CONVERGENCE OF THE SOLUTIONS FOR THE EQUATION
 $\mathbf{x}^{(i v)}+\mathbf{a} \ddot{\mathbf{x}}+\mathbf{b} \ddot{\mathbf{x}}+\mathbf{g}(\dot{\mathbf{x}})+\mathbf{h}(\mathbf{x})=\mathbf{p}(\mathbf{t}, \mathbf{x}, \dot{\mathbf{x}}, \ddot{\mathbf{x}}, \ddot{\mathbf{x}})$

ANTHONY UYI AFUWAPE
Department of Mathematics
University of Ife
Ile-Ife, Nigeria

(Received May 30, 1984 and in revised form November 26, 1985)

ABSTRACT. This paper is concerned with differential equations of the form

$$
x^{(i v)}+a \dddot{x}+b \ddot{x}+g(\dot{x})+h(x)=p(t, x, \dot{x}, \ddot{x}, \dddot{x})
$$

where a, b are positive constants and the functions g, h and p are continuous in their respective arguments, with the function h not necessarily differentiable. By introducing a iyapunov function, as well as restricting the incrementary ratio $\eta^{-1}\{h(\xi+n)-h(\xi)),(\eta \neq 0)$, of h to a closed sub-interval of the Routh-Hurwitz interval, we prove the convergence of solutions for this equation. This generalizes earlier results.

KEY WORDS AND PHRASES. Routh-Hurwitz interval, Lyapunov function. 1980 AMS SUBJECT CLASSIFICATION CODE. 34D20.

1. INTRODUCTION.

Consider fourth-order differential equations of the form:

$$
\begin{equation*}
x^{(i v)}+a \dddot{x}+b \ddot{x}+g(\dot{x})+h(x)=p(t, x, \dot{x}, \dddot{x}, \dddot{x}) \tag{1.1}
\end{equation*}
$$

in which $a>0$, $b>0$, functions g and h are continuous in their respective arguments. The function $p(t, x, x, \ddot{x}, \ddot{x})$ is assumed to have the form $q(t)+$ $r(t, x, \dot{x}, \ddot{x}, \dddot{x})$ with the functions q and r depending explicitly on the arguments displayed, and continuous in their respective arguments. Further, we shall assume that $r(t, 0,0,0,0)=0$ for all t.

The solutions of (1.1) will be said to converge if any two solutions $x_{1}(t), x_{2}(t)$ of (1.1) satisfy

$$
\begin{align*}
& x_{2}(t)-x_{1}(t) \rightarrow 0, \dot{x}_{2}(t)-\dot{x}_{1}(t) \rightarrow 0 \\
& \dddot{x}_{2}(t)-\ddot{x}_{1}(t) \rightarrow 0, \dddot{x}_{2}(t)-\dddot{x}_{1}(t) \rightarrow 0, \tag{1.2}
\end{align*}
$$

as $t \rightarrow \infty$.
The convergence of solutions for equations of the form (1.1) was earlier shown in [1], when $g(\dot{x})=c \dot{x}$, with $c>0$, and with the assumption that $h(x)$ is not necessarily differentiable, but with an incrementary ratio $\eta^{-1}\{h(\xi+\eta)-h(\xi)\}$,
$(\eta \neq 0)$, lying in a closed sub-interval I_{o} of the Routh-Hurwitz interval $\left(0,(a b-c) c / a^{2}\right)$, where

$$
\begin{equation*}
I_{0} \equiv\left[\Delta_{0}, \frac{K(a b-c) c}{a^{2}}\right] \tag{1.3}
\end{equation*}
$$

$\Delta_{0}>0$ and $K<1$.
The main purpose of the present investigation is to give fourth-order analogues of [2], as well as extending earlier results in [1] to equations of the form (1.1) with the additional condition that for $y_{1} \neq y_{2}$,

$$
\begin{equation*}
c_{o} \geqslant \frac{g\left(y_{2}\right)-g\left(y_{1}\right)}{y_{2}-y_{1}} \geqslant c \tag{1.4}
\end{equation*}
$$

for some constants $c_{0}>0$ and $c>0$, satisfying

$$
\begin{equation*}
a b c \quad>\quad c_{o}^{2} \tag{1.5}
\end{equation*}
$$

Moreover, while proving the convergence results for (1.1), we shall give a general estimate for the constant $K<1$, from which a particular case is derived.
2. MAIN RESULTS.

