

AIJAZ A. KHAN

Mathematics Department
Aligarh Muslim University

Aligarh, India

(Received September 2, 1986)

ABSTRACT. The present paper, which is a continuation of our earlier work in Annali di

Mathematica [1] and Journal Math. Seminar [2] (EE6EPIA), University of Athens,

Greece, deals with the problem of determining sufficiency conditions for the non-

vanishing of generalized polars (with a vanishing or nonvanishing weight) of the

product of abstract homogeneous polynomials in the general case when the factor

polynomials have been preassigned independent locations for their respective null-

sets. Our main theorems here fully answer this general problem and include in them,

as special cases, all the results on the topic known to date and established by Khan,

Marden and Zaheer (see Pacific J. Math. 74 (1978), 2, pp. 535-557, and the papers

cited above). Besides, one of the main theorems leads to an improved version of

Marden’s general theorem on critical points of rational functions of the form

flf2"’’fp/fp+l’’’fq f’l being complex-valued polynomials of degree n..1
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1. INTRODUCTION.

A few years ago, the concept of generalized polars of the product of abstract

homogeneous polynomials (a.h.p.) was introduced by Marden [3] while in his attempt to

generalize to vector spaces a theorem due to Bcher [4]. His formulation involves the

use of hermitian cones [5], a concept which was first used by HSrmander [6] in

obtaining a vector space analogue of Laguerre’s theorem on polar-derivatives [7] and,

later, employed by Marden [3], [8], in the theory of composite a.h.p.’s. In all these

areas the role of the class of hermitian cones has been replaced by a strictly larger

class of the so-called circular cones. This was successfully done byZaheer [9], [I0],

[11] and [5] in presenting a more general and compact theory which incorporates into

it the various independent studies made by Hormander, Marden and Zervos. A complete

account of the work to date on generalized polars, which fall in the category of

composite a.h.p.’s in the wider sense of the definition of the latter now in use (cf.

[5], [12], [13], [14]) can be found in the papers due to Marden [3], Zaheer [5], and
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the authors [1], [2]. Generalized polars with a vanishing weight as well as the ones

with a non-vanishing weight have beea considered in the first two papers, while the

third (resp. the fourth) deals exclusively with the ones having a vanishing (resp. a

non-vanishing) weight. But all have a common feature that the factor polynomials

involved in the generalized polar of the product have been divided into two or three

groups, each of which is preassigned a circular cone containing the null-sets of all

polynomials belonging to that group. Our aim here is to consider generalized polars

with a vanishing or a non-vanishing weight where, in general, no two factor

polynomials are necessarily required to have the same circular cone in which their

null-sets must lie. In fact, we take up the general problem of determining

sufficiency conditions for the non-vanishing of generalized polar (with a vanishing or

a non-vanishing weight) where the factor polynomials have been preassigned mutually

independent locations for their respective null-sets. Our main theorems fully answer

this general problem and include in them, as special cases, all the corresponding

results on the topic known to date and established in Marden [3], Zaheer [5] and the

authors [I], [2]. One of the main theorems of this paper leads to a slightly improved

form of Marden’s general theorem on critical points of rational functions [7].

2. PRELIMINARIES.

Throughout we let E and V denote vector spaces over a field K of character-

istic zero. A mapping e E V is called (cf. [6], [15], [16], and [9]) a

vector-valued a.h.p, of degree n if (for each x, y E)

n
P(sx + ty) r. Ak(x,y) sktn-k

k=o
s, te K,

where the coefficients Ak(X,y e V depend only on x and y. We shall call P an

a. h. p. (resp. an algebra-valued a. h. p. if V is taken as K (resp. an algebra).

We denote by P the class of all vector-valued a.h.p.’s of degree n from E to V
n

(even if V is an algebra) and by P the class of all a.h.p’s of degree n from E
n

to K. The nhpo of P is the unique symmetric n-linear form P.(.x ,x2,... ,xn)
from E

n
to V such that P(x,x,...,x) P(x) for all x : E (Hormander [6] and

Hille and Phillips [15] for its existence and uniqueness). The kth polar of

P, for given xl,x2,...,xk in E, is defined by

P(xl,x2 xk,x) P(x xk,x x).

The following material is borrowed from Zaheer [17], [I] and [2].

Given k : K and Pk Pn
k

(k 1,2 ,q), we write

Q(x) Pl(X)P2(x)"" Pq(x)’ (2.1)

and

Qk(x) Pl(X)’’" Pk-l(X)Pk+l(X)’’" Pq(X),

q
(Q;x ,x) Z mkQk(X) Pk (Xl ,x) V x,x

k=l

(2.2)

(2.3)
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and define (Q-Xl,X) as an algebra-valued generalized polar of the product Q(x)

q
[5]. The scalar r. mk is called its weight. The Term ’generalized polar’ will be

k=1

used in special reference to the case when V K, so as to conform with the existing

terminology [5]. As in Hille and Phillips [15], if n n + n
2

+ + n we re-, , q
call that Q e Pn’ Qk e Pn_nk and Pk(Xl,X) is an algebra-valued a.h.p, of degree

nk-I in x and of degree in xI, < k _< q. Therefore, (Q:xl,x) is an

algebra-valued a.h.p, of degree n-1 in x and of degree in xI.
Given a nontrivial scalar homomorphism L V K [18] and [I] and a polynomial,

P e P we define the mapping LP E K by

(LP)(x) L(P(x)) V x g E. (2.4)

Obviously, LP g P. In the notations of (2.1) and (2.2) the product of the poly-
n

nomials LP
k Pnk is given by LQ and the corresponding partial product (LQ)k

(achieved by deleting the kth factor in the expression for LQ) is given by LQk. This

immediately leads to the following

REMARK 2.1. The algebra-valued generalized polar (Q;xl,x) of the product Q(x)

and the generalized polar (LQ;xl,x) of the corresponding product (LQ)(x), with the

same mk’s satisfy the relation

L((Q;xl,x)) (LQ;xl,x)

for every nontrivial scalar homomorphism L on V.

