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ABSTRACT. The straightening formula has been an essential part of a proof showing that the set of

standard bitableaux (or the set of standard monomials in minors) gives a free basis for a polynomial ring

in a matrix of indeterminates over a field .The straightening formula expresses a nonstandard bitableau as

an integral linear cobmbination of standard bitableaux. In this paper we analyse the exchanges in the

process of straightening a nonstandard pure tableau of depth two.We give precisely the number of steps

required to straighten a given violation of a nonstandard tableau.We also characterise the violation which is

eliminated in a single step.
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1. INTRODUCTION.
The straightening formula has been an intregral part of the theorem showing that the set of all

standard monomials in minors of a matrix of indeterminates form a free basis of the polynomial ring in

those indeterminates. It tranforms a nonstandard bitableau into an integral linear combination of the

standard bitableaux, which makes sense only after using a correspondence between bitableaux and

monomials in minors. The straightening formula is given in Rota-Doubillet -Stein [1] first and given

again and exploited greatly in Desarmenien-Kung-Rota [2], DeConcini-Procesi [3], DeConcini-

Eisenbud Procesi [4]. Abhyankar [5] gives a proof of the above mentioned theorem by explicitly
counting tile dimension of a vector space generated by all the standard bitableaux of area V and length less

than or equal to p, and deduces the result that the ideal generated by the p by p minors of a matrix of

indeterminates is Hilbertian. In this exposition one also finds a form of the straightening formula which is

very amenable for analysis. In a sequel of [5], Abhyankar has proved the Hilbertianness of a much more

general determinantal ideal following the same strategy of counting and straightening, eliminating the

proof of linear independence of standard bitableaux [6]. He also states the straightening formula in much

general form and proposes the

Problem: Given a nonstandard bitableau T, if T Y. c1T is the expression for T given by the

Straightening formula where Ti’s are standard bitableaux; can one determine c/s in terms of T ?
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He defines the final integer function there which helps to give the coefficients ct. He also gives a

recursion satisfied by this fin function, and states a problem of finding fin in terms of a given nonstandard

bitableau. More knowledge about the number of steps required to straighten a given nonstandard bitableau

will help finding this fin function.

In this paper we analyse the formula as given in [5]. For an analysis of the straightening formula

for a nonstandard unitableau it is enough to look at a nonstandard pure unitableau of depth two. We state a

form of the straightening formula using an arbitrary violation. The proof of this form is identical to the

proof in [5]. We give an exact number of steps required to eliminate the violation from all unitableaux

obtained in the straightening. As a part of our proof we give a detailed analysis of exchanges in the

straightening and characterise a violation which gets eliminated in a single step (a good violation ).

2. NOTATION AND TERMINOLOGY.

Let Xij ]l<_ <_m,1 _< _<n be a matrix all of whose entries are indeterminates over a field K. Let Y be

an m by m+n matrix formed by keeping the first m columns of Y to be those of X and putting the (n+i)th
column to be (m-i+ 1)th column of an m by m identity matrix for < < m. Throughout the discussion

we use the word "minor with the meaning as "determinant of a minor". In the proof of a theorem,

slowing the set of standard monomials in maximal size minors of Y to be a free basis of K[Y], the

spanning part of it is done by repeated applications of the straightening formula to a nonstandard

unitableau of pure length m and bounded by m+n. Using this, one proves that the standard monomials

in minors of X form a free basis of K[X] by invoking the correspondence between all minors of X and

the maximal size minors of Y, and then the correspondence between tableaux and monomials in minors

of X.

A univector of length m and bounded by p is an increasing sequence of m positive integers which

are bounded by p. To a univector of length m and bounded by p there corresponds an m by m a
maximal’size) mirror of an m by p matrix of indeterminates which is formed by picking up the

corresponding m columns. A unitableau of depth d is a sequence of d univectors, written as

A(1)A(2) A(d). By a pure unitableau of length m and bounded by p we mean a unitabeau each

constituent univector has length m and is bounded by p. Given two univectors

A= (A1< A2 <...<Ap)andB= (B < B2 < <Bq ),

we say that

A<B ifp >q andA <B for <i <q. (2.1)

A unitableau A(1)A(2 )...A(d) is standard if A(i) < A(i+ 1) for < < d- 1. A monomial in maximal

size minors of an m by p matrix of indeterminates corresponding to a standard pure unitableau of length m

and bounded by p is said to be standard.