The main results of this paper, which are in some respects fourth-order analogues of [2] and generalizations of [1], are the following:

THEOREM 1. Suppose that $g(0)=h(0)$ and that
(i) there are constants $c>0, c_{0}>0$ such that $g(y)$ satisfies inequalities (1.4) and (1.5);
(ii) there are constants $\Delta_{0}>0, K<1$ such that for any $\xi, \eta,(\eta \neq 0)$, the incrementary ratio for h satisfies

$$
\begin{equation*}
\eta^{-1}\{h(\xi+\eta)-h(\xi)\} \text { lies in } I_{0} \tag{2.1}
\end{equation*}
$$

with I_{o} as defined in (1.3);
(iii) there is a continuous function $\phi(t)$ such that

$$
\begin{align*}
& \left|r\left(t, x_{2}, y_{2}, z_{2}, w_{2}\right)-r\left(t, x_{1}, y_{1}, z_{1}, w_{1}\right)\right| \\
& \leqslant \phi(t)\left\{\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|+\left|z_{2}-z_{1}\right|+\left|w_{2}-w_{1}\right|\right\} \tag{2.2}
\end{align*}
$$

holds for arbitrary $t, x_{1}, y_{1}, z_{1}, w_{1}, x_{2}, y_{2}, z_{2}$, and w_{2}.
Then, there exists a constant D_{1} such that if

$$
\begin{equation*}
\int_{0}^{t} \phi^{\alpha}(\tau) d \tau \leqslant D_{1} t \tag{2.3}
\end{equation*}
$$

for some α, in the range $1 \leqslant \alpha \leqslant 2$, then all solutions of (1.1) converge.
A very important step in the proof of Theorem 1 will be to give estimates for any two solutions of (1.1). This in itself, being of independent interest, is given as:

THEOREM 2. Let $x_{1}(t), x_{2}(t)$ be any two solutions of (1.1). Suppose that all the conditions of Theorem 1 are satisfied, then for each fixed α, in the range $1 \leqslant \alpha \leqslant 2$, there exist constants D_{2}, D_{3} and D_{4} such that for $t_{2} \geqslant t_{1}$,

$$
\begin{equation*}
S\left(t_{2}\right) \leqslant D_{2} s\left(t_{1}\right) \exp \left\{-D_{3}\left(t_{2}-t_{1}\right)+D_{4} f_{t_{1}}^{t_{2}} \phi^{\alpha}(\tau) d \tau\right\} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
& S(t)=\left\{\left[x_{2}(t)-x_{1}(t)\right]^{2}+\left[\dot{x}_{2}(t)-\dot{x}_{1}(t)\right]^{2}+\right. \\
&\left.+\left[\ddot{x}_{2}(t)-\dddot{x}_{1}(t)\right]^{2}+\left[\dddot{x}_{2}(t)-\dddot{x}_{1}(t)\right]^{2}\right\} \tag{2.5}
\end{align*}
$$

If we put $x_{1}(t)=0$ and $t_{1}=0$, we immediately obtain:
COROLLARY 1. If $p=0$ and the hypotheses (i) and (ii) of Theorem 1 hold, then the trivial solution of (l.1) is exponentially stable in the large.