If K is an algebraically closed field of characteristic zero, then we know [19]

and [20] that K must contain a maximal ordered subfield K such that K K (i),
o o

where -i2 is the unity element in K. For any element z a+ ib e K (a,b E Ko) we

define a ib, Re(z) (z + )/2, and Izl + (a2 + b2) I/2
in analogy with the

complex plane. We denote by K the projective field [5] and [2 I] achieved by

adjoining to K an element m having the properties of infinity, and, by D(K),
the class of all generalized circular region (g.c.r.) of K. The notions of K-

o
convex subsets of K and of D(K) are due to Zervos [21], but the definitions and

a brief account of relevant details can be found in [5]. For special emphasis in the

field C of complex numbers, we state the following characterization of D(C): The

nontrivial g. c. r. ’s of are the open interior (or exterior) of circles or the

open half-planes, adjoined with a connected subset (possibly empty) of their boundary.
The g.c.r. ’s of C, with all or no boundary points included, are termed as

(classical) circular regions (c. r.) of

In vector space E over an algeraically closed field K of characteristic zero,

the terms ’nucleus’, ’circular mapping’ and ’circular cone’ are due to Zaheer [5].

Given a nucleus N of E2 and a circular mapping G N D(K), we define the

circular cone E (N,G) by
o

E (N G) x,y TG(X y)
o )N
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where

TG(X,y) {sx + ty @ o s,t g K; s/t G(x,y)}.

REMARK 2.2. (I) [I]. If G is a mapping {tom N into the class of all subsets

of K (so that G(x,y) may not necessarily be a g.c.r.), the resulting set E (N,G)
o

will be termed only a oone in E.

(II) If dim E 2, then [I0] every circular cone E (N,G) is of the form
o

E (N,G) {sx + ty o s,t g K; s/t A}
o o

for some A g D(K), where Xo,Yo are any two linearly independent elements of E,

with N {(Xo,Yo )} and G(xo,Yo A.

(III) We remark [5] that any two (and, hence, any finite number of) circular

cones can always be expressed relative to an arbitrarily selected common nucleus.

3. THE CENTRAL THEOREM.

Unless mentioned otherwise, K denotes an algebraically closed field of

characteristic zero, E a vector space over K, and V an algebra with identity

over K. The field of complex numbers is denoted by C. We denote by L ix,y] the

the subspace of E generated by elemeats x and y of E, and by L 2 ix,y] the

set product L ix, y] L ix,y] (i.e. the set of all ordered pairs of elements from

[x,y] ).

In this section we establish the central theorem of this paper, which gives

sufficiency conditions for the non-vanishing of generalized polars having a vanishing

or a non-vanishing weight and which answers the general problem mentioned in the

introduction. Apart from deducing the main theorems of the authors proved earlier in

[I] and [2] the present theorem applies in the complex plane to yield an improved form

of a general theorem due to Marden [7]. In the following theorem we take, without

loss of generality (cf. Remark 2.2 (III)), circular cones with a common nucleus.

Consistently, we shall denote by Z (x,y) the null-set of an a.h.p. P (with respect
P

to given elemeats x,y E), defined by

Zp(x,y) {sx + ty * ols,t e K; P(sx + ty) o}.

THEOREM 3.1. For k 1,2, q, let Pk e Pnk and Ekjot Eo(N,Gk) be

circular cones in E such that ZPk(X,y) c_ TGk(X,y) for all (x,y) e N and for all

k. If (Q;Xl,X is the generalized polar of the )roduct Q(x) (cf. (2.1)-(2.3))with

m
k > o for k < p( < q) and m

k < o for k > p, then (Q;xl,x) $ 0 for all

linearly independent element x,x! of E such that x E- u q E(k)o and
k--I

q (k)
x E- u Eo u Ts(xo,Yo) where (Xo,Yo) is the unique element in

k=12
N n [x,xI], x Xo + 6Yo and
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q

S(Xo,Yo {0 e Kml kE=I
q

mk/(O Ok) I mk)/(O y/6). OkeGk(Xo,Yo)}.
k=l

REMARK. Let us note that 0 m must belong to S(Xo,Yo in the case when Y/6 # m

and m u q
Gk(Xo,Yo). Also the hypothesis ’x n

q E (k)’ is necessary. For
k=l k=l

o

otherwise, S(x ,yo would be all of K and the theorem would become uninteresting.
o

PROOF. Let x,x! be linearly independent elements of E such that

x (u
q E(k))o u Ts(xo,Yo) and x o

q
E(k)o where (Xo,Yo) is the unique element

in [x,x I] (cf. definition of nucleus [5]). Then there exists a unique set of

scalars ,B,Y, (with BY O) such that x Xo + BYo and x YXo + Yo"
Obviously, the choice of x implies that a/B (u

q
Gk(Xo,yo )) u S(xo,yo ), due to

k=l
the notation in (2.5). We claim that / m. This is trivial when y/ m (since

6 o and BY 0). It is obvious also when y/ m and m belongs to

q
Gk(Xo,yo) However, in case y/ m and m

q
Gk(Xo,Yo), the definition of

k=l k=l
S (Xo,Yo) says that m must belong to S (Xo,Yo)" So that /B m in all cases

