ANALYSIS OF STRAIGHTENING FORMULA

DEVADATTA M. KULKARNI

Department of Mathematics Oakland University Rochester Michigan 48063.

(Received March 23, 1987)

ABSTRACT. The straightening formula has been an essential part of a proof showing that the set of standard bitableaux (or the set of standard monomials in minors) gives a free basis for a polynomial ring in a matrix of indeterminates over a field .The straightening formula expresses a nonstandard bitableau as an integral linear cobmbination of standard bitableaux. In this paper we analyse the exchanges in the process of straightening a nonstandard pure tableau of depth two.We give precisely the number of steps required to straighten a given violation of a nonstandard tableau.We also characterise the violation which is eliminated in a single step.

Keywords and Phrases. Bitableaux, standard bitableaux, unitableaux of pure length and depth two, monomials in minors, Straightening formula, oddity function, violation, good violation, number of steps to straighten a nonstandard unitableau.

AMS Primary Classification: 15,05 AMS Secondary Classification: 13

1. INTRODUCTION.

The straightening formula has been an intregral part of the theorem showing that the set of all standard monomials in minors of a matrix of indeterminates form a free basis of the polynomial ring in those indeterminates. It tranforms a nonstandard bitableau into an integral linear combination of the standard bitableaux, which makes sense only after using a correspondence between bitableaux and monomials in minors. The straightening formula is given in Rota-Doubillet -Stein [1] first and given again and exploited greatly in Desarmenien-Kung-Rota [2], DeConcini-Procesi [3], DeConcini - Eisenbud - Procesi [4]. Abhyankar [5] gives a proof of the above mentioned theorem by explicitly counting the dimension of a vector space generated by all the standard bitableaux of area V and length less than or equal to p, and deduces the result that the ideal generated by the p by p minors of a matrix of indeterminates is Hilbertian. In this exposition one also finds a form of the straightening formula which is very amenable for analysis. In a sequel of [5], Abhyankar has proved the Hilbertianness of a much more general determinantal ideal following the same strategy of counting and straightening, eliminating the proof of linear independence of standard bitableaux [6]. He also states the straightening formula in much general form and proposes the

Problem: Given a nonstandard bitableau T, if $T = \sum c_i T_i$ is the expression for T given by the Straightening formula where T_i 's are standard bitableaux; can one determine c_i 's in terms of T?

He defines the final integer function there which helps to give the coefficients c_1 . He also gives a recursion satisfied by this fin function, and states a problem of finding fin in terms of a given nonstandard bitableau. More knowledge about the number of steps required to straighten a given nonstandard bitableau will help finding this fin function.

In this paper we analyse the formula as given in [5]. For an analysis of the straightening formula for a nonstandard unitableau it is enough to look at a nonstandard pure unitableau of depth two. We state a form of the straightening formula using an arbitrary violation. The proof of this form is identical to the proof in [5]. We give an exact number of steps required to eliminate the violation from all unitableaux obtained in the straightening. As a part of our proof we give a detailed analysis of exchanges in the straightening and characterise a violation which gets eliminated in a single step (a good violation).

2. NOTATION AND TERMINOLOGY.

Let $[X_{ij}]_{1 \le i \le m, 1 \le j \le n}$ be a matrix all of whose entries are indeterminates over a field K. Let Y be an m by m+n matrix formed by keeping the first m columns of Y to be those of X and putting the (n+i)th column to be (m-i+1)th column of an m by m identity matrix for $1 \le i \le m$. Throughout the discussion we use the word "minor " with the meaning as "determinant of a minor". In the proof of a theorem, showing the set of standard monomials in maximal size minors of Y to be a free basis of K[Y], the spanning part of it is done by repeated applications of the straightening formula to a nonstandard unitableau of pure length m and bounded by m+n. Using this, one proves that the standard monomials in minors of X form a free basis of K[X] by invoking the correspondence between all minors of X and the maximal size minors of Y, and then the correspondence between tableaux and monomials in minors of X.

A univector of length m and bounded by p is an increasing sequence of m positive integers which are bounded by p. To a univector of length m and bounded by p there corresponds an m by m (a maximal size) minor of an m by p matrix of indeterminates which is formed by picking up the corresponding m columns. A unitableau of depth d is a sequence of d univectors, written as A(1)A(2)...A(d). By a pure unitableau of length m and bounded by p we mean a unitabeau each constituent univector has length m and is bounded by p. Given two univectors

$$A = (A_1 < A_2 < ... < A_p)$$
 and $B = (B_1 < B_2 < ... < B_q)$,

we say that

$$A \le B$$
 if $p \ge q$ and $A_i \le B_i$ for $1 \le i \le q$. (2.1)

A unitableau A(1)A(2)...A(d) is standard if $A(i) \le A(i+1)$ for $1 \le i \le d-1$. A monomial in maximal size minors of an m by p matrix of indeterminates corresponding to a standard pure unitableau of length m and bounded by p is said to be standard.

