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ABSTRACT. The author proves that the abstract differential inequality

[[u’ (t) A(t)u(t),,2[[ 7 (t) + ()d in which the linear operator A(t) M(t) +
0

N(t), M symmetric and N antisymmetric, is in general unbounded, w(t) t-2(t)[[u(t)[[ 2

+ [[M(t)u(t)[[ [[u(t)[[ and 7 is a positive constant has a nontrivial solution near t-0
i

which vanishes at t-0 if and only if ft-l(t)dt . The author also shows that the
0 t

second order differential inequality [[u"(t) A(t)u(t)[[ 2 7[(t) + f()d] in which
0

(t) t-40(t)[[u(t)[[ 2 + t’2l(t)[[u’(t)[[ 2
has a nontrivial solution near t-0 such

i I
that u(0)-u’(0)-O if and only if either ft-l0(t)dt or ft-ll(t)dt . Some

0 0
mild restrictions are placed on the operators M and N. These results extend earlier

uniqueness theorems of Hile and Protter.

KEY WORDS AD PHRASES. Uniqueness of solution, singular differential inequality,

singular equation.

1980 AMS SUBJECT CLASSIFICATION. 34G20, 34G10.

i. INTRODUCTION.

Let H be a complex Hilbert space with the usual inner product and norm notation

and let A be an linear, in general unbounded, operator defined on a non-trivial do-

main D in H. Assuming the operator A M + N where M is symmetric and N is antisym-

metric, we consider the differential inequalities

llu’(t) A(t)u(t)[[ 2
7 (t) + ()d (i.I)

0
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where (t)- llu<t)l12 + llM(t)u(t)ll llu<t)ll and
t

flu"(t) A(t)u(t)ll 2 -< 7 (t) + I(N)dN
0

@0 (t) it)
where (t) 4 llu(t) ll2 + flu’ (t)l12 and is a positive constant. We show,

t t
under rather general conditions on M and N, that a necessary and sufficient condition

for the existence of an interval (0,T] on which (i.i) will have a nontrivial solution

vanishing at t 0 is

b(t)dt .
t

(1.3)

Furthermore, we show that a necessary and sufficient condition for the existence of

an interval (0,T] on which (1.2) will have a nontrivial solution vanishing at t 0

is either
i

0 (t)
dt (1.4)

0
or

I

l (t)

t
dt . (1.5)

0

Our results extend those of Hile and Protter [i] who prove that the only solu-

tion of (I.i) and likewise for (1.2) with homogenous initial conditions is the triv-

ial one provided the functions t’2(t), t-40(t and t’2l(t) are bounded. Thus our

proofs of necessity (See Theorems 2 and 4.) contain the uniqueness theorems of [i]

(See Theorems i and 3 of [i].) as a special case. Furthermore our results allow for

less stringent requirements on the operators M and N in that certain kinds of

singularities at t-O are allowed. Also we show that our results are best in that

(i.I) (or (1.2)) will have a nontrivial solution (with zero initial data) on some

interval (0,T] for T small if (1.3) (or (1.4) or (1.5)) holds.

Other works considering singular equations abound. (See e.g. [2]-[11] and their

references.) Of particular relevance to our results here are [2], [3] and [4]. Lees

and Protter [2] show, for A M a uniformly elliptic second order partial differ-

ential operator (in x), that a differential inequality similar to (I.I) has only the

trivial solution vanishing at t 0 when is unity provided the L
2
norm (in x) of

the spatial gradient of u has an infinite order zero initially. Our work confirms

the necessity of some such additional information on u in order to obtain their

uniqueness. Donaldson and Goldstein [3] and Ames [4] consider specific equations

which are special cases of (i.i) and (1.2) and thus obtain sharper results. In par-

ticular, Donaldson and Goldstein [3] prove that the only solution of u’ Au P(t)u

vanishing initially is the trivial one provided P(t)-(I/t + b)l, for some real b, is
2

dissipative for all positive t and the operator A -S where S is self-adjoint and

indpendent of t. They also show that for P(t) (l+)/t + b, for any real b, non-

trivial solutions exist. These results are, of course, consistent with ours. Indeed
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our results show that if 4 is any positive constant, then (I.i) has a nontrivial

solution near zero which vanishes at zero. (See Theorem I.) They also consider the

equation

v"(t) + =(t)v’(t) Av(t) (1.6)

which is the well known abstract Euler-Polsson-Darboux (EPD) equation if (t) k/t,

k constant, and prove uniqueness for the initial value problem provided (t) z -i/t.

These results of Donald and Goldstein [3] have been extended by Goldstein [5] as well

as Arrate and Garcia [6]. Ames [4] also considers (1.6) with =(t) 4(t)/t (where 4
has properties somewhat similar to ours) but requires only that the operator A be

symmetric (and independent of t). Furthermore it is known that the solution to the

EPD equation (A the Laplacian) is not unique if k < 0 (See e.g., [4].). These

results are again consistent with ours. Indeed, for (t) k/t corresponds to taking

41 I, 40 0 in (1.2) and hence (1.4) holds implying a nontrlvial solution exists

near zero (See Theorem 3.).

We note that the form of the function in [4] along with the work of Hile and

Protter [i] and Garofalo [7] have been the major motivating factors in this study and

especially choosing the form of in (i.I) and of in (1.2). Finally we note that
ththe extension of the uniqueness theorems of [i] to the n order time derivative case

with A independent of t is contained in [12].