The fact that K is algebraically closed allows us to write, for each k-- 1,2,...,q,

n
k

Pk(SX + txI) N (jks y kt).
j=l J

n
k 0Since Pk(x) 3=I jk # 0 for all k, we have that for each k (I < k < q) jk

for all j 1,2,...,nk. If we set Ojk Yjk/jk then, using the same technique as

in the beginning of the proof of Theorem 2.5 due to Zaheer [5], we conclude that

Ojk e U (Gk(Xo,Yo)) for j 1,2 .....nk, < k < q (3I)

and, further, that U(Gk(Xo,Yo)) are Ko-COnvex g.c.r.’s of K, where U is the

homographic transformation [21] of Km given by U(O) (0 Y)/(-BO + a). There-

fore (3. I) and the K -convexity of U(Gk(Xo,yo )) give
o

n
k

k(say) E (I/nk) Ojk U(Gk(Xo,Yo)) for k =1,2 ..... q. (3.2)
j=l

This implies that there exist elements Pk e Gk(Xo,Yo) such that

k U(Ok) (Ok Y)/(-BOk + ) m for k=l,2 q. (33)

Let us write n
k

k mk k l (mk/nk) 0jk V k 1,2,..,q. (3.4)
j=l

We now claim that I + v2 +’’’+ O. First we notice that the k’S cannot vanish
q

simultaneously. For, otherwise, Y/ would belong to all the g.c.r.’s Gk(Xo,Yo)
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for k=l,2,...,q, which in turn would imply that

q q
E
(k)

x Yx + 6Yo n T
G (Xo,Yo) no

k=l k k=l
o

This contradicts the fact that x f n q E(k)o" Therefore, in order to establish the
k;1

said claim, it remains only to deal with the case when at least any two of the k’S
do not vanish (since the claim is obvious otherwise). Now, with thts assumption,

suppose on the contrary that I + 2 + + O. Then equations (3.3) amd (3.4)
q

would imply that

q
l mk(6 Ok

Y)/(-8 Ok
+ a) 0.

k=l

Since a/8 , we see that 8 0 and, consequently, the last equation can be

written as

q
r. m

k
[-618 + {(a618) -‘(}1(-8 k + =)] 0.

k=l
Therefore,

q q
(alS) z mkI(-8 Pk + a) (618) r. mk’

k=l k=l
where A sd 8‘( O. Or,

q 68 q
l mk/(a/8 pk 8"( (kE= ink) (a/8) -‘(k=l

q

(kE=l ink)"

That is, irrespective of whether 6 0 or 6 O, we get

q q
z mkl(al8 pk Z mk)l(alS-‘(l),

k=1 k=1

where 0k
e: Gk(Xo,yo) for k 1,2,...,q, (XoYo) e N o L2 [x,x I} and

x ‘(Xo + 6yo. This implies that a/8 e S(Xo,Yo) and, hence, that

x aXo + 8Yo Ts(Xo,Yo), contradicting the choice of x already made. Therefore

V + v2 + + O. But we know ([5] or [3]) that
q

q nk q
#(Q;xl,x) [k=II j=II (mk/nk) Pjk ]. k Pk(X)

q q
I k). Pk(X) (due to (3.4)).

k=l k=l

Since Pk(X) 0 for all k and since v + + v O, the proof is complete.
q

q
If we take l m

k
0 in the above theorem, the set S(xo,Yo) remains unchanged

k=l

when x.t varies freely in i[x ,yo subject to the condition that x.i
q

E
(k)

CO
=I

0
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In order to get a simpler and more interesting version in whicht xl varies freely

over all of E it is desirable to further assume that n
q

Ek . We do precisely
o

k=l
this to obtain the following theorem which deals exclusively with generalized polars

having a vanishing weight.

q (k)
q

o E and r. m
k

0 then (Q;x ,x) 0 for all linearly independento
k=! k=!

q+!
E(k) (q+l)

E (N iselements x,x of E such that x g E-u where E
k=l

o o o ’Gq+l
the cone defined by

q

Gq+l(Xo,Yo) O KI
k- mk/(P -Pk 0; gke Gk(Xo,Yo)}
=I

for all (x ,yo N.
o

PROOF. If x,x are any linearly independent elements such that x E and

[.2x q:u"+l E -k- then there exists a unique element (x yo) e N n [X,Xl] such that
o o

k=l q

x!_ YXo + Yo and, in the present set up, S(xo,Yo Gq+l(Xo’Yo) (since k=IE mk 0).

That is, x n q
E (k)o and x (u

q
E (k))o u Ts(Xo,Yo). Now the proof follows

k=l k=l
from Theorem 3.1.

As application of Theorem 3.1 in the complex plane we prove the following

corollary which, apart from generalizing the two-circle theorem and the cross-ratlo

theorem of Walsh [22] (cf. also [7], Theorems 20,1 and 22,21, improves upon Marden’s

general theorem on critical points of rational functions ([7] or [23] and [24]). In

the following, Z(f) denotes the set of all zeros of f.

COROLLARY 3.3. For each k O,l,...,p, let fk(z) be a polynomial (from
to ) o" degree nk. If C

k D() such that Z(fk Ck for k 0,I p

and if
p

Ck, then every finite zero of the derivative of the rational funon
k=o

fo(Z)fl(z)’’’fq(z)
f(z) fq+l(Z)fq+2(z)’’’fp(Z)

(q < p)

P+I
lies in Ck, where

k=o

P

Cp+ {p [ E mk/(p pk 0; Pk e Ck}
k=o

and m
k

n
k

or - according as k <_ q or k > q.

