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ABSTRACT. This paper suggests a method of formulating any nonlinear integer pro-

gramming problem, with any number of constraints, as an equivalent single constraint

problem, thus reducing the dimensionality of the associated dynamic programming pro-

blem.
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i. INTRODUCTION.

There are numerous application areas in which it is possible to model the sit-

uation under study by formulating a discrete-variable nonlinear optimization model.

In general, these situations can be represented by a nonlinear objective function with

nonlinear constraints. Examples of such situations include facilities location, invest-

ment analysis and transportation problems [i]. The problem can be stated as follows:

Maximize f(xl,x2,. ,Xn (i.I)

Subject to gi(xl,x2 xn) b
i

for i 1,2,...,m (1.2)

x. > 0 for i 1,2 n (1.3)
1

x. is integer for i 1,2,...,n (1.4)

There are four broad classes of solution methods available for problems (i.i)-

(1.4): dynamic programming-based methods, branch and bound methods, linear approxi-

mation methods and hybrid methods.

Dynamic Programming-based methods require that either the objective function

(i.i) or the constraint set (1.2) be separable in the decision variables. Direct

dynamic programming methods require that each of the constraints in constraint set

(1.2) be separable while the hypersurface algorithm of Cooper and Cooper [1-3] require

that the objective function (i.i) be separable.
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Wei Shih [4] has developed a branch-and-bound method for the separable programm-

ing problem with the additional restriction that the component functions of the

objective function satisfy the law of diminishing returns. This solution procedure

was proven to yield the optimal solution; the proof was given by Mjelde [5]. Shih’s

procedure was reported to be faster than both dynamic programming and exhaustive search

methods.

Attempts to linearize the nonlinear integer programming problem involve a radical

increase in the number of variables and constraints. Methods to achieve more economical

linear representations of 0-i polynomials have been undertaken by Glover and Woolsey [6].

In spite of the developments, this method seems to be not very encouraging except for

problems containing certain special structures.

Aust [7] suggested a dynamic programming-branch and bound hybrid approach for non-

linear integer programming problems with separable objective function and separable

constraints. The method involves partitioning the m constraints into p disjoint set

of constraints.

2. DYNAMIC PROGRAMMING METHODS.

The direct dynamic programming-based methods for problems (1.1)-(1.4), for the

single-constraint case give rise to one-dimensional dynamic programming problems (pro-

blems requiring one state variable per stage). Problems with multiple constraints give

rise to multi-dimensional dynamic-programming problems. The storage requirement for

tables increases very rapidly with increase in the number of constraints. This is

referred to as the curse of dimensionality.

A number of methods have been proposed to reduce the problem of dimensionality

including lagrange multiplier method, successive approximation method and polynomial

approximation method. A detailed discussion of these methods can be found in Cooper

[8].

Cooper and Cooper [I] developed the hypersurface algorithm to reduce the dimen-

sionality problem. The basic notion behind the algorithm is to search objective function

hypersurfaces to see if it contains any feasible points. The lattice points for each

hypersurface are found by solving a one-dimensional dynamic programming problem. The

method requires a separable objective function but does not impose any restriction on

the form of the constraints.

This paper suggests a method to reduce the storage requirement, which is a

serious problem in dynamic programming-based methods, especially for problems with

a large number of constraints.

3. REDUCTION OF DIMENSlONALITY BY CONSTRAINT AGGREGATION.

A nonlinear integer programming problem with several constraints can be reduced

to a problem with a single constraint if the original constraint set can be reduced to

an equivalent single constraint. The following theorem provides a method of aggregating

both linear and nonlinear constraints with mild restrictions on the type of nonlinear

constraints. (See Babu and Ram [9] for a similar result in linear integer programming).

THEOREM" The system of equations (3.1) is equivalent to the equation (3.2).

n r..
Z a.. x. =b.
j=l 13 J i

for i 1,2,...,m (3.1)
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m n r.. m
xJY- (n pi r. a..x. - (n pi __(bi)

i=l j=l ’J J i--I
(3.2)

where aij bi, rij are integer constants x. are integer variables and Pi are distinct
J

prime numbers other than unity.

PROOF: Consider a solution (Xl,X2... x to the system (3 i). Multiplying eachn
equation in (3.1) by constants fn Pi and adding we get equation (3.2).

We now prove that (3.2) implies (3.1). Assume (3.2) holds. Let B
i

be any real

numbers satisfying

n ro
E a..x. B. (3.3)

j=l 1J J

Since aij xj, rij are integers, B
i

are integers. Rewriting (3.2), we have

m B
i

m b.

Pi Pii=l i=l
(3.4)

Suppose B.i < b.z for i II where II I {1,2, n} and Bi > bi for i 12 where

12 I. II, 12 are clearly disjoint. After cancelling like terms on both sides of (3.4)

i 12 iII
Since (B

i hi) i 12 and (b
i Bi), i I

l
are integers and Pi are prime numbers

other than unity, equation (3.5) cannot be satisfied. This implies that B
i

b
i

for all

i c I. Hence any solution (Xl,X2 xn) to (3.2) will also be a solution to (3.1).

Thus, the system of equations (3.1) and the equation (3.2) are equivalent.

The above theorem gives a method of reducing a system of nonlinear constraints

satisfying the following conditions, to a system consisting of a single constraint.

(i) Each of the constraints must be separable in the variables.

(ii) The exponents of the variables must be integers.

(iii) The constraint coefficients and the right hand side constants

in the constraints must be integers.

4. COMPUTATIONAL CONSIDERATIONS.

The use of the above theorem for problem (1.1) (1.4) satisfying the conditions

stated in Section 3, will result in a one-dimensional dynamic programming problem in

place of a multi-dimensional problem. When the number constraints in the original

problem is large the storage requirement for a computer implementation of the method

is dramatically reduced. It must be mentioned here that in a computer implementation,

the one-dimensional approach will involve additional table search as the state variables

take on non-integer values and hence cannot be used directly as array indices. The

irrational nature of the constraint multipliers fn Pi’ causes errors in evaluation of

the state variable value. This problem can be circumvented by specifying a carefully

chosen tolerance value.
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