For analysis one has to concentrate on unitableaux of pure length m and depth two. Let all

unitableaux be bounded by p hereonwards. Let morn (X, AB be a monomial in maximal size minors of

an m by p matrix X of indeterminates over a field K. Given a unitableau AB of pure length m and depth

two as

A1 < A2 < < Am
B1 < B2 <... <Bm (2.2)
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we say that the i-th column is straight if A < B and the i-th column is a violation if A > B and we define

the violation set as

V(AB)={i: l<i<m,A > Bi}, (2.3)

and the oddity function for AB by putting for each with < < m,

N[AB] (i)=card({ k:0< k< i-l,Ai_ k > Bi+k}). (2.4)

We note that AB is standard if V (AB) O and if N[AB] (i) 0 for < m. We say that the v-th

column is good if v e V (AB) and N[AB] (v) 1.

3. STRAIGHTENING FORMULA.
We are giving here the straightening formula in [5] using any violation.

THEOREM 1." Let AB be a nonstandard pure unitableau of length m and depth two and

bounded by p. Let v e V (AB), and let

A[v] ={Ak: v <_ k _< m } and B_[v] {Bk: _< k <_ v }. (3.1)

We form a set E[v] as

E[v] { a ,b) a c Air], b c:: B[v], (A a) Iq b O (B b) f’l a and

card(a) card (b) # 0 } (3.2)

For E (a,b) e E[v], let sat (A, E and sat B, E denote the univectors of length m formed by sets

respectively (A a) IA b and 03 b) U a, and sat AB, E denote a satellite unitableau corresponding to

E e E[v] written as

sat lAB ,E sat (A, E) sat (B, E). (3.3)

We have

room (X, AB Z
E E_[v]

# (AB,E) morn (X, sat AB ,E

(3.4)

where # (AB, E is + or- according to the sign in the Laplace development and the signs required to

form sat A, E and sat B, E for all E e E[v].

PROOF. The proof of this theorem is the same as that in [5] which is done for v min V(AB)
there.

We say that a pure unitableau A’B* of length m occurs in the first step of straightening of AB

with respect to v if

v e V (AB) and A* sat (A, E and B* sat B, E for some E e E[v], (3.5)
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we write it as A*B*e S AB ,v ,1]. We say that A**B** occurs in the second step of the straightening

of AB with respect to v if

v : V (A’B*) and A**B** e S A’B* ,v ,1] (3.6)

for some A*B*eS[AB,v,1] and we write it as A**B**e S[AB, v, 2]; and we may define

S AB, v, for > inductively.

4. ANALYSIS OF EXCHANGES.
In this section let AB be as given above and v e V( AB and A’B* e S AB ,v ,1] for

a, b e E Iv] as described in the Theorem 1. Let N [AB (v) q + and card (a) card b r.

We note the condition

(A\a) fl b=O=(B\b) t’la (4.0)

which we are going to use strongly.
THEOREM 2" If card (a) card b r > q + 1,

v e V(A*B*) for all A*B*e S AB ,v ,1].

PROOF: Since every element of { A1,A2 Av- q- } U b is smaller than every

element of { Av q,Av q + Am }\ a, and by (4.0) and the given,

card({A1,A2 Av_q_1}Ub )=v-q- l+r >v, (4.1)

we have B*v e{A1,A2 Av-q-1}Ub.
Since every element of {Bv + q + 1, Bv + q + 2 Bm } U a is greater than every element of

{B 1,B2 Bv + q }\ b ,and by (4.0) and the given,

card({Bv+q+l, Bv+q+2 Bm}U a)=m-v-q+r>m-v+l, (4.2)

we have A*v e{Bv+q+l,Bv+q+2 Bm}U a.

By noting that every element of { A 1, A2 Av-q-1 } U b is smaller than or equal to every

element of{Bv+q+l,Bv+q+2 Bm}Ua asAv_q_l < Bv+q+l and Av >Bv,wehave
A*v < B*v and so v e V(A*B*) for all A*B*e S [AB ,v ,1].

COROLLARY3: A violation v in V (AB)is good if and only if v V(A*B*) for all

A*B*e S AB ,v ,1] ifand only if A v+l > Bv-1

PROOF: It follows from above theorem by noting that v is good if q 0 and

card (a) card (b) : 0 forces r > 1. The second part follows from the definition of N lAB (v).

LEMMA 4:

A’B* e S [AB ,v ,1].