PROOF. In view of Remark 2.2 (II), the sets

Eo(k) Eo(N,Gk) {SXo + tYo Ols,t C; s/t Ck}, 0 _< k _< p,

where x (I,0) y (0 I) N ((Xo,Yo)} and Gk(Xo,Yo) Ck, are circular cones
o o

in --@ such that Xo (I,0)
p

Eko""" Letting fk(z .k ajkzj, 0 _< k_< p, we
k=o j =o
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define the mappings Pk: C by

Pk(X) Pk(S x + Enk tnk-j
o tYo

j=o
ajk V (s,t) e C2.

C
2

Then Pk is an a.h.p, of degree n
k

from to C such that

ZPk(Xo,Yo) c_C TGk(xo,Yo) for k O,l,...,p. This is so because

n
k

Pk(X) Pk(SX + tyo) t fk(s/t) V x (s,t) 0 (3.7)

and because Z(fk) __c C
k

T
G (Xo,Yo). Now we consider the generalized polar (Q;Xl,X
k

of the product Q(x) of these a.h.p.’s, with m
k

n
k
or-n

k
according as k < q or

k > q. If we take x Xo (I,0) (so that s and t o), we see as in

[5], that

nk-I
Pk(Xo,X) (I/nk)3Pk/S (I/nk)t f(s/t) (3.8)

fr k 0,I ,p. If we set n + n + + n m and define
o p

Fk(Z) fo(Z)fl(z)’’’fk-l(z)’f(z)’fk+l(Z)’’’fp(Z)’

equations (3.7) and (3.8) imply that, for x (s,t) e C2,
P

#(Q;xo,x) tm. r. (mk/nk) Fk(S/t
k=o

q P
t
m 7. Fk(S/t r. Fk(S/t)]

k=o k=q+l

m
fvt (s/t) [f (s/t) ..f (s/t)j2

q+l p
(3.9)

Since x x n p E
(k)

and since Theorem 3.1 is applicable in the present set up
O O

k=o
(with Y and 6 0, so that y/6 ), it implies that (Q;Xl,X) 0 whenever

p+l (k)the element x (s,t) is linearly independent to x such that x ff u E where
o

k=O
o

Eo(P+I) =_ Eo(N,Gp+ {SXo + tYo ojs,t C; s/t Gp+l(xo,yo)}
and whe re

P

Gp+l(Xo,Yo) CO e [ Ii mk/(O -O
k

O; O k
e Gk(Xo,Yo)}

k=o

P
CO [ E mk/(O -O

k
O; O k

Ck}
k=o

Cp+ (due to the choice of m
k

made above).

That is, #(Q;x ,x) 0 for all elements x (s,t) for which t # 0 and for which
O
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p+l
s/t u Ck. Finally, (3.9) says that f’(s/t) 0 for all s,t e C such that t 0

k=O
p+l

and s/t u Ck. This establishes the corollary.
k=o

REMARK 3.4. (I) In the special case when the g.c.r.’s C
k

are specialized as

the closed interior or the closed exterior of circles, we claim that the above corol-

lary reduces essentially to Theorem 21,1 of Marden [7]. This is upheld by the

following arguments: If the C
k

are taken to be the regions OkCk(Z) < 0 of

Marden’s Theorem 21,1, then Lemma 21,1 of Marden [7] and the succeeding arguments

p+l
therein show that the region u C

k
in our corollary is precisely the region

k=o

satisfying the p+2 inequalities 21,3 in Marden’s theorem.

(II) In what follows we show that Corollary 3.3 holds as such when C is re-

placed by K, provided the term ’derivative’ is replaced by ’formal derivative’. We
n

know by ([5] or [12]) that the polynomial f’(z) k akzk-I is called
k=l

the formal derivative of the polynomial f(z) akzk from K to K and that
k=o

n

(flf2...fn)’ ).’ flf2...fk_l f fk+l’’’fn
k--1

where the f. are polynomials [12]. If we now define the formal derivative of the
l

,f2_f f,)/(f2 )2quotient fl/f2 (fl being polynomials) to be given by (fl/f2) (fl 2
then the formal derivative of the quotient

f (z)f (z)...f (z)/f (z)...f (z)
o q q+l p

is given by equation (3.9).

q P
).’ Fk(Z )’. Fk(Z)]/[fq+l(Z)...fp(Z)] 2. (3.10)

k=o k=q+l

In view of the definition of the formal derivative f’ (z) of a polynomial f(z)

from K to K and of formal partial deruatives %P/Ss of a polynomial P(s,t) from

K
2

to K [5], we can easily show that Corollary 3.3 stll holds when C is replaced by

K. The proof proceeds exactly on the lines of the proof of Corollary 3.3, except only

that we replace C by K all along. Let us point out that the expression (3.10) is

precisely the formal derivative of the function f(z) in (3.5) and it justifies the

validity of steps (3.8) and (3.9) in the proof of Corollary 3.3.

(Ill) We remark that in Corollary 3.3, we must add the hypothesis n P C
k

’,
k=o

in order to have a nont rivial result for the rational function f(z) with

n + + n n + + n For, if a point is common to all the Ck’So q q+l p p
then fixing P P in (3.6) we see that (since >-’ m

k
0)

o p k=o
P P
,: mkl( k mk)l( ) 0 V C

k=o k=o

and, hence, that Cp+ C.
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(IV) It has been shown by Marden [7] that Walsh’s cross-ratio Theorem 22,2, is a

special case of Marden’s general Theorem 21,1, but only in terms of closed interior or

closed exterior of circles (a proper subclass of D(C)). Whereas, our Corollary 3.3

validates Walsh’s theorem in terms of g.c.r.’s. In fact, applying our corollary in

the set up of Walsh’s theorem with C.’s taken as g.c.r.’s, we conclude that every
4

finite zero of the derivative of the function fl(z)f2(z)/f3(z) lies in u Ci,
where

i=I

C
4

IV e CInl(p pl) + n2/(p p2) n3/(p p3) 0; Pig Ci}.