For analysis one has to concentrate on unitableaux of pure length m and depth two. Let all unitableaux be bounded by p hereonwards. Let mom (X, AB) be a monomial in maximal size minors of an m by p matrix X of indeterminates over a field K. Given a unitableau AB of pure length m and depth two as

$$\begin{array}{l} A_{1} < A_{2} < ... < A_{m} \\ B_{1} < B_{2} < ... < B_{m} \end{array} , \tag{2.2}$$

we say that the i-th column is straight if $A_i \le B_i$ and the i-th column is a violation if $A_i > B_i$ and we define the violation set as

$$V (AB) = \{ i : 1 \le i \le m, A_i > B_i \},$$
(2.3)

and the oddity function for AB by putting for each i with $1 \le i \le m$,

N[AB] (i) = card ({
$$k : 0 \le k \le i - 1, A_{i-k} > B_{i+k}$$
 }). (2.4)

We note that AB is standard if V (AB) = \emptyset and if N[AB] (i) = 0 for $1 \le i \le m$. We say that the v-th column is good if v ε V (AB) and N[AB] (v) = 1.

3. STRAIGHTENING FORMULA.

We are giving here the straightening formula in [5] using any violation.

THEOREM 1: Let AB be a nonstandard pure unitableau of length m and depth two and bounded by p. Let $v \in V$ (AB), and let

$$\underline{A}[\mathbf{v}] = \{\mathbf{A}_k : \mathbf{v} \le \mathbf{k} \le \mathbf{m}\} \text{ and } \underline{B}[\mathbf{v}] = \{\mathbf{B}_k : 1 \le \mathbf{k} \le \mathbf{v}\}.$$
(3.1)

We form a set E[v] as

$$\underline{E}[\mathbf{v}] = \{ (\mathbf{a}, \mathbf{b}) : \mathbf{a} \subset \underline{A}[\mathbf{v}], \mathbf{b} \subset \underline{B}[\mathbf{v}], (\mathbf{A} \setminus \mathbf{a}) \cap \mathbf{b} = \emptyset = (\mathbf{B} \setminus \mathbf{b}) \cap \mathbf{a} \text{ and}$$
$$\operatorname{card}(\mathbf{a}) = \operatorname{card}(\mathbf{b}) \neq \mathbf{0} \}$$
(3.2)

For $E = (a, b) \in E[v]$, let sat (A, E) and sat (B, E) denote the univectors of length m formed by sets respectively (A \ a) U b and (B \ b) U a, and sat [AB, E] denote a satellite unitableau corresponding to $E \in E[v]$ written as

$$sat[AB, E] = sat(A, E) sat(B, E).$$
 (3.3)

We have

$$mom(X, AB) = \sum \#(AB, E) mom(X, sat[AB, E])$$

$$E \in E[v]$$
(3.4)

where # (AB, E) is + or - according to the sign in the Laplace development and the signs required to form sat (A, E) and sat (B, E) for all $E \in \underline{E}[v]$.

PROOF. The proof of this theorem is the same as that in [5] which is done for $v = \min V(AB)$ there.

We say that a pure unitableau A*B* of length m occurs in the first step of straightening of AB with respect to v if

$$v \in V (AB)$$
 and $A^* = sat (A, E)$ and $B^* = sat (B, E)$ for some $E \in E[v]$, (3.5)

we write it as $A*B*\varepsilon S$ [AB, v, 1]. We say that A**B** occurs in the second step of the straightening of AB with respect to v if

$$v \in V (A^*B^*)$$
 and $A^{**}B^{**} \in S [A^*B^*, v, 1]$ (3.6)

for some $A^*B^* \varepsilon S[AB, v, 1]$ and we write it as $A^{**}B^{**} \varepsilon S[AB, v, 2]$; and we may define S[AB, v, s] for $s \ge 1$ inductively.

4. ANALYSIS OF EXCHANGES.

In this section let AB be as given above and $v \in V(AB)$ and $A^*B^* \in S[AB, v, 1]$ for $(a, b) \in \underline{E}[v]$ as described in the Theorem 1. Let N[AB] (v) = q + 1 and card (a) = card(b) = r. We note the condition

$$(A \setminus a) \cap b = \emptyset = (B \setminus b) \cap a \tag{4.0}$$

which we are going to use strongly .

THEOREM 2: If card (a) = card (b) = $r \ge q + 1$,

$$v \in V(A^*B^*)$$
 for all $A^*B^* \in S[AB, v, 1]$.

