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ABSTRACT. Consider the system of equations

and

t
x(t) f(t) + / k(t,s)x(s)ds, (I)

t
x(t) f(t) + I k(t,s)g(s,x(s))ds. (2)

Existence of continuous periodic solutions of (I) is shown using the resolvent

function of the kernel k. Some important properties of the resolvent function

including its uniqueness are obtained in the process. In obtaining periodic solutions

of (I) it is necessary that the resolvent of k is integrable in some sense. For a

scalar convolution kernel k some explicit conditions are derived to determine whether

or not the resolvent of k is integrable. Finally, the existence and uniqueness of

continuous periodic solutions of (I) and (2) are obtained using the contraction

mapping principle as the basic tool.

KEYWORDS AND PHRASES. Volterra integral equation, periodic solutlon, resolvent,

integrablllty of resolvent, llmlt equation.
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I. INTRODUCTION.

In thls paper we study the existence and uniqueness of perlodlc solutions of the

Integral equations

t
x(t) f(t) + f k(t,s)x(s)ds, -(R)<t<" (1.1)

and

t
x(t) f(t) + ] k(t,s)g(s,x(s))ds, -<t<’, (1.2)
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where x, g and f are vectors in R
n

k is an n by n matrix function with elements in

R, and R
n

is the vector space of n-dimenslonal column vectors. We llst our basic

assumptions in Section 2. The results and their proofs are presented in Sections 3, 4

and 5.

In Section 3 we present two basic results, Theorems and 2, which are used in

Theorem 3 of Section 4 to obtain the existence of a continuous periodic solution of

(I.I). Theorem deals with the resolvent kernel associated with the Volterra

equation

t
R
+y(t) f(t) + k(t s)y(s)ds, t g =[0, (R)).

0
(1.3)

In Theorem 2 we obtain (I.I) as a limit equation of (1.3). The resolvent equation

corresponding to (1.3) is

t
r(t,s) ffi-k(t,s) + f k(t,u)r(u,s)du, O6s’t,

s
(1.4)

an its solution r(t,s) is called the resolvent kernel. The importance of the

resolvent derives from the fact that the solution y(t) of (1.3) is given by

t
y(t) f(t) f r(t,s)f(s)ds, t)0.

0

The existence of continuous r(t,s) as a solution of (1.4) is a known result (see [I,

Chapter IV, Theorem 3.1]). In Theorem we prove the uniqueness of r(t,s) which is

used to establish an important property, (4.4), of r(t,s). We use (4.4) together with

(1.6) and other properties derived in Lemmas 2 and 3 in obtaining periodic solutions

of (I.I). Notice that all the properties of the resolvent function derived in this

paper including the integrabillty properties obtained in Theorem 4 are significant

results by themselves.

We assume that r(t,s) is Integrable in the sense that

t
sup I Ir(t,s) ds ’ <

0
t)O

(1.6)

results of Section 4 hold (Remark 2). A necessary and sufficient condition for b(t)

Lto be of class (R+) was obtained by Paley and Wiener [4] in the following result:

LTHEOREM 0. Suppose a(t) is in the class (R+). Then the resolvent b(t) is in

Lthe class (R+) if and only if the determinant

det(I f e-Zta(t)dt) # 0
0

(1.7)

for all complex number z satisfying Re z 0.

Some results regarding the property (1.6) are available in [2,3]. In case k(t,s)=a(t-

s) is of convolution type for which the resolvent r(t,s)fb(t-s) is also of convolution

type, it can be verified that if both a(t) and b(t) are of class LI(R+) then all the
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The integrability of b(t) (i.e. b(t) is in the class LI(R+)) is also studied in

[5-9]. Analyzing the transcendental relation (1.7) we derive in Theorem 4 a few

explicit conditions regarding the Integrabfllty of b(t).

In Section 5 we use the familiar contraction mapping principle to show the

existence and uniqueness of periodic solutions of (I.I) and (1.2). We obtain these

results in Theorems 5 and 6.

Some results related but different from the results of the present paper on

periodic solutions are available in [I0-17].

