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ABSTRACT. Fourth order boundary value problems arise in the study of the equilibrium

of an elastaic beam under an external load. The author earlier investigated the exis-

tence and uniqueness of the solutions of the nonlinear analogues of fourth order boundary

value problems that arise in the equilibrium ofanelastic beam depending on how the ends

of the beam are supported. This paper concerns the existence and uniqueness of solu-

tions of the fourth order boundary value problems with periodic boundary conditions.
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I. INTRODUCTION

Fourth order boundary value problems arise in the study of the equilibrium of an

elastic beam under an external load, (e.g., see [I], [2], [3]) where the existence,

uniqueness and iterative methods to construct the solutions have been studied exten-

sively. The purpose of this paper is to study the fourth order boundary value problem

with periodic boundary conditions:

d4u
---+ f(u)u’ g(x,u) e(x), x [0, 2],
dx

u(O) u(2) u’(O) u’(2) u"(O) u"(2) (1.1)

u’"(O) u’"(2n) O,

where f- --> is continuous and g" [0,2n] x R --> satisfies Caratheodory’s

L
1

conditions with e [0,2].

We note that the fourth order linear eigenvalue problem

d4u-- --u,
dx (1.2)

u(0) u(2;[) u’(0) u’(2n) u"(0) u"(2n) u"(0) u’" (2n) O,
4

has n n O, 1, 2 as eigenvalues. Now the problem (1.1) is at resonance
d4u

H
3since the linear operator hu =--. with D(L) {u (0,2) u(O) u(2),

dx
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u’(O) u’(2), u"(O) u"(2), u’" (0) u"’(2)l has a non-tirival kernel. (See end

of this introduction for the definition of H3(0,2).) We shall prove that the boundary

value problem (1.1) has at Ieast one solution if x)dx 0, and there exists a con-

stant 0 > 0 such that g(x,u)u_.> 0 for lul >_. 0- To prove the existence of a

solution for the boundary value problem

d4u
cu’ + g(x u) e(x) x [0 2,t]

dx
4

u(O) u(2n) u’(O) u’(2n) u"(O) u"(2n)

u’" (0) u’" (2n) O,

(.3)

we also need to assume that

g(x,u)
lim sup B < I, uniformly for a.e. x [0,2].

This is because the second eigenvalue of the linear eigenvalue problem (1.2)

interferes with the non-linearity g(x,u) in (1.3). The question of asymptotic con-

ditions in which non-linearity g(x,u) in (1.3) can interact with infinitely many

eigenvalues of the eigenvalue problem (1.2) will be studied in a forthcoming paper [4].

To obtain the existence of solutions for (I.I) and (1.3), we use Mawhin’s version

of Leray Schauder continuation theorem as given in [5], [6], [7]. We also show that in

case f a, where a is a constant, any two solutions of the boundary value problem

(I.I), (respectively, (1.3)), differ by a constant and have a unique solution when, for

example, g(x,u) is strictly increasing in u for a.e. x in [0,2n].

We note that in addition to using the classical spaces C([0,2]), ck([o,2n]), and

Lk(0,2) and L(0,2) of continuous, k-times continuously differentiable, measurable

real-valued functions whose k-th power of the absolute value is Lebesgue integrable or

measurable functions which are essentially-bounded on [0,2] we shall use the Sobolev

space H3(O,2n) defined by

H3(0,2) {u: [0,2] @ u, u’, u" aDs. cont. on [0,2],

u’" L2(0,2)}.
I 12 u(x)dx.Also for u LI(0,2) we define u

0
2. MAIN RESULTS

Let X, Y denote the Banach spaces X CI[0,2], Y LI(0,2) with usual norms

and let H denote the Hilbert space L2(0,2). Let Y2 be the subspace of Y

defined by

Y2 {u Ylu constant a.e. on [0,2]I,

and let YI be the subspace of Y such that Y YIY2. ( denotes the direct

sum.) We note that for u Y we can write

u(t)dt, x [0,21.u(x) (u(x) t)dt) /--.
0

We define the canonicaI projection operators P: -"1; Q: 2 as folIows

1 /2 u(t)dt,

1 12 u(t)dt,Q(u) -f
0

for u Y. Clearly, Q I P, where I denotes the identity mapping on Y

and the projection operators P and Q are continous. Now let X
2

X Y2"
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Clearly X
2

is a closed subspace of X. Let X be the closed subspace of X

such that X X ) X
2. We note that PIX" X -> XI, QIX" X -> X

2
are continuous.