In veiw of Lemma 4.2 of the next section, we see that C4 HA for K , A n2/n
G
i Ci, and that

3 3(C
4

{}) u C
i

(RA {’}) u C i,
i=l i=!

where

IV m,CI(P P3’92’Pl n2/nl;- P
i

CRA i

Consequently, every finite zero of the derivative of the said function lies in C uC2u
C3U C, where C RA

{}. This shows that 6In improved ve60n 0 W0/h’ cao-azut/0

(V) It may be observed that an improved form of Walsh’s two-circle theorems in

its complete form ([5], Corollaries 2.8 and 4.3) may also be obtained from the above

corollary. To this effect we apply Corollary 3.3 in the set up of Zaheer’s Corollary

4.3 [5], with the D.’s replaced by g.c.r.’s C
i

such that m e C n C2, and

conclude that every finite zero of the derivative of the function fl(z)/f2(z) lies
3

in C
i

where

C
3

{a Inll(P -pi -n21(P -p2 O; P
i Ci}

IV CIP (nlP 2
n
2 Pl)/(n2 ni) Pie C.}..

We point out that, in case the C.’s are taken as the regions D. of Corollary 4.3
1

of Zaheer [5], the region C
3

is precisely D(c3,r3) (cf. notation there) and we are

done. In the case when n n
2

and C
i

n C
2

, the conclusion just drawn still

holds, but in this case the region C
3

is empty, and we are done with Corollary 2.8

in [5].

4. THE CASE OF ALGEBRA-VALUED GENERALIZED POLARS.

Our aim in this section is to obtain a more general formulation of Theorem 3.1

that could answer the corresponding problem for algebra valued generalized polars

having an arbitrary weight. In fact, it will be shown that, whereas the main theorem

of this section does include in it the main theorem of the preceding section, it also

incorporates into it a variety of other known results. First, we describe some

concepts and establish some results that we need in this section. We refer [17], [I]

and [2] for the following material.
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A subset of M of V is called fully supportable(initially termed as ’A-supportable’

by Zaheer [9]) if every point outside M is contained in some ideal maximal

subspace of V which does not meet M. In other words, for every e V M, there

is a unique nontrivial scalar homomorphism L on V such that L() 0 but L(v) $ 0

for every v e M [18]. If M is a fully supportable subset of V, then M is a supportable

subset of V (regarded as a vector space), but not conversely (for definition of

supportable subsets see [6]). We remark that the complement in V of every ideal maximal

subspace of V is a fully supportable subset of V. Given P P and a fully
n

supportable subset M of V, we shall write, for given x,y E,

Ep(x,y) {sx + ty 01s,t e K; P(sx + ty) M}. (4.1)

REMARK 4.1. Since identity map from K to K is the only nontrivial scalar

homomorphism on K, the set M K- {o} is the only fully supportable subset of K

(take V K in the definition) and the corresponding set Ep(x,y), as given by (4.1),

becomes the null-set Zp(x,y) of P as defined in the beginning of Section 3.

In the next few lemmas, the notation (P’ PI’ P2’ P3 stands for the cross-

ratio of an element p e K with respect to given distinct elements PI’P2’P3 e K
and it designates a unique element in K(for definition and other relevant details see [5]).

LEMMA 4.2. Given an element A > 0 in K and g.c.r. ’s G. e D(K)for i 1,2,3

let us define

HA
{p e Kmll/(p -pl) + A/(p -p2) (I+A)/(p -p3 O; Pi e Gi}

and

RA {P e Km I(p’ P3’ P2’PI A; Pi G’}’l

If G n G
2
n G

3
, then

3 3
(HA {m}) u Gi (RA {m} u G..l

i=l i=1

PROOF. In order to prove the lemma it is sufficient to show that, if

u G
2

u G
3

u {m} and Pl Gi (i 1,2,3), the equation

l/(p pl + A/(p p2) (I + A)I(p p3 o (4.2)

holds true if and only if the equation

(P’ P3’ P2’ P -A (4.3)

holds true. First, we claim that none of these equations can hold unless PI’ P2’ P3
are distinct elements of K This is obvious in case of (4.3) due to the definition

of cross-ratio. In case of (4.2), this follows from the fact that if any two of the

P.’s coincide and if (4.2) holds then all the three must coincide, contra-
1

dicting that G n G
2 n G

3 . Therefore, we assume that PI’ P2’ P3 are distinct

elements of K and so we divide the proof into the following two cases:
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Case (i). 01, 02, 03 . In this case, since 0, 01 02 0 3
elements of K, the equation (4.2) holds if and only if

are distinct

(01 03)1(0 0 I)(0 03 + (02 03)1(0 02)(0 0
3

0

or, if and only if

(0 02)(03 0 I)1(0 01 )(03 0
2

.
This is true if and only if (0, 03 02 0 -. That is, (4.2) holds if and only if

(4.3) holds.

Case (ii). One of the Ol.’s is . In this case, let us point out that 0,01,02,0 3
are distinct elements of K with only one of the O.’s being . Therefore, the

equation (4.2) is equivalent to the equation

o

Xl(0 0 2) (I + X)l(0

/Co 01 ( + )/(o

(4.4)

(4.5)

I/(0 01 I(0 02 (4.6)

according as 01 , 02 or 03 m, respectively. Now, the equations (4.4)

(4.6) are, respectively, equivalent to the equations (0 02)/(03 02 ,
(03 pl)/(p pl , and (p 02)/(0 0 I) , in the respective cases

under consideration. The definition of cross-ratio implies that each of the equations

(4.2) holds if and only if (0, 0
3

0 2,01
(4.3) holds.

k. That is (4.2) holds if and only if

Cases (i) and (ii) complete our proof.