Further, if we put $\xi=0$ in (2.1) with $\eta(\eta \neq 0)$ arbitrary, we obtain:
COROLLARY 2. If $p=0$ and the hypotheses (i) and (ii) hold for arbitrary $\eta \quad(\eta \neq 0)$, and $\xi=0$, then there exists a constant $D_{5}>0$ such that every solution $x(t)$ of (1.1) satisfies

$$
\begin{equation*}
|x(t)| \leqslant D_{5} ;|\dot{x}(t)| \leqslant D_{5} ;|\ddot{x}(t)| \leqslant D_{5} ;|\dddot{x}(t)| \leqslant D_{5} \tag{2.6}
\end{equation*}
$$

3. PRELIMINARY RESULTS.

Let $Q(t)=\int_{0}^{t} q(\tau) d \tau$. For convenience, by setting $\dot{x}=y, \dot{y}=z$ and $\dot{z}=w+Q(t)$, we replace equation (1.1) by the equivalent system:

$$
\begin{align*}
& \dot{x}=y \\
& \dot{y}=z \\
& \dot{z}=w+Q(t) \\
& \dot{w}=-a w-b z-g(y)-h(x)+r(t, x, y, z, w+Q(t))-a Q(t) \tag{3.1}
\end{align*}
$$

Let $\left(x_{i}(t), y_{i}(t), z_{i}(t), w_{i}(t)\right),(i=1,2)$, be two solutions of (3.1), such that

$$
\begin{equation*}
c \leqslant \frac{g\left(y_{2}\right)-g\left(y_{1}\right)}{y_{2}-y_{1}} \leqslant c_{0} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{0} \leqslant \frac{h\left(x_{2}\right)-h\left(x_{1}\right)}{x_{2}-x_{1}} \leqslant \frac{K(a b-c) c}{a^{2}} \tag{3.3}
\end{equation*}
$$

where c, c_{0}, Δ_{0}, K are as defined in (1.3), (1.4) and (1.5).
Our main tool in the proofs of the convergence Theorems will be the following function: $W=W\left(x_{2}-x_{1}, y_{2}-y_{1}, x_{2}-z_{1}, w_{2}-w_{1}\right)$ defined by

$$
\begin{align*}
2 \mathrm{~W}=\{ & \mathrm{c}^{2} \varepsilon(1-\varepsilon)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\mathrm{ac}(1-\varepsilon)(\mathrm{D}-1)\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+ \\
& +2 c[\varepsilon+(\mathrm{D}-1)]\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+\varepsilon D\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)^{2}+ \\
& +\mathrm{b}(\mathrm{D}-1)\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}+[(1-\varepsilon) \mathrm{D}-1]\left[\mathrm{a}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)\right]^{2}+ \\
& \left.+\left[\mathrm{c}(1-\varepsilon)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\mathrm{b}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)\right]^{2}\right\} \tag{3.4}
\end{align*}
$$

where $D-1=(\delta+c \varepsilon) /(a b-c-0)$, with $a b-c>\delta>0 ; 0<\varepsilon<1$; and $a b \varepsilon(2-\varepsilon)=\delta$. This is an adaptation of the function V used in [1].

Since $0<\varepsilon<1$, following the argument used in [1], we can easily verify the following for W.

LEMMA 1. (i) $W(0,0,0,0)=0$; and
(ii) there exist finite constants $D_{6}>0, D_{7}>0$ such that

$$
\begin{gather*}
\mathrm{D}_{6}\left\{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}+\left(w_{2}-w_{1}\right)^{2}\right\} \leqslant w \leqslant \tag{3.5}\\
\leqslant \mathrm{D}_{7}\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}+\left(w_{2}-w_{1}\right)^{2}\right\}
\end{gather*}
$$

If we define the function $W(t)$ by $W\left(x_{2}(t)-x_{1}(t), y_{2}(t)-y_{1}(t), z_{2}(t)-z_{1}(t)\right.$, $\left.w_{2}(t)-w_{1}(t)\right)$, and using the fact that the solutions $\left(x_{i}, y_{i}, z_{i}, w_{i}+Q(t)\right),(i=1,2)$, satisfy (3.1), then $S(t)$ as defined in (2.5) becomes

$$
\begin{align*}
s(t)=\left\{\left[x_{2}(t)-x_{1}(t)\right]^{2}\right. & +\left[y_{2}(t)-y_{1}(t)\right]^{2}+\left[z_{2}(t)-z_{1}(t)\right]^{2}+ \tag{3.6}\\
& \left.+\left[w_{2}(t)-w_{1}(t)\right]^{2}\right\}
\end{align*}
$$