Similarly, we obtain H HI H2
and continuous projectlons PII’H -.> H|, QIIDH -> H

2
!n the tollowing, X, Y, H, P, Q, etc. Wl!l refe to Banach spaces, H11bort space and

the projections as defined above and we shall not distinguish between P, PIX PIH
(esp. Q, Q]X, QIH) and depend on tle context fo, poper meaning.

/2 u(x)v(x)dx denote the dualityAlso for u X, v Y let (u,v)
0

pairing between X and Y. We note that for u X, v Y where u Pu Qu,

v Pv Qv, we have

(u,v) (Pu,Pv) (Qu,Qv).

Define a linear operator L- D(L) X ->Y by setting

H
3D(L) {u (0,2)lu(O) u(2), u’(O) u’(2),

u"(O) u"(2), u’" (0) u’" (2)} (2.)

and for u D(L),

Lu
d4u 42.2)

4
dx

Now, for u D(L) we see using integration by parts and Wirtinger’s inequality

([8]) that

[2 ,,2
2

(Lu,u)
d4u

udx dx > [(Pu)(x)]2dx > O. 42.3)
0 dx--- ]0 u

--30
L
I

LEMMA 2 I" For a given a and h YI i e h (0,2) with h Qh O,

the linear boundary value problem

d4u---- + au’ h(x), x [0,21],
dx

u(O) u(2n), u’(O) u’(2n), u"(O) u"(2n), u’" (0) u’" (2n),

has a unique solution u(x) with u Qu O.

2n 2 1/3 1/3
PROOF’- Let us set co Cos-- i Sin -- i /Z]--, so that a coa

2 I/3
co ( are the three cube roots of a ]R. For x [0,2], we define

i/3 x 1/3Ix -a cox I (t)ea t’td(x) h(t)dt, v2(x) e t,

0 0

-al/3JxlX"
1/3 2

co -1/3x Ix l/3t
v3(x) e v2(t)ea tdt, v(x)= e e v3(t)dt.

0 0
1/3 1/3 1/3 2

-a x C3e-n cox -a co x
Then u(x) C 1 C2e +C4e + v(x) is such that Rl(u(x))

is a general solution of the equation (2.4).

Next, we compute CI, C2, C3, C
4

using the boundary conditions in (2.4) and

I f 2

j u(x)dx O. C2, C3, C
4

are computed uniquely from theand the condition u - 0
three linearly indpendent equations

I/3 1/ 1/
e -( 32co -( 32rco2 v(2)

C
2

C
3 C4 C2e-(X 2

C
3 C4e

(2.4)
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+ 2C4 C2e-a 32
toC3e-a 2t0 o2C4e-a 3202 -a-I/3v’(2),C

2
L0C

3

32 ].I ].13 zII
2C3 - 32 - 2w -2/3

v,,(C2 2C
3

oC
4 C2e-@ .e 0C4e + a 2).

[2u(x)dx O.1
The constant C

1
is computed uniquely using the condition u -0

In this way we get R1 u(x) as the unique solution for (2.4). H

I 12 h(x)dx O; let u Kh beFor h YI’ i.e. h LI(0,2) with h
0

the unique solution of the problem

d4u h(x) x [0 2n]
dx

4

u(O) u(2n), u’(O) u’(2n), u"(O) u"(2n), u’"(O) u"’(2n),

1 /2u(t)dt O. It is immediate that the linear mappingsuch that u
0

K" YI -> XI is bounded and for u Y,

KP(u) D(L), LK P(u) P(u), and (KP(u), P(u)) > O. (2.5)

Let f: --> be continuous and let g: [0,2] --> , (x,u) --> g(x,u)

be such that g(.,u) is measurable on [0,2hi for each u and g(x,.) is

continuous on for almost each x c [0,2]. Assume, moreoever, that for each

r > 0 there exists an a el(0,2) such that Ig(x u) < (x) for a.e. x [0,2]
r r

and all u [-r,r]. Such a g will be said to satisfy Caratheodory’s conditions.