LEMMA 4.3. Let G
i

e D(K) for i 1,2,3, and Zet m
k

e K- {0} for k

1,2 q such that m
k > 0 for k_< p(P < q) and m

k < 0 for k > p. Giuen

any r, < r < p, and a K, we define
, q q
R {0 KI kZ=l mkl(P pk) (k=IZ mk)/(P -); 01 ..,Or GI;

e G2; 0 .,0 e G3},Pr+ ,0p p+l q

and

r
with A

k
Z
l

3 3
H {P e KI r. AilCP -01) E Ai)l(p -); 01 E Gi}

i=l i=l
P q 3

mk, A
2

l ink, E mk. With n G i,
k=r+l k=p+l i=l

then 3 * 3(R (}) u G. (H {}) U Gi., iffil 3 iffil
PROOF. If 0 (H {}) u Gi, then there exist elements 0

i
G
i

i--I
(i=1,2,3) such that 0 G u G

2 u G
3 u {} and

Al/(p -pl) + A2/(p -p2) +A3/(p -p3) (A + A
2

+ A3)/(p -r.). (4.7)
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P2 k 1,2 q, such thatObviously, O Pl’ P3’ " If we choose elements Ok,

O

for k 1,2, r

for k r+l,. ,p

for k p+l, ,q,

then equation (4.7) can be written as

r p q q
r. mk/(p -pk + )". mk/CP -p k) + r. mk/CP -pk) Z mk)/Cp -)

k=l k=r+l k=p+l k=l

or
q q
Z mk/(p p) r. mk)l (p ).

k=l k=l

3This implies that p e (R* {}) u G.. Hence
i=l

* 3 * 3(H {}) u G. (R {)) u G..
i=l i=l

(4.8)

* 3For the reverse containment, if p e (R {}) u G i,
then

i=I

eG(I < k < q) such that O
k

O e G u G
2

G
3

{} and there exists elements O
k

e G
3

for p < k < q and such thate G
2

for r < k < p Pkfor k < r, Pk
q q
r. mklCP pl) r. ink)/(p ;).

k=l k=l

Therefore,

q r p q
E mk)/( p) Z mk/(p p) + Z mk/(O O) + Z mk/(O p)

k=l k=l k=r+l k=p+l

B + B
2

+ B
3

(say). (4.9)

Since G
i

e D(Km) and p G
i

for i 1,2,3, we see from the definition of g.c.r.’s
that @p(Gi) is Ko-cOnvex for i 1,2,3 [5]. In view of this and the fact that

p(G

1/(P. p) p(G2)

p(G3

for k-- 1,2,...r

for k r+l,...,p

for k p+l q,

we conclude that Bi/Ai #p(Gi) for i 1,2,3. Therefore, there exist elements p e G
iq i

such hat Bi/Ai I/(P
i
-O). Now, (4.9) implies (since A + A

2
+ A

3 Z= mk) that
k
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3 3
l A I (p p r. Ai) / ( )

i i
i=l i=l

* 3
Gwhich says that e (H -{})- u Hence

i=l

* u 3
Gi (H* 3

(R {})
i=l

{}) u G..x (4.10)
i=l

Finally (4.8) and (4.10) prove our lemma.

Next, we take up the most general theorem of this paper, which we establish via

application of Theorem 3.1.

THEOREM 4.4. Let M be a fully supportable subset of V and, for k 1,2,...,q,
* E(k)let Pk e P and
n
k

o Eo(N’Gk) be circular cones in E such that EPk(X,Y) _c

TGk(X,y) for all (x,y) e N and for all k. If #(Q;x1,x) is the algebra-valued

generalized polar of the product Q(x) (cf. (2.1)-(2.3)) with > 0 for k _< p (p < q)

and m
k < 0 for k > p, then 0(Q;x1,x) e M for all linearly independent elements

x, of E such that x.i e E- f
q E’k’o( and x e E- (u q

E(k))o u
k=l k=l

Ts(Xo,yo), where S(xo,Yo is the set as defined in Theorem 3.1.

PROOF. If e V- M, there is a unique nontrivial scalar homomorphism L on

V such that L() 0 but L(v) * 0 for all v e: M. Now, LP
k Pnk (2.4) and it

(x,y) _c k(x,y) _c TGk(X ,y) for all (x,y) e N and forcan be easily shown that Pk
all k. In view of remark 2.1 and the discussion immediately preceding it (with the

notations therein), we have

L(’ (Q;x ,x)) (LQ;x1,x), (4.11)

both sides using the same mk’s. Applying Theorem 3.1 to the generalized polar

(LQ;Xl,X) of the product LQ of the polynomials LPk, we see that (LQ;xl,x) # 0

for all linearly independent elements x,x of E as claimed. Consequently, the

relations (4.11) implies that (Q;xl,x) # for all x,x as claimed. Finally, the

arbitrary nature of (in V-M) completes the proof. q
The following version of Theorem 4.4 for the case when - m

k
0 and n

q E(k)o
k=l k=l

is a result exclusively in terms of algebra-valued generalized polars with a vanishing

weight. The proof is immediate as in the case of Theorem 3.2.

THEOREM 4.5. Under the notations and hypotheses of Theorem 4.4 if we assume that

q
q E(k) and Z m

k
0 then (Q;xl,x) e M for all linearly independent

0
k--I k--I q+

E
’k’j (q+l)

elements x,x of E such that x e E- Uk=l o where Eo =- Eo(N,Gq+I)
i8 the cone as defined in Theorem 3.2.
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Since Theorem 4.4 reduces to Theorem 3.1 on taking V K and M K {o} (c.f.