We can then prove the following result on the derivative of $W(t)$ with respect to t.
LEMMA 2. Let the hypotheses (i) and (ii) of Theorem 1 hold. Then, there exist positive finite constants D_{8} and D_{9} such that

$$
\begin{equation*}
\frac{d W}{d t} \leqslant-2 D_{8} S+D_{9} S^{\frac{3}{2}}|\theta| \tag{3.7}
\end{equation*}
$$

where $\theta=r\left(t, x_{2}, y_{2}, z_{2}, w_{2}+Q\right)-r\left(t, x_{1}, y_{1}, z_{1}, w_{1}+Q\right)$.
PROOF OF LEMMA 2. On using (3.1), a direct computation of $\frac{d W}{d t}$ gives after simplification

$$
\begin{equation*}
\frac{\mathrm{dW}}{\mathrm{dt}}=-\mathrm{w}_{1}+\mathrm{w}_{2} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& w_{1}=\left\{c(1-\varepsilon) H\left(x_{2}, x_{1}\right)\left(x_{2}-x_{1}\right)^{2}+b c \varepsilon\left(y_{2}-y_{1}\right)^{2}+a b \varepsilon(1-\varepsilon) D\left(z_{2}-z_{1}\right)^{2}\right. \\
&\left.+a \varepsilon D\left(w_{2}-w_{1}\right)^{2}\right\}+\left\{G\left(y_{2}, y_{1}\right)-c\right\}\left\{c(1-\varepsilon)\left(x_{2}-x_{1}\right)+\right. \\
&\left.+b\left(y_{2}-y_{1}\right)+a(1-\varepsilon) D\left(z_{2}-z_{1}\right)+D\left(w_{2}-w_{1}\right)\right\}\left(y_{2}-y_{1}\right)+ \\
&+H\left(x_{2}, x_{1}\right)\left\{b\left(y_{2}-y_{1}\right)+a(1-\varepsilon) D\left(z_{2}-z_{1}\right)+D\left(w_{2}-w_{1}\right)\right\}\left(x_{2}-x_{1}\right)
\end{aligned}
$$

and

$$
w_{2}=\theta(t)\left\{c(1-\varepsilon)\left(x_{2}-x_{1}\right)+b\left(y_{2}-y_{1}\right)+a(1-\varepsilon) D\left(z_{2}-z_{1}\right)+D\left(w_{2}-w_{1}\right)\right\}
$$

with

$$
\begin{align*}
& G\left(y_{2}, y_{1}\right)=\frac{g\left(y_{2}\right)-g\left(y_{1}\right)}{y_{2}-y_{1}},\left(y_{2} \neq y_{1}\right) ; \tag{3.9}\\
& H\left(x_{2}, x_{1}\right)=\frac{h\left(x_{2}\right)-h\left(x_{1}\right)}{x_{2}-x_{1}} \quad,\left(x_{2} \neq x_{1}\right) . \tag{3.10}
\end{align*}
$$

Let $\lambda=\left\{G\left(y_{2}, y_{1}\right)-c\right\} \geqslant 0$ for $y_{2} \neq y_{1}$. Define

$$
\sum_{i=1}^{5} \alpha_{i}=1 ; \sum_{i=1}^{5} B_{i}=1 ; \sum_{j=1}^{3} \gamma_{j}=1 \text { and } \sum_{j=1}^{3} \delta_{j}=1
$$

with $\alpha_{i}>0, \beta_{i}>0, \gamma_{j}>0$ and $\delta_{j}>0$. Further, let us denote $H\left(x_{2}, x_{1}\right)$ simply by H. Then, we can re-arrange W_{1} as

$$
\begin{equation*}
w_{1}=w_{11}+w_{12}+w_{13}+w_{14}+w_{21}+w_{23}+w_{24} \tag{3.11}
\end{equation*}
$$