Now define N: X -> Y by setting

(Nu)(x) f(u(x)) u’(x) g(x,u(x)), x e [0,2n],

for u X. It follows easily from Arzela-Ascoli theorem that KPN" X -> X
1

is

a well-defined compact mapping and QN: X -> X
2

is bounded.

For e(x) Y Ll(0,2n), the boundary value probelm (1.1) now reduces to the

functional equation

Lu + Nu e,

in X with e e Y, given.

THEOREM 2.2"- Let f" -> be continuous and let g" [0,2n] ->
satisfy Caratheodory’s conditions. Assume that there exist real numbers a, A, r

and R with a < A and r < 0 < R such that

(2.6)

g(x,u) > A, (2.7)

for a.e. x [0,2] and all u < R; and

g(x,u) < a, (2.8)

for a.e. x [0,2n] and all u < r. Then the boundary value problem (1.1) has at

L1least one solution for each given e (0,2n) with

a < e < A. (2.9)

PROOF’- Define gl: [0,2] x ]R-> by gl(x,u) g(x,u) - (a A) and

L
I Ie (0,2) by el(x) e(x) - (a A), so that, for a.e. x [0,2],
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using (2.7), (2.8), (2.9) we have

I
gl(x’u) > (A a) > 0 if u >_ R,

1
gl(x,u) _< (a A) _< 0 if u _< r,

(2.1o)

(2.11)

and

I
a A) <71 <- (A a). (2.12)

Clearly, the boundary value problem (I.I) is equivalent to

d4u f(u)u’ gl(x u(x)) e l(x) x [0,2]4
dx

u(O) u(2), u’(O) u’(2n), u"(O) u"(2n), u’"(O) u"’(2n).

(2.13)

Let N" X Y be defined by

(Nu)(x) f(u(x))u’(x) gl(x,u(x)), x [0,2I], (2.14)

for u X. We then see, as above, that KPN" X -> X
1

is a well-defined compact

’mapping. QN" X -> X
2

is bounded and the boundary value problem (2.13) is

equivalent to the functional equation,

Lu Nu el,

in X with e I
Y. Setting, e

I KPe, we see that to solve the functional

equation (2.15) it suffices to solve the system of equations

(2.15)

Pu + KPNu e I

QNu el,

u X. Indeed, if u X is a solution of (2.16) then u D(L) and

(2.16)

LPu LKPNu Lu PNu Le
I

PeI,

QNu e I Qel,
which gives on adding that Lu Nu eI

Now, (2.16) is clearly equivalent to the single equation

Pu QNu KPNu e I
+ el, (2.17)

which has the form of a compact perturbation of the Fredholm operator P of index

zero. We can therefore apply the version given in [6] (Theorem I, Corollary I) or

[5] (Theorem IV.4) or [7] of the Leray-Schauder Continuation theorem which ensures

the existence of a solution for (2.17) if the set of solutions of the family of

equations,

Pu (I-lu IQNu %KPNu I I’ e (0,I), (2.18)

is, a priori, bounded in X by a constant independent of I. Notice that (2.18) is

equivalent to the system of equations,

Pu %KPNu %e I,

(l-%)Qu + %QNu l el, (0,I).

Let for (0,I), u% X be a solution of (2.19) so that

(2.19)
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PuA AKPNuA Ael,
(l-),)QuA AQNuA Ae

1

The second equation in (2.20) can now be written as

(l-)t) " 0
u)t(x)dx

0
gl(X’u/t(x))dx

So, if uX(x) _.> R for x [0,2n] we have, using (2.10), (2.12) that

0 < (1 A) R /’(A- a)_!-ff (A- a),

i.e.