Remark 4.1), it becomes the most general result of this paper. Besides, it leads to

the following corollary, which combines two earlier results due to the authors [I] and

[2] which includes in it (as a natural consequence) a number of other known results

due to Zaheer [5], [17], Marden [3], Walsh [22], and to Bcher [4].

COROLLARY 4.6. Let Eo,i Eo(N’G’i )’ i=l ,2,3, be rculcm cones in E. Under

the notations and hypotheses of Theorem 4.4, if the circular cones

E(k)o Eo(N’Gk) e given by

E for < k < r (r < p)

E
(k)
o Eo,2 for r < k_< p (4.12)

E for p < k < q,
o,3

then (Q;x ,x) e M for all linearly independent elements x,x of E such that

3
L2x e E- i=In

3
Eo,i x e E- i=lU Eo,i) u Ts’(Xo,yo ), where(xo,yo) e N o [x,xI],

x x / and
o Yo

3 3
S’(x ,yo {p e K I A /(p -p E Ai)/(p -y/); pie GI (x yo)}o i i

i=l i--I

r p q
with A

I
E ink, E m

k an A
3

E mk.--I k=r+l k=p+l

PROOF. If x,x are linearly independent elements of E such that x
3

Eo"
i=l

i

and x u 3
E U Ts,(X yo ), where (x ,yo is the unique element of N Lx,xI]

i--I o,i o

(see definition of N) then there exists a unique set of scalars a,8,Y,6 (with

a 8y O) such that x aXo + BYo’ Xl Yxo + Yo and

3a/8 d (Ui=l Gi’ (Xo,Yo)) u S’(xo,Yo (cf. (2.5))

,
where S’(xo,Yo) H for Y/ and Gi= G.(Xo,Yo) (cf. Lemma 4.3). Note that

a6 8Y 0 implies that a/8 Y/. This implies that a/8 H u {y/6} u
3(u G’

i=l i (Xo’Yo) )" Therefore,

alS (H* {16)) u 3
G(xo,Yo)

3
Since x n E

i=l
o,i’

3 (xo,yo ), wherewe see that y/6 n G
i=l

, q q
R {p e Kl.r- mkl(P -pk) I: mk)l(P -Y/(); Pl "’’P e

k--I
r

K=
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G (xo,yo)}.GI (Xo’Yo); Pr+l’ Pp G2 (Xo’Yo); Pp+l’ Pq

That is,

* 3=/ R u {y16} u U G’.l (Xo’Yo))"
i=l

Consequently, e/8 R. Since the G
k

of Theorem 4.4 in the present set up are

given by

fpr < k < rG

G
k 4 G

2
for r < k < p (4.13)

G fpr p < k <_ q,

* E(k) 3 3
we have that R S(x ,yo ), u q u E and n q

E
(k)

n E (cf.
o

k=l
o

i=l
o,i

i=l
o

i=l
o,i

(4.12)). Therefore we see that /B S(x ,yo ). Consequently, x and x are
O

(k)
and x u q

E (k))linearly independent elements of E such that x n q
E

o
k-I k=l

u Ts(Xo,Yo). By Theorem 4.4, )(Q;xl,x) M, as was to be proved.

q
If l m

k
# 0, Corollary (4.6) is Theorem 4.3 of a paper due to the authors [2],

k=l
and if (in addition) V K and M=K {o}, it is Theorem 3.1 in the same paper.

q 3
In case when l m

k
0 and n E #, Corollary 4.6 leads to the following cor-

k=l i=l
o,i

ollary, which is again a result due to the authors [I] and which reduces to Theorem

3.1 [I] when specialized for V K and M K- {o}.
q

COROLLARY 4.7. Under the notations and hypotheses of CoroIL2y 4.6 i l m
k

0
k=l

3
and n E then (Q;x ,x) M for all linearly independent elements x,x

i=l O,i

4of E such that x E E i--Iu Eo,i, where Eo,4 -= Eo(N,G4’) is the cone defined by

__I
G4 (Xo,Yo) {P e ,I<I(’3’P2’Pl zA"/AI; Pi e Gi (Xo’Yo)}

r p

for all (x ,yo N with A l m
k and A

2
l mk.o

k= k=r+

4
PROOF. If x,x are linearly independent elements of E such that x u E

i=l
o,i’

then there exist a unique element (Xo,Yo) N N [2 [X,Xl] and a unique set of scalars

(with 6 BY O) such that x SXo + By and Xl YXo + 6Yo" Then

4
Gi(Xo,Yo) where G4(xo,Yo) Rx for X h/Al and G

i Gi(xo,Yo)
i=l
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(Lemma 4.2). We divide the proof into the following two cases:

Case (i). 18 . In this case

a/6 R% u () u u 3
Gi(xo,Yo)),

i=l

3
and so a/8 (R% {}) u Gi(xo,Yo). Since n Gi(xo,yo) , Lemma 4.2

i=l i=l3
implies that /6 (H- {}) Gl(Xo,Yo) where (since /A and

i=l
q

A + A
2
+ A

3 0, where A
3

r. mk)
k=p+l

3

HI {p g KI E= Ai/(p -Pi O; P i Gi(xo’Yo)}
i

S (x ,yoO
(cf. Corollary (4.6).

Therefore,

a/8 S (Xo,Yo) u {m} u u 3
Gi(xo,Yo))

i=l

and (hence) a/8 S’(Xo,Yo). That is, x Ts.(Xo,Yo). Consequently, x and x are

3 3
linearly independent elements of E such that x n E and x u E u

i=l
o,i i=l

o,i

Ts,(Xo,Yo). Finally, Corollary 4.6 says that #(Q;Xl,X) M. as was to be proved.