where

$$
\begin{aligned}
& W_{11}=\left\{\alpha_{1} c(1-\varepsilon) H\left(x_{2}-x_{1}\right)^{2}+b\left(\beta_{1} c \varepsilon+\lambda\right)\left(y_{2}-y_{1}\right)^{2}\right. \\
& \left.+\gamma_{1} a b \varepsilon(1-\varepsilon) D\left(z_{2}-z_{1}\right)^{2}+\delta_{1} a \varepsilon D\left(w_{2}-w_{1}\right)^{2}\right\} \\
& W_{12}=\left\{\beta_{2} b c \varepsilon\left(y_{2}-y_{1}\right)^{2}+\lambda c(1-\varepsilon)\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)+\right. \\
& \left.+\alpha_{2} c(1-\varepsilon) H\left(x_{2}-x_{1}\right)^{2}\right\} ; \\
& w_{23}=\left\{\beta_{3} b c \varepsilon\left(y_{2}-y_{1}\right)^{2}+\lambda a(1-\varepsilon) D\left(y_{2}-y_{1}\right)\left(z_{2}-z_{1}\right)+\right. \\
& \left.+\gamma_{2} a b \varepsilon(1-\varepsilon) D\left(z_{2}-z_{1}\right)^{2}\right\} ; \\
& w_{24}=\left\{\beta_{4} b c \varepsilon\left(y_{2}-y_{1}\right)^{2}+\lambda D\left(y_{2}-y_{1}\right)\left(w_{2}-w_{1}\right)+\delta_{2} a \varepsilon D\left(w_{2}-w_{1}\right)^{2}\right\} ; \\
& w_{12}=\left\{\alpha_{3} c(1-\varepsilon) H\left(x_{2}-x_{1}\right)^{2}+b H\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)\right. \\
& \left.+\beta_{5} b c \varepsilon\left(y_{2}-y_{1}\right)^{2}\right\} ; \\
& W_{13}=\left\{\alpha_{4} c(1-\varepsilon) H\left(x_{2}-x_{1}\right)^{2}+a(1-) D H\left(x_{2}-x_{1}\right)\left(z_{2}-z_{1}\right)\right. \\
& \left.+B_{3} a b \varepsilon(1-\varepsilon) D\left(z_{2}-z_{1}\right)^{2}\right\} ;
\end{aligned}
$$

and $\quad \mathrm{w}_{14}=\left\{\alpha_{5} c(1-\varepsilon) H\left(x_{2}-x_{1}\right)^{2}+D H\left(x_{2}-x_{1}\right)\left(w_{2}-w_{1}\right)+\right.$

Each $W_{i j},(i \neq j),(i=1,2 ; j=1,2,3,4)$, is quadratic in its respective variables. Also, using the fact that any quadratic of the form $\mathrm{Au}^{2}+\mathrm{Buv}+\mathrm{Cv}^{2}$ is non-negative if $\left(4 A C-B^{2}\right) \geqslant 0$, we obtain that

$$
\begin{aligned}
& \mathrm{w}_{21} \geqslant 0 \quad \text { if } \quad \lambda^{2} \leqslant \frac{4 \mathrm{~b} \varepsilon \Delta_{0} \alpha_{2} \beta_{2}}{1-\varepsilon^{2}} ; \\
& \mathrm{w}_{23} \geqslant 0 \text { if } \quad \lambda^{2} \leqslant \frac{4 \mathrm{~b}^{2} c \varepsilon^{2} \beta_{3} \gamma_{2}}{\mathrm{a}(1-\varepsilon) \mathrm{D}} ; \\
& \mathrm{w}_{24} \geqslant 0 \text { if } \quad \lambda^{2} \leqslant \frac{4 \mathrm{abc} \varepsilon^{2} \delta_{2} \beta_{4}}{\mathrm{D}} ; \\
& \mathrm{w}_{12} \geqslant 0 \text { if } \quad H \leqslant \frac{4 \mathrm{c}^{2} \varepsilon(1-\varepsilon) \alpha_{3} \beta_{5}}{\mathrm{~b}} ; \\
& \mathrm{w}_{13} \geqslant 0 \text { if } \quad H \leqslant \frac{4 \mathrm{bc} \varepsilon \alpha_{4} \gamma_{3}}{\mathrm{aD}(1-\varepsilon) \alpha_{5} \delta_{3}} ; \\
& \mathrm{w}_{14} \geqslant 0
\end{aligned}
$$