0 < (1 A) R < O, a contradiction.

Similarly if uA(x) r for x [0,2] leads to a contradiction. Hence, there

exists a TA [0,2] such that

r < uk(TA) < R.

Now, for x [0,2] we have

u),(x) u(),) /x
so that

u (s)ds,

max (R,-r) (2)1/2( (u (s))Zds) 1/z

0

max (R,-r) (2)I/2( (u(s))2ds) 1/2

0

since u% D(L), Wirtinger’s inequality applies. Thus,

for some constants CI, C
2 independent of .

Next, the first equation in (2.20) gives that

LPux ALKPNu% %Lel,
i.e.

LuA
+ APNuA APe

1

From (2.23) and the second equation in (2.20), we get

(LUA,PUA) + A(PNUA,PUA) A(PeI,PUA)
(I-A)(QUA,QUA) + A(QNUA,QUA) A(’I, QUA).

We next note that our assumptions on gl and (2.10), (2.12) imply that there is a

constant C3, indpendent of A such that for u X,

(Nu,u) _> -C3,

2and (LuA,PuA) (LuA,uA) (u)2 llull H
0

get on adding the equations in (2.24) that

since (2.3) holds. Using this we

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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3 -< (Lu%,u%) (l-%)(Qu,Qu%) k(Nu%,u%)
%(Pel,PU%) + %(el,QU%)

_< C4C lllull H C4C2,
where C

4
is a constant independent of %. Accordingly, there is a constant C 5,

independent of %, such that

% H-- 5’

which implies, using (2.22) that

Iluxllx ClC fi
c
2

m C.

We have thus proved that the set of solutions of the family of equations (2.18) is bounded

in X by a constant independent of X (0,I). Hence the theorem. H
REMARK 2.3:- If we take a A 0 in Theorem 2.2, then we immediately obtain the

assertion made in the introduction concernlng the boundary value problem (I.I).

Now, to study the boundary value problem (1.3) we define, for a given a , a

’linear operator L D(L X Y by setting

D(L {u H3(0,2) u(0) u(2), u’(0) u’(2), u"(O) u"(2),
a (2.25)

u’"(O) u’"(2))

and for u D(L ),

d4u
L u + au’ (2.26)
a

dx
4

It follows, using integration by parts and Wirtinger’s inequality, ([8]), that

12 [2n(L u u) --d4u udx a u’u dx
a

0 dx
4

0

2 12 (d4u)2(u")2dx > dx
0 0 dx

4
(2.27)

2>- IILull.
We, next, use lemma 2.1 to define a bounded linear mapping K "YI X by setting

u K h for a given h Yl’ where u X (so that u Qu O) is the unique

solution of the boundary value problem

d4u
4

dx
eu’ h(x), x [0, 2],

(2.28)

u(O) u(2n), u’(O) u’(2n), u"(0) u"(2n), u’"(O) u’"(Zn).

The bounded linear mapping Ka Y1 X defined in this way has the following

properties"

(i) for u Y, KaP(u) D(La), LaKaP(u) P(u) and

2(K P(u), P(u)) > ,,,,lleull Ha (in view of (2.27))" (2.29)

(ii) if g [0, 2] satisfies Caratheodory’s conditions and N X Y
is defined by setting
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(Nu)(x) g(x,u(x)), x [0, 2l

then KPN X X is a well-defined compact mapping and QN X X
2

is bounded.

Theorem 2.4- Let e be given and g [0, 2] x satisfy Caratheodory’s

conditions. Assume that there exist real numbers a, A, r, R with a < A, and

r < 0 < R such that

g(x, u) > A, (2.30)

for a.e. x [0, 2], and all u _> R; nd

g(x, u) < a, (2.31)

for a.e. x [0, 2], and all u < r. Su-ppose, further, that

lim sup ’’Ig(x’u)l 8 < (2.32)

uniformly for a.e. x [0, 2]. Then the boundary value problem (1.3) has at

L
2

least one solution for each given e [0, 2] with

a < e < A. (2.33)