PROOF: Since every element of $\{A_1, A_2, ..., A_{v-q-1}\} \cup b$ is smaller than every element of $\{A_{v-q}, A_{v-q+1}, ..., A_m\}$ a, and by (4.0) and the given,

card ({
$$A_1, A_2, ..., A_{v-q-1}$$
 } U b) = $v - q - 1 + r \ge v$, (4.1)

we have $B_{v}^{*} \in \{A_{1,}A_{2,...,A_{v-q-1}}\} \cup b$.

Since every element of $\{B_{v+q+1}, B_{v+q+2}, ..., B_m\} \cup a$ is greater than every element of $\{B_1, B_2, ..., B_{v+q}\}$ b, and by (4.0) and the given,

card
$$(\{B_{v+q+1}, B_{v+q+2}, ..., B_m\} \cup a) = m - v - q + r \ge m - v + 1$$
, (4.2)

we have $A_{v}^{*} \in \{B_{v+q+1}, B_{v+q+2}, ..., B_{m}\} \cup a$.

By noting that every element of $\{A_1, A_2, ..., A_{v-q-1}\} \cup b$ is smaller than or equal to every element of $\{B_{v+q+1}, B_{v+q+2}, ..., B_m\} \cup a$ as $A_{v-q-1} \leq B_{v+q+1}$ and $A_v > B_v$, we have $A^*v \leq B^*v$, and so $v \in V(A^*B^*)$ for all $A^*B^* \in S$ [AB, v, 1].

COROLLARY 3: A violation v in V (AB) is good if and only if $v \notin V(A^*B^*)$ for all $A^*B^* \in S[AB, v, 1]$ if and only if $A_{v+1} \ge B_{v-1}$.

PROOF: It follows from above theorem by noting that v is good if q = 0 and card (a) = card (b) $\neq 0$ forces $r \ge 1$. The second part follows from the definition of N [AB] (v).

LEMMA 4: If $1 \le \text{card}(a) = \text{card}(b) = r \le q$, $v \in V(A^*B^*)$ for those $A^*B^* \in S[AB, v, 1]$.

PROOF: Since every element of $\{A_{v-q}, A_{v-q+1}, ..., A_m\}$ a is greater than every element of $\{A_1, A_2, ..., A_{v-q-1}\} \cup b$, and by (4.0) and $q - r \ge 0$,

card ({
$$A_1, A_2, ..., A_{v-q-1}$$
 } U b) = v - q - 1 + r $\leq v - 1$, (4.3)

we have $A_v \in \{A_{v-q}, A_{v-q+1}, ..., A_m\}$ a.

Since every element of $\{B_1, B_2, ..., B_{v+q}\}$ b is smaller than every element of $\{B_{v+q+1}, B_{v+q+2}, ..., B_m\} \cup a$, and by (4.0),

card ({
$$B_1, B_2, ..., B_{v+q}$$
} \ b) = v + q - r $\ge v$, (4.4)

we have $B_{v}^{*} \in \{B_{1}, B_{2}, ..., B_{v+q}\} \setminus b$.

By noting that every element of { $A_{v-q}, A_{v-q+1}, ..., A_m$ }\ a is greater than every element of { $B_{1}, B_{2}, ..., B_{v+q}$ }\ b, we have

$$A^*_{\mathbf{v}} > B^*_{\mathbf{v}} \quad , \tag{4.5}$$

and so v ε V(A*B*) for those A*B* ε S [AB, v, 1].

THEOREM 5: For all $A^*B^* \in S[AB, v, 1]$, for $1 \le i \le m$,

$$N[A^*B^*](i) \le N[AB](i)$$
.

There exists (a, b) in <u>E</u> [v] such that for the corresponding A*B*, we have

$$N[A^*B^*](v) = N[AB](v) - 1.$$
(4.6)

PROOF: Putting N[AB] (i) = n (i) for $1 \le i \le m$, by the definition of N, we have

$$A_{i-n(i)}^{*} \leq A_{i-n(i)} \leq B_{i+n(i)} \leq B_{i+n(i)}^{*}$$

since $A^*_k \leq A_k$ and $B^*_k \geq B_k$ for $1 \leq k \leq m$ as every element in A which is removed is being replaced by a smaller element in B and every element in B which is removed is being replaced by a greater element in A. From the inequality it follows that for $1 \leq i \leq m$,

$$N[A^*B^*](i) \le N[AB](i)$$
. (4.7)

To prove the second part we have to first show that $A^*_{v-q} \leq B^*_{v+q}$ for all E in <u>E</u> [v] by letting n (v) = q + 1. Since every element of { A₁, A₂, ..., A_{v-q-1} } U b is smaller than every element of { A_{v-q}, A_{v-q+1}, ..., A_m }\ a, and by (4.0) and r - 1 ≥ 0,

card ({
$$A_1, A_2, ..., A_{v-q-1}$$
 } U b)= v - q - 1 + r ≥ v - q , (4.8)

we have $A_{v-q}^* \in \{A_1, A_2, ..., A_{v-q-1}\} \cup b$.