Thus $W_{1} \geqslant W_{11}$, provided that

$$
\begin{equation*}
0 \leqslant \lambda^{2} \leqslant 4 \min \left\{\frac{b \varepsilon \Delta_{o} \alpha_{2} \beta_{2}}{(1-\varepsilon)} ; \frac{b^{2} c \varepsilon \beta_{3} \gamma_{2}}{a(1-\varepsilon) D} ; \frac{a b c \varepsilon^{2} \delta_{2} \beta_{4}}{D}\right\} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
H \quad \text { lies in } I_{0} \equiv\left\lceil\Delta_{0}, \frac{K(a b-c) c}{a^{2}}\right] \tag{3.13}
\end{equation*}
$$

a closed sub-interval of the Routh-Hurwitz interval ($0,(a b-c) c / a^{2}$), with

$$
\begin{equation*}
K=\left\{\frac{4}{\mathrm{ab}-\mathrm{c}} \min ; \frac{\left(\mathrm{ca}^{2} \varepsilon(1-\varepsilon) \alpha_{3} \beta_{5}\right.}{\mathrm{b}} ; \frac{\mathrm{ab} \varepsilon \alpha_{4} \gamma_{3}}{\mathrm{D}} ; \frac{\mathrm{a}^{3} \varepsilon(1-\varepsilon) \alpha_{5} \delta_{3}}{\mathrm{D}}\right\} \tag{3.14}
\end{equation*}
$$

By choosing $2 D_{8}=\min \left\{c(1-\varepsilon) \Delta_{0} ; b c \varepsilon ; a b \in(1-\varepsilon) D ; a \varepsilon D\right\}$, we clearly have

$$
\begin{equation*}
\mathrm{w}_{1} \geqslant \mathrm{w}_{11} \geqslant 2 \mathrm{D}_{8} \mathrm{~S} \tag{3.15}
\end{equation*}
$$

also, if we choose $D_{9}=2 \max \{c(1-\varepsilon) ; b ; a(1-\varepsilon) D ; D\}$, we obtain:

$$
\begin{equation*}
\mathrm{w}_{2} \leqslant \quad \mathrm{D}_{9} \mathrm{~s}^{\frac{3}{2}}|\theta| \tag{3.16}
\end{equation*}
$$

Combining (3.15) and (3.16) in (3.8), we obtain (3.7). This completes the proof of Lemma 2.
4. PROOF OF THEOREM 2.

This follows directly from [3], on using inequality (3.7). Let α be any constant in the range $1 \leqslant \alpha \leqslant 2$. Set $2 \mu=2-\alpha$, so that $0 \leqslant 2 \mu \leqslant 1$. We re-write (3.7) in the form

Considering the two cases (i) $|\theta| \leqslant \mathrm{D}_{8} \mathrm{~S}^{1 / 2} \mathrm{D}_{9}$ and (ii) $|\theta|>\mathrm{D}_{8} \mathrm{~S}^{1 / 2} \mathrm{D}_{9}$ separately, we find that in either case, there exists some constant $D_{11}>0$ such that $W * \leqslant D_{11}|\Theta|^{2(1-\mu)}$. Thus using (2.2), inequality (4.1) becomes

$$
\begin{equation*}
\frac{d W}{d t}+D_{8} s \leqslant D_{12} S^{\mu_{\phi}} 2(1-\mu)_{S}(1-\mu), \tag{4.2}
\end{equation*}
$$