Pr.oof-- As in the proof of Theorem 2.2, define gl [0, Z] x by gl(x,u)
L2(O, 2w) by el(x) e(x)g(x,u) -- (a A) and e (a +A). Then for a.e.

x [0,2],

gl(x,u) > (A a) > 0 if u _> R, (2.34)

gl(x,u) _< (a A) _< 0 if u_< r, (2.35)

lim sup gl(x’u)
lul*= u 8 < I, (2.36)

uniformly, and

1 (a A) < 71 < (A a)

Also the boundary value problem (1.3) is equivalent to

d4u
dx

4
(u’ gl(x,u) el(x) x e [0, 2],

u(O) u(2n), u’(O) u’(2), u"(0) u"(2), u’"(0) u’"(2n).

Next, let N X Y be defined by

(2 .37)

(2.38)

Nu(x) gl(x,u(x)), x e [0,

for u E X. Choosing, now, > 0 such that 8 < I, we see, using the fact that

g, satisfies Caratheodory’s conditions and (2.34), (2.35), (2.36), that there exists

a constant C(e) > 0 such that

2
(Nu,u) I --e IINull H C(E), (2.39)

for u X. Also, K PN X X, is a well-defined compact mapping and QN X X
2

is bounded.
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Again, we see as in tae proof of Theorem 2.2, that the boundary value problem
(2.38) is equivalent to the system of equations

Pu K PNu $
& KaPe

QNu "’1"
(2.40)

Further, it suffices to prove that the set of solutions of the family of equations

Pu %K PNu he
a

(I -%)Qu %QNu I’ (0,I)

is, a priori, bounded in X by a constant independent of % (0,I).
Let, now, for % (0,I), u% e X be a solution of (2.41) so that

(2.41)

Pu
I kKaPNu kel,

(I- X)Qu% %QNu% -I"
(2.42)

It, now, follows from the second equation in (2.42), in a manner similar to deriving
the estimate (2.22) in the proof of Theorem 2.2, that

< C IlLau.JJ c
2

(2.43)lieuxll+/-lluxll x_ .
for some constants C I, C

2 independent of (0,I).

Also, we have from (2.42) that

(Pu
k,

PNuk) X(KaPNuk, PNu%) (i, PNuk )’

x) II qux II 2 x(qux, QNuk) k(71, quk).
These equations then give us, in view of (2.29) and (2.39), that

2 2
S+--7 IINuXlIH IIPNuxlIH- c(e) _< (Nux,ux) %(K(PNux, PNu%)

--< (I’ PNux) (-I’ QuA )"

Using, now, the facts IIPvll H _< llvll H for v X, and + e < I, we see thatthat

these exist constants C
3, C

4 independent of % (0,i) such that

1/2
IlNuxll _< c

3 Ilqx II
Now, the first equation in (2.42) gives that

C4 (2.44)

so that

Lauk PNu
k kPel,

IILaux II H i X IlPe PNux I1 +/- IIPe ]l H IIPNux II H
! Iletl] H IINuxll H

1/2
i 3llquxll C

4 IIPelll H"
(2.43) and (2.45) now imply that there exist a constant C5, independent of (0,I),

such that
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and

C2 C.llul[I X < CIC 3 CIC4 C II[Pe III H
This completes the proof of the theorem //.

Remark 2.5:- The analogue of Theorem 2.4 when in (1.3) is replaced by f(u), where

f is a given continuous function will be treated in a forthcoming paper [4].

Remark 2.6:- If f(u) , given and g(x,u) is strictly increasing in u

for a.e x [0, 2] then it is easy to see that the boundary value problem (1.1) has

exactly one solution. Similarly if g(x,u) is strictly increasing in u and there

is a B < I, such that

(g(x,u I) g(x,u2))(Ul u2 > B(g(x,uI) g(x,u2))2,
for a.e. x in [0, 2], then the boundary value problem (1.3) has exactly one solution.

Remark 2.7:- If we take a A 0 in Theorem 2.4, we immediately obtain the assertion

concerning the boundary value problem (1.3) in the introduction.
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