If < card (a)=card(b) r < q, v e V(A*B*) for those

PROOF: Since every element of { Av q, Av q + Am }\ a is greater than every

element of {A 1, A2 Av q } U b, and by (4.0) and q r > 0,
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card { A1, A2 Av_q_l}Ub)=v-q-l+r <v-l, (4.3)

we have A*v e{Av_q, Av_q+l Am}\a.
Since every element of {B 1, B2 Bv+q }\ b is smaller than every element of

{Bv+q+ 1, Bv+q+2 Bm}Ua,andby(4.0),

card ({B1,B2 Bv + q }\ b) v + q- r > v, (4.4)

we haveB* e{B B2 Bv }\bv +q
By noting that every element of { Av q, Av q + Am }\ a is greater than every

element of {B 1,B2 Bv + q }\ b, we have

A*v > B*v (4.5)

and so v e V(A*B*) for those A’B* e S AB ,v ,1].

THEOREM 5: For all A*B*eS[AB,v,1],for l<i<m,

N[A*B*] (i) < N[AB] (i).

There exists (a, b in E [v] such that for the corresponding A’B*, we have

N[A*B*] (v) N[AB] (v)- 1. (4.6)

PROOF: Putting N[AB] (i) n for < < m ,by the definition of N, we have

A*i-n(i) <Ai-n(i) < Bi+n(i) < B*i+n(i)
since A*k < Ak and B*k > Bk for < k < m as every element in A which is removed is being replaced

by a smaller element in B and every element in B which is removed is being replaced by a greater element

in A. From the inequality it follows that for < < m,

N[A*B*] (i) < N[ABI (i) (4.7)

To prove the second part we have to first show that A*v_q _< B*v+q for all Ein_E [v] by

letting n(v)=q+ 1. Since every element of{A1,A2 Av-q-1 }U b is smaller than every

element of { Av q, Av q + Am }\ a, and by (4.0) and r > 0,

card({ A1, A2 Av_q_l}U b)=v-q- l+r >v-q, (4.8)

we have A’v_ q e{A1, A2 Av-q-1}U b.

Since every element of {Bv + q + 1, Bv + q + 2 Bm } U a is greater than every element of

{B 1,B2 Bv + q }\ b, and by (4.0),

card({Bv+q+l, Bv+q+ 2 Bm}U a) =m-v-q+r >_ m-v-q+l, (4.9)
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we have B* e {Bv Bv Bm LI a.v+q +q+l, +q+2
By noting that every element of { A 1, A2 Av q } LIb is smaller than or equal to every

element of{Bv+q+l,Bv+q+2 Bm}t.j a asAv_q_ < Bv+q+land
Av > Bv ,we have

A*v_q < B*v+q, (4.10)

and so N[A*B*] (v) < q N[AB] (v).
By putting a { Au } and b ={ Bw } where Au rain A[ v B and

Bw max B v A, we note that for the corresponding A’B*,

and

A’k= Ak- for v-q+l<k<u (4.11.1)

B*k Bk + for w < k < v + q (4.11.2)

and

card({A1, A2 Av_q_ 1}LI b)=v-q

card({Bv+q+l, Bv+q+2 Bm}LI a)=m-v- q,

(4.12.1)

(4.12.2)

it follows that

A’v-q+1 Av-q > Bv+q B*v+q-1. (4.13)

By the definition ofN and knowing that A*v q < B*v + q, we have

N[A*B*] (v) N[AB] (v)- 1. (4.14)

The existence of u is assured by the definition of v and

card (A[ v > card {Bv + 1,Bv + 2 Bm } (4.15.1)

The existence ofw is assured by the definition of v and

card(B[v])>card({A1,A2 Av-1 }). (4.15.2)

THEOREM 6: If we apply the straightening formula to AB repeatedly using v e V( AB ), for

allA*B* eS [AB, v,N[AB](v)] we have thatv V(A*B*).ThenumberN[AB (v) isthe

smallest integer such that for all A’B* e S [AB, v, s we have that v d V A’B* ).

PROOF: It follows immediately from the previous theorem and recalling that

v V(A*B*)ifN[AB](v)=0. (4.16)

From the above Theorem it is clear that starting with AB and applying the straightening formula

N AB v times we can express AB or mom( X, AB as an integral linear combination of
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unitableaux which do not have v in their violation sets. In this process we do not perform any
cancellations as we go. With this in mind, talking of the number of steps required to straighten a

nonstandard unitableau is not confusing. By the above theorem and noting that the oddity function

drops at each step, it follows that a nonstandard unitableau AB can be straightened in at most

1 < <m N AB (i) steps.
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