where $D_{12} \geqslant 2 D_{9} D_{11}$. This immediately gives

$$
\begin{equation*}
\frac{d W}{d t}+\left(D_{13}-D_{14} \phi^{\alpha}(t)\right) w \leqslant 0 \tag{4.3}
\end{equation*}
$$

after using Lemma 1 on W, with D_{13} and D_{14} as some positive constants.
On integrating (4.3) from t_{1} to $t_{2},\left(t_{2} \geqslant t_{1}\right)$, we obtain

$$
w\left(t_{2}\right) \leqslant w\left(t_{1}\right) \exp \left\{-D_{13}\left(t_{2}-t_{1}\right)+D_{14} \int_{t_{1}}^{t_{2}} \phi^{\alpha}(\tau) d \tau\right\} .
$$

Again, using Lemma 1 , we obtain (2.4), with $D_{2}=D_{7} / D_{6}, D_{3}=D_{13}$ and $D_{4}=D_{14}$. This completes the proof of Theorem 2.
5. PROOF OF THEOREM 1.

This follows from the estimate (2.4) and the condition (2.3) on $\phi(t)$. Choose $D_{1}=D_{3} / D_{4}$ in (2.3). Then, as $t=\left(t_{2}-t_{1}\right) \rightarrow \infty, S(t) \rightarrow 0$, which proves that as $t \rightarrow \infty$,

$$
\begin{aligned}
& x_{2}(t)-x_{1}(t) \rightarrow 0, \dot{x}_{2}(t)-\dot{x}_{1}(t) \rightarrow 0, \\
& \ddot{x}_{2}(t)-\ddot{x}_{1}(t) \rightarrow 0, \dddot{x}_{2}(t)-\dddot{x}_{1}(t) \rightarrow 0 .
\end{aligned}
$$

This completes the proof of Theorem 1.
6. REMARKS.
(i) If in (3.14) we choose

$$
\begin{aligned}
& \alpha_{1}=1 / 2 ; \quad \alpha_{j}=1 / 8 \quad(j=2,3,4,5) ; \\
& \beta_{1}=1 / 2 ; \quad \beta_{j}=1 / 8 \quad(j=2,3,4,5) ; \\
& \gamma_{1}=1 / 2 ; \quad \gamma_{2}=\gamma_{3}=1 / 4 ; \\
& \delta_{1}=1 / 2 ; \quad \delta_{2}=\delta_{3}=1 / 4,
\end{aligned}
$$

we obtain

$$
K=\left(\frac{1}{16(a b-c)}\right) \min \left\{\frac{c a^{2} \varepsilon(1-\varepsilon)}{b} ; \frac{2 a b \varepsilon}{D} ; \frac{2 a^{3} \varepsilon(1-\varepsilon)}{D}\right\}<1 .
$$

(ii) As remarked in [1], the results remain valid if we replace $\phi(t)$ in (2.3) by a constant $D_{15}>0$.

1. AFUWAPE, A.U., On the Convergence of Solutions of Certain Fourth-order Differential Equations. An. Stri. Univ. "Al. I. Cuza" Iasi. Sect. I.a.Mat.(N.S.), 27 (1981), 133-138.
2. TEJUMOLA, H.O. Convergence of Solutions of Certain Ordinary Third-Order Differential Equations. Ann. di Mat. Pura e Appl. (IV), 94 (1972), 247-256.
3. EZEILO, J.O.C. New Properties of the Equation $\dddot{x}+a \ddot{x}_{1}+b \dot{x}+h(x)=p(t, x, \dot{x}, \ddot{x})$ for Certain Special Values of the Incrementary Ratio $y^{-1}\{h(x+y)-h(x)\}$. Equations Differentielles et Functionelles Non-Lineaires (Ed. P. Janssens, J. Mawhin and N. Rouche), Hermann Pub1. (1973), 447-462.
4. REISSIG, R., SANSONE, G. and CONTI, R. Non-Linear Differential Equations of Higher Orders. Noordhoff International Publ. (1974).