Since every element of $\{B_{v+q+1}, B_{v+q+2}, ..., B_m\} \cup a$ is greater than every element of $\{B_1, B_2, ..., B_{v+q}\}$ b, and by (4.0),

card
$$(\{ B_{v+q+1}, B_{v+q+2}, ..., B_m \} \cup a) = m - v - q + r \ge m - v - q + 1, (4.9)$$

we have $B^*_{v+q} \in \{B_{v+q+1}, B_{v+q+2}, ..., B_m\} \cup a$.

By noting that every element of $\{A_1, A_2, ..., A_{v-q-1}\} \cup b$ is smaller than or equal to every element of $\{B_{v+q+1}, B_{v+q+2}, ..., B_m\} \cup a$ as $A_{v-q-1} \leq B_{v+q+1}$ and $A_v > B_v$, we have

$$A^*_{v-q} \leq B^*_{v+q}, \qquad (4.10)$$

and so $N[A^*B^*](v) < q = N[AB](v)$.

By putting $a = \{A_u\}$ and $b = \{B_w\}$ where $A_u = \min A[v] \setminus B$ and $B_w = \max B[v] \setminus A$, we note that for the corresponding A^*B^* ,

$$A^*_k = A_{k-1}$$
 for $v - q + 1 \le k \le u$ (4.11.1)

and

$$B_{k}^{*} = B_{k+1}$$
 for $w \le k \le v + q - 1$ (4.11.2)

as

card ({
$$A_1, A_2, ..., A_{v-q-1}$$
 } U b) = v - q (4.12.1)

and

card ({
$$B_{v+q+1}, B_{v+q+2}, ..., B_m$$
} \cup a) = m - v - q, (4.12.2)

it follows that

$$A^*_{v-q+1} = A_{v-q} > B_{v+q} = B^*_{v+q-1}.$$
(4.13)

By the definition of N and knowing that $A_{v-q}^* \leq B_{v+q}^*$, we have

$$N[A*B*](v) = N[AB](v) - 1.$$
 (4.14)

The existence of u is assured by the definition of v and

card
$$(\underline{A}[v]) > card (\{B_{v+1}, B_{v+2}, ..., B_{m}\}).$$
 (4.15.1)

The existence of w is assured by the definition of v and

card
$$(\underline{B}[v]) >$$
card $(\{A_1, A_2, ..., A_{v-1}\}).$ (4.15.2)

THEOREM 6: If we apply the straightening formula to AB repeatedly using $v \in V(AB)$, for all A*B* ε S [AB, v, N [AB] (v)] we have that $v \notin V(A*B*)$. The number N [AB] (v) is the smallest integer s such that for all A*B* ε S [AB, v, s] we have that $v \notin V(A*B*)$.

PROOF: It follows immediately from the previous theorem and recalling that

$$v \notin V(A^*B^*)$$
 if N [AB] (v) = 0. (4.16)

From the above Theorem it is clear that starting with AB and applying the straightening formula N [AB] (v) times we can express AB (or mom (X, AB)) as an integral linear combination of

249

unitableaux which do not have v in their violation sets. In this process we do not perform any cancellations as we go. With this in mind, talking of the number of steps required to straighten a nonstandard unitableau is not confusing. By the above theorem and noting that the oddity function drops at each step, it follows that a nonstandard unitableau AB can be straightened in at most $\Sigma_{1 \le i \le m} N$ [AB] (i) steps.

ACKNOWLEDGEMENTS.

I would like to thank Professor Shreeram S. Abhyankar for his continuous encouragement and guidance while doing my Ph. D. thesis with him . I would like to thank the Bhaskaracharya Pratishthana for its hospitality.

REFERENCES.

- [1] Doubillet, Rota, Stein, Foundations of combinatorics IX : Combinatorical methods in invariant Theory; Studies in applied mathematics 53,185-216 (1974).
- [2] Desarmenien, Kung, Rota, Invariant theory, Young bitableaux, and combinatorics; Advances in mathematics 22, No.1, 63-92 (1978).
- [3] DeConcini, Procesi, A characteristic free approach to invariant theory, Advances in mathematics 21,330-354 (1978).
- [4] DeConcini, Eisenbud, *Procesi,Young diagrams and determinantal varieties*; Inventiones mathematicae 56,129-165 (1980).
- [5] Abhyankar S., Combinatorie des tableaux de Young, varietes determinantielles et calcul de fonctions de Hilbert ; Nice lecture notes by A. Galligo ; Universita E. Polytecnico di Torino : <u>Rendiconti del Seminario Matematico</u> (1985).
- [6] Abhyankar S., *Enumerative Combinatorics of Young Tableaux* (Forthcoming in the Monograph Series of Marcel Dekkar)