2. UNDERLYING ASSUMPTIONS.

a vector x in R
nFor let x denote a norm of x equivalent to the Euclidean

which

corresponds to the vector norm Ixl.
Throughout this paper we make the following assumptions of f, k, and g:

(AI) f(t) is continuous and T-perlodlc on R for some T > O;

(A2) k(t,s) is continuous in (t,s) for -<sgt<’, k(t,s)=0 for s>t;

(A3) k(t+T,s+T)--k(t,s) for -<st<;

(A4) there exists a constant 8 > 0 such that

t

0
tO

for each >0 there exists a d>O such that whenever lhl(d then

t t+h

0 t

for all tO; (Note that the second integral becomes zero for h<0 since k(t,s)-0 for

s>t).

(A6) g(t,x) is defined on RxRn, for each x in R
n

the function g(t,x) is T-

periodic in t, and g(t,O)--O for all -<t<;

(AT) for each a>O, there exists an n>O such that

It may seem that (A2)-(A4) possibly imply (AS). To see that (AS) is independent

of (A2)-(A4), consider the following example suggested by C.E. Langenhop: Let

-<s<" and 0t<T define

k(t,s) (I+t/T)#(s-t+T)+#(s-T2/(t-T) ).
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Now, extend the definition of k using the relation k(t+/-T,s+/-T)=k(t,s). Note that

k(t,s)’O. It can be shown that (i) k(t,s) is continuous for -<st<- with

t
k(T,s)=2(s), (ll) there exists a constant 6>0 such that k(t,s)ds6 for all

0
t

R+t’0, and (Iii) k(t,s)ds is not uniformly continuous on The definition of
0

k(t,s) along with (1) and (li) show that k(t,s) satisfies (A2)-(A4). However, k(t,s)

t
does not satisfy (AS) since (AS) would imply f k(t,s)ds is unlformly continuous on
+ 0
R

3. TWO BASIC RESULTS.

Although the existence of a continuous solution r(t,s) of (1.4) is a known result

the uniqueness of such r(t,s) does not seem to be explicitly shown anywhere. In

Theorem we establish the uniqueness of r(t,s).

’THEOREM I. If k(t,s) is continuous on Ost<, then there exists a unique

continuous solution r(t,s) of (1.4) on Ost<.
PROOF. We only prove the uniqueness of r(t,s). By way of contradiction, suppose

there are two solutions r(t,s) and w(t,s) of (1.4) with

r(t,s)#w(t,s) for all

Then for any continuous q we have

t
y(t) q(t) f r(t,s)q(s)ds, t,0,

0

and

t
y(t) q(t) f w(t,s)q(s)ds, t)0.

0

as the unique solution of the Volterra integral equation

t
y(t) q(t) + f k(t,s)y(s)ds, t)O.

0

The uniqueness of the solution y(t) is a well known result (see e.g., [18, Theorem

2.1.I]). Thus we have

t

f U(t,s)q(s)ds 0,
0

(3.1)

where U(t,s)=r(t,s)-w(t,s). Since r(t,s)#w(t,s) for all 04s4t< (R), there is a

(tl,S I) with O<Slt and an element Um such that un(tl,Sl)=a0 where

(ulj)-U; li,Jn. Clearly, we may assume a > 0. Substituting t for t in the

th row of (3.1) we obtain



PERIODIC SOLUTIONS OF VOLTERRA INTEGRAL EQUATIONS 785

t

(u1 (tl,s)q
0

(s) +...+ Um(t 1,s)qm(s) +... + Un(t 1,s)qn(s))ds=O.

Since Um(t,s) is continuous in (t,s) and Um(t |,sl)-s>0 there exists an

(3.2)

with e<s such that Um(tl,S)>O for O<Sl-SSl+e. Let us choose a continuous

function q such that qm(sl)=l, qm(s))0, qm(S)--0 for 0sCsl-e s)sl+, and qj(s)=0
for J=l,2,...,n, JCm. Then it follows from the choice of q and from the property of

that the left side of (3.2) is nonzero, which is a contradiction.um
LEMMA I. Suppose k(t,s) satisfies (A2) and (A3). Then (A4) holds if and only if

holds.

PROOF. Trivially, (3.3) implies (A4). To see that (A4) implies (3.3), consider

an arbitrary t in R. Then choose a positive integer nO such that

t+nT>0 for all n)n
0. It follows from (A3) that

r t+nT

for all n)nO. This implies (3.3).

By virtue of Lemma the integrals involved in Theorem 2 and in subsequent

results of this paper are defined and finite.