Case (ii). /8 m. In the case under consideration 6 0

and

a/6 m g Rk v (
3

G.(Xo,Yo))" (4.14)
iffil

If E V M, there exists a unique nontrivial scalar homomorphism L on V such that

L() 0 but L(v) 0 for v E M. Since the hypotheses of Theorem 4.4 are

satisfied for the choice of circular cones given by (4.12), we proceed as in the proof

of Theorem 4.4 and again observe that the polynomials LPk (--Pk’ say) satisfy the

hypotheses of Theorem 3.1 with the E
(k)

and the G
k

given by (4.12) and (4.13). The, O

fact that Pk is an a.h.p, of degree n
k from E to K allows us to write it in

the form

, n

Pk (sx + txI) k (6jks Tjkt), k 1,2,...,q.
j=l

3 q
E
(k) and since Z (xo,yo TGkSince x is not in the set E (Xo,Yo)

iffil
o,i kffil

o k
for all k, we see that Pk(x) 6Jk 0 for all k. Now, proceeding exactly on

J=l
the lines of proof of Theorem 3.1 (except that we replace Pk by Pk and take 8 0

all along) and using the same notations, we find that there exist elements

Pk Gk(Xo’Yo) such that v
k ink(6 Pk- Y)/ a" Note that all the Vk s cannot

vanish simultaneously (since
q

E
(k) 3

k=l
o i=1 Eo,i )" Now,
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q r p q q
E k /a E m

k 0 k
+ E m

k Ok] + E mk0k(since E m
k 0)

k=l k=l k=r+! k=p+l k=l

(/a) [B + B
2

+ B3], say.

Since Gi(xo,Yo) are ko-cOnvex (4.14), we conclude from (4.13) that

q

Bi/Ai e Gi(xo,Yo) where A3 r. mk. Now, there must exist elements
k=p+l

for i 1,2 3, and (hence)0
i

e Gi(x yo) such that B
i

A
i 0 i

q
l v

k
(6/a) [A1(P 03 + A2(02 03)]

k=l
(4.15)

because A + A
2
+ A

3
0. From Remark 2.1 and equation (3.4) [5] we have

q
L((Q;xl,x)) (LQ;Xl,X g k). ffq Pk(X) # 0,

k=l k=l
(4.16)

where LQ is the product of a.h.p.’s Pk" Since Pk(X) 0 for all k, (4.15) would

imply that (since 0)

AI(0 I- 03 + A2(02 -03 0.

3Note that 0 I, 02, 0 3
must be distinct elements of K (since AI, A

2 > O, n
i=l

Gi(xo,Yo) and (4.14) holds). Therefore, (, 03, 02, 01) (03 01)/(03 02

A2/A I, and so a/ m RX This contradicts equation (4.14). Consequently,

(4.16) holds and (Q;xl,x) # for any e V M. That is, (Q;xl,x) e M, as was

to be proved.

Finally, cases (i) and (ii) complete the proof.

The following Corollaries 4.8 and 4.9 can be proved directly from Theorem 4.4,
via applications of a suitably modified form of Lemmas 4.2 and 4.3, exactly in the

manner in which Corollaries 4.6 and 4.7 have been derived with the help of Lemmas 4.2

and 4.3. But it would neither be necessary nor worthwhile to do so. This is because

it has already been proved in earlier papers due to the authors Corollary 4.5 [I] and

Corollary 4.4 [2], that Corollary 4.8 (resp. Corollary 4.9) follows from Corollary 4.6

(resp. Corollary 4.7). We, therefore, state these without proof.

COROLLARY 4.8 [17].LetEo,i Eo(N,Gi), i 1,2, be circular cones in E. Under

q
the notations and hypotheses of Theorem 4.4, if Z m

k
# 0 and if the circular cones

k--!
(k)

Eo =- Eo(N’Gk) are given by
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o,I
k 1,2 p (p < q)

E
(k)
o

o,2
k p+l,...,q,

then (Q’x ,x) e M for all lnearly independent elements x,x of E such that

x! E n E and x E u E U (x
o Yo where (x

o Yoo, o,2 o,I o,2 TS*
/_2[x,xI] x Yx + 6x ando o

*S (x ,yo {P e K (p,/6 p ,p
o co 2

G’. yo)}A /A pi e (xo,

P q
with A l m

k and A r. mk
k=l k=p+l

COROLLARY 4.9 [17]. Under the same notations and hypotheses as in Corollary 4.8,
q

except that this time k__E1 m
k

0 and Eo,l Eo,2 ’ we have that

(Q;xl,x) e M for all Zinearly independent elements x,x of E such that

x E- E u E
o,l ,2

For V K and M K {o}, the above Corollaries 4.8 and 4.9 are known results

due to Zaheer [5].

At the end it emerges that Theorem 4.4 of this paper happens to be the most

general result known thus far on (algebra-valued) generalized polars, whether having a

vanishing or a nonvanishing weight, and it includes in it all the corresponding

results that have been established earlier in the papers due to Marden [II], Zaheer

[5], and to the authors [I] and [2]. It also includes improved versions of some well-

known classical results, such as: Walsh’s two-circle theorems [5], Marden’s general

theorem [7] expressed in Corollary 3.3, and Bocher’s theorem [5]. To sum up: apart

from the fact that all the previously known results [3], [5], [2], have been jacketted

into Theorem 4.4, the present study answers in full generality the type of problem on

generalized polar pursued since 1971, and, it unifies the hitherto unnecessary and

separate treatments traditionally meted out to the cases of the vanishing and the

nonvanishing weight. With Theorem 4.4 in view, it may be pointed out there is no

scope left for further stu.dies in this subject area, except possibly when different

new concepts are developed on some other lines.
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