THEOREM 2. Suppose (AI)-(A5) hold. If y(t) is the continuous bounded solution of

R
+(1.3) on then there exists a sequence of integers nj/ as J+ such that

y(t+njT)/x(t), a continuous solution of (I.I) on R, as j+’, and the convergence is

uniform on compact subsets of R.
+

PROOF. Since y(t) is a continuous and bounded function on R it follows from

(A4) and (AS) that f0t k(t,s)y(s)ds is bounded and uniformly continuous on R+.
Thus, from (1.3) and (AI) we see that the function y(t) is bounded and uniformly

continuous on R+. Hence, for any a>0 the sequence {y(t+nT), nT>a, nEN} of

translated functions is equicontlnuous and uniformly bounded on -t<, where N

denotes the set of positive integers. Therefore, by Ascoli’s theorem there exists a

sequence of integers nj and a continuous function x(t) such that

max ly(t+njT)-x(t) <

This proves that y(t+njT)/x(t) as J+, and the convergence is uniform in t on each

compact subset of R.

Let L be a bound for Ix<.,I
then a few calculations yield

t t
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t

This last expression tends to zero as J+. Therefore, taking the limit in the

sequence of translated equations (obtained from (1.3))

y(t+njT) f(t) + ft k(t s)y(s+njT)ds-nit
as j+-, we get (l.l) as required to show that x(t) satisfies (I.I) on R.

4. PERIODIC SOLUTIONS USING THE RESOLVENT KERNEL.

LEMMA 2. If k(t,s) satisfies (A2) and (A3) then r(t,s) satisfies the following

properties:

and

r(t,s) is continuous for Ogsgt<, r(t,s) 0 for s>t, (4.1)

r(t+T,s+T) r(t,s) for Ost<. (4.2)

PROOF. It follows from Theorem that (A2) implies (4.1). Substituting t+T for t

and s+T for s in (1.4), and then using (A3) we obtain

t
v(t,s) =-k(t,s) + k(t,u)v(u,s)du,

where v(t,s)ffir(t+T,s+T). So, v(t,s) satisfies (1.4) for 0st<’. Now, the property

(4.2) follows from the uniqueness property of Theorem I.

LEbA 3. Suppose k(t,s) satisfies (A2)-(AS). Suppose also r(t,s) satisfies

(1.6). Then for each >0 there exists a 6>0 such that

t t+h
f Ir(t+h,s) r(t,s) lds + f tr(t+h,s) lds < (4.3)
0 t

for all t’0 whenever Ihl<6.
The proof of Lemma 3 involves the use of (1.4) and the application of Fubini’s

theorem. We omit its proof because a parallel result is available in [2, Theorem 2].

In Lemma 2 we proved that r satisfies the relation r(t+T,s+T)-r(t,s) for

0st<’. Let us extend this r using the relation r(t,s)ffir(t+nT,s+nT) for -’<st<0

where n is a positive integer and large enough so that t+nT,s+nT>0. This extended r

is now defined and continuous for -’<st<’. Also, r(t,s) satisfies the relation

r(t+T, s+T) r(t,s) for-(R) < s t < -. (4.4)



PERIODIC SOLUTIONS OF VOLTERRA INTEGRAL EQUATIONS 787

It now follows from Lemma that (1.6) holds if and only if

-(R)<t<(R)

holds. Thus, the integrals involved in Theorem 3 make sense.

THEOREM 3. Suppose (AI)-(AS) hold. Suppose also r(t,s) satisfies (1.6). Then

(I.I) has a continuous periodic solution x(t) on R. (We use the term "Periodic

solution" to refer to T-periodlc solution).

PROOF. It follows from (1.5), (1.6) and (A1) that the solution y(t) of (1.3) is
t

r(t s)f(s)ds is uniformlybounded on R+. Again, (AI) and Lemma 3 imply that 0+
continuous on R So, by Theorem 2 there exists a sequence of integers nj such

that y(t+njT)/x(t), a continuous solution of (I.1) on R, as J+.

Let H be a bound for If(s) when -<s<’. For--<t<, if t+njT>O with J>Itl then

,which tends to zero as j. Taking the limit in the sequence of translated equations

(obtained from (1.5))

y(t+njT) f(t) ft
-niT

r(t,s)f(s)ds

as j/-, we obtain

x(t) f(t) fL r(t,s)f(s)ds. (4.5)

if follows from (A1) and (4.4) that x(t) in (4.5) is T-perlodic.

REMARK I. In the proof of Theorem 3 one may notice that it is only the continuity

instead of uniform continuity of r(t,s)f(s)ds that is needed. This continuity

could be obtained from the condition

0
h/O

for each t O,

(4.6)

which is relatively weaker version of condition (4.3). Note that for condition (4.6)

to hold, assumption (A5) could be replaced by the following property:

h’O
for each t 0.

(4.7)

However, to prove Theorem 2 which is used in Theorem 3 we need (AS) so that

t

f k(t,s)y(s)ds can be uniformly continuous. The uniform continuity of
0
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t

I k(t,s)y(s)ds is needed for the equlcontinulty of {y(t+nT), nT>a, neN} on
0

LREMARK 2. If k(t,s) a(t-s) with a(t) in the class (R+) then a(t) satisfies

(A3) and (AS). Similarly, if the resolvent b(t) of a(t) is of class LI(R+) then b(t)

satisfies (4.3) and (4.4). Therefore, the results of Theorems 2 and 3 include

convolution equations as special cases.

The following are a few condltlons derived from Theorem 0 to determlne whether or

Lnot b(t) is of class (R+).
THEOREM 4. Suppose a(t) is a real valued continuous function on R

+
with a(t) in

the class LI(R+). Let b(t) be the resolvent of a(t).

If /0 la(t)Idt ) I, then b(t) is no___t_ in the class LI(R+).

If f0 [a(t)Idt < I, then b(t) is in the class LI(R+).

(ill) Suppose a(t) does not change its sign on R
+

If -I 0 a(t)dt < I,

then b(t) is in the class LI(R+).
PROOF. Since a(t) is a scalar function, the condition (1.7) becomes l-a*(z) 0

for Re z ) 0, where

,
_Zta(a (z) fOe t)dt

,
let q(z) l-a (z).

PROOF of (i). It is sufficient to prove that there exists at least one root of

q(z) in the closed right half plane. If 10 a(t)dt-I then q(0) l-a (0) -0. So,

z-0 is a root of q(z). If f0 a(t)dt > then q(0) < 0. Considering y-0, x > 0 where,* =a*x+lyfz, we obtain a (z) (x) which tends to zero as x ". Thus, q(x)- l-a (x)

R+as x . Since q(x) is a real valued continuous function on q(0) < 0,

R+and q(x) as x , it follows that there is a real positive root of q(x) on

PROOF of (ll). From the hypothesis we get la*(z) < for Re z )0. So,

l,<z>#-l-.*<z>l > ,-l.*<z>l > o ..> O. erefore, q(z) has no root z,

Re z) 0.

PROOF of (ill). We assume that a(t) O. Otherwise b(t) 50. Since a(t) does

not change its sign, the condition -I < f0 a(t)dt < is the same as the one in

(ll). So, we consider only the case f;a(t)dt- -I.

Let #(t) -a(t). Clearly, #(t) ) 0 for all t ) 0 and f;#(t)dt-l. Now

,
q(z) 1-a (z) I+ (z)

+ 0 e cos yt #(t)dt + i [0 e-Xtsin yt (t)dt.
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Thus, to get q(z)ffiO one must have

e cos yt @(t)dt O. (4 8)+/O

First we show that for y 0, x 0

[J0 e cos yt @(t)dt < (4.9)

which contradicts (4.8). The case y=O, x 0 is considered later.

For y 0 consider the set

/
E {t g R tfn/y, n=...-2,-I,0, I,2,...}

Clearly, E is a countable subset of R
+
and Icos ytl=1 for t E. It is easy to see

that there exists a positive t E, such that @(t 0. Otherwise @(t)-0 for all

t E
C R+" +the complement of E with respect to This would imply @(t) =- 0 on R

a contradiction to v@(t)dtffil" Thus, there exists a tl>0 such that @(t I) > 0 and

Ioo. < ’. .. =,oo.. > 0 ..c, .. -, > 0 .., Ico. I < o=

< 1. Also,

tl+6ftl_6 @(t)dt > 0.

Since T < and > 0 then Y < . Hence,

tl- tl+Icos yt *(t)dt ’ fo *(t)dt + ftl_ ,*(t)dt + ft1+@(t)dt
< f0O(t)dt- I.

This shows that the condition (4.9) holds.

For yffiO, x 0 the function q(z) q(x) I. From (1) we know that

fe-Xt(t)dt- tends to zero as x / (R). This shows that q(x) / as x / . So, q(z)
has no root for y=0, x > 0.

5. PERIODIC SOLUTIONS USING THE CONTRACTION MAPPING PRINCIPLE.

Let X {x(t): R/Rn, x(t) is continuous and bounded on R} For x in X let

llxll- sup {[x(t)l:- < t < (R)}. Then (X, II.II)is a Banach space. For simplicity

we write X instead of <X, ll.ll )" Let ,P’f{x in X: x<t+T)fx<t) for all < t < "}.
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Then PT is also a Banach space.

LEMMA 4. Suppose (AI) (A4) hold. If x(t) is a continuous bounded solution of

(!.I) on R then x(t+T) is also a continuous bounded solution of (I.I) on R.

Similarly, if (AI) (A4), and (A6) hold then x(t+T) is a continuous bounded solution

of (1.2) on R whenever x(t) is a continuous bounded solution of (1.2) on R.

The proof of Lemma 4 is easy and is left for the readers to verify.

LEMMA 5. If k(t,s) satisfies (A2) (A5) then for each E > 0 there emists a

> 0 such that

The arguments of the proof of Lemma carry over to the proof of Lemma 5.

THEOREM 5. If (AI) (AS) hold an if B of (A4) is less than then there exists

a unique continuous periodic solution x(t) of (I.I) on R. Moreover, x(t) is the only

continuous bounded solution on R.

PROOF. Since < I, it follows from Lemma that

-<t<

For any in X define a map A on X by

Ai(t) f(t) + st_ k(t,s)i(s)ds, (5.2)

where X is the Banach space introduced at the beginning of this section. Since

(s) is a continuous and bounded function on R, it follows from Lemma 5 that

t_ k(t,s)(s)ds is continuous (in fact uniformly continuous) and bounded on R. Thus,

the function A(t) in (5.2) is continuous and bounded on R. This shcs that A is

in X. So, A maps from the Banach space X into itself.

mapping A is a strict contraction. This proves that there exists a unique continuous

bounded solution x(t) of (I.I) on R.

Using the argument of Burton [15] we see that x is T-perlodlc. Indeed, from

Lemma 4 we know that x(t+T) is also a continuous bounded solution of (I.I) on R.

Since x(t) is the only continuous bounded solution of (I.I) on R, it follows that

x(t)=x(t+T) for all < t < (R). This completes the proof of Theorem 5.

REMARK. From the proof of Theorem 5 it may appear that the existence and

uniqueness of a continuous periodic solution x(t) of (I.I) on R could be obtained by

defining the map A from PT into itself instead of X into itself where PT is the

Banach space introduced at the beginning of this section. In that case the use of

Lemma 4 could be avoided. However, this would not prove that the solution x(t) is the

only continuous bounded solution on R.
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THEOREM 6. Suppose (AI) (A7) hold. Consider 8 of (A4). For any

e > 0 with 8 < choose of (AT). Then for each f satisfying If(t) (I-8)

as well as assumption (AI) there exists a unique continuous periodic solution x(t) of

(1.2) with Ix(t)l on R. Moreover, the function x(t) is the only continuous

solution of (1.2) with Ix(t) on R.

PROOF. Fix s > 0 with e8 < I. Then from (A7) it follows that there exists an

Choose f satisfying (AI) and the condition If(t) (l-eM) for all < t < ".

Consider the set.

#(t) is continuous, #(t) n for all-" < t < }.

For # in S, define a map A on S by

A(t) f(t) + L k(t,s)g(s,#(s))ds. (5.3)

It follows from (AT) and Lemma 5 that fSk(t,s)g(s,(s))ds is continuous on R.

Therefore, the function A(t) in (5.3) is continuous on R. Again,

lAw(t) g (1-aB)n+aBn-n. So, A maps from S into itself. Finally, for , in S,

IA-Agll 811-911" Since = < 1, mapping A is a strict contraction. This proves

that there exists a unique continuous solution x(t) of (1.2) with Ix(t)t n on R.

It follows from Lemma 4 that the function x(t+T) is also a continuous solution of

(1.2) with Ix(t+T)t n on R. This shows that x(t)-x(t+T) for all t in R as required.

REMARK. Theorems 5 and 6 hold even if we replace assumption (AS) by (4.7).

Condition (4.7) will provide the required continuity of A(t) in (5.2) and (5.3).
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