2. THE FIRST ORDER CASE.

C
2

Throughtout this section we assume 4 ((0,=)) satisfying

4>o, 4’ o, 4" o. (2.1)

Consequently the function 4(t)/t is nonincreasing and hence

t4’(t) 4(t). (2.2)

We now give assumptions on the linear operator A which, except for (iii) and

(iv), match those of [i] while (iil) and (iv) are more general than the similar cond-

itions given in [I]. It should be noted that not all of these will be needed in the

proof of sufficiency.

For to > 0, let C ([0,t0]’D) be the set of u C([0,t0]’D) CI((0,t0]’H) such

that llu’(t) is bounded on <0,t0).
Condition (I). We assume there exists T > 0 so that the linear operator

A(t), with nontrivial domain D (i.e., D{0}), satisfies the following:

(i) A(t) M(t) + N(t) M is symmetric and N is antisymmetric;

(il) For each u C ([0,T];D), the functions M(t)u(t) and N(t)u(t) are bounded

(iii)

(iv)

and continuous on

There exists a pos

Re(M(t)w,N(t)w) Z

For each u C ([0

is continuously di

(O,T]"

itive constant 71 such that for all wed and te(O,T]

-v (t)ll I111 + 112
,T]’D) satisfying (I.i), the function (M(t)u(t),u(t))

fferentiable on (0,T] and there

exists a positive constant 72 such that for all te(0,T]

d/dt(M(t)u(t),u(t)) 2Re(M(t)u(t),u’(t))

[ 4(t)t2 ]-2 I1()()11 I1<)11 + I1()112
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Sufficiency. Although the proof of necessity will require that the operator A

satsify condition (I), sufficiency will not require properties (ili) and (iv).

Furthermore, we show that the nontrivial function satisfying (I.I) actually satisfies

a much sharper inequality (See (2.5) below.) than (I.I).

THEOREM i. (Sufficiency) Suppose (1.3) holds and the operator A satisfies

condition (I) except possibly for parts (ill) and (iv). Then there exists a T > 0

such that inequality (I.I) has a nontrivial solution on (0,T] contained in

C ([0,T];D) which vanishes at t-0.

PROOF. Let v be any nonzero element of D. Since (1.3) holds and the function

#(t)/t is nondecreasing, we have lim #(t)/t -. Combining this result with part
t&0

(ii) of condition (I) yields

and thus we may choose T (0,T] so that 7#(t)/t2 > 2l+llA(t)vll2llvl1-2 for all t

(0,T] where 7 comes from (I.i). Define K- sup {llA(t)vll: 0<t_<T} which is finite

because of condition (I). en 7(t)/t
2 2l+A(t)v2]v -2

for all t (0,T] and

we define T 1/2

f(t) (v12).- (.> llvll d, 0 < t S T.

t
t u(t) e" f (t)v. We need to show

llm u(t) 0 (2.3)
t$0

and that u satisfies (i.i) on (O,T]. To deteine the initial value of u, note that

since is nondecreasing, llm (t) exists. t lim (t) L, 0 L < . If L- O,
t0 tO

T
then #I12" Z # near zero and thus (1.3) implies It’l[#(t)]ll2dt" and hence f(t)

0
as t$0 which in turn yields (2.3). On the other hand, if L e O, it is clear that

(t) as t$0 and thus (2.3) holds.

To show that u satisfies (i.i) on (O,T], note that straightfoard calculations

give

2

L J

and thus (i.I) holds.

Necessity. Suppose

This completes the proof.

1

(t)dt < .
t

0

(2.6)

Then the monotoniclty of @ gives lim @(t) 0. Also, without loss of generality, we
t$O

may assume lim @(t)/t- . Indeed lim @(t)/t exists (possibly infinite) since @(t)/t
t&O t0

is nonlncreasing; and furthermore, if lim @(t)/t < , inequality (I.I) is still valid
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on (0,T] if @(t) is replaced with CtI/2 for a sufficiently large constant C (depend-

ing only on T) and hence lim @(t)/t- . Additionally, as a consequence of (2.6) and
t$0

the monotoncity of @(t)/t, we have

k
T

t
k }t I’k-l@()d < [t’l@(t)] -kd tk-l#(t)(-T

t t

-k+l + t-k+l)/(k.l)

_< #(t)/(k-l) for any 0 < t _< T, k > i,

and hence

kT
t JT-k’l()d (t)/(k-l) k > i, 0 < t T. (2.7)

t

Before proving necessity (Theorem 2), we need some preliminary lemmas.

t
LEMMA i. Suppose @ satisfies (2.6). Let p(t) #(t)/t2, A(t) I@(7)/7 dT, and

0
suppose h and r are nonnegative functions continuous on (0,T] for some T > 0. Fur-

thermore, assume r(t) and h(t)/t are bounded near zero. Then, for all > 0 and all

T [0,T], we have
T T -I T
2fp()fh(7)r(7)d7 S fp(7)h2(7)d7 + A(T)f(r(7))2d. (2.8)
0 0 0 0

PROOF. Since the result is trivial for T-0, we consider only the case T > 0.

Thus suppose 0 < t < T and use CauchyoSchwarz along with elementary estimates
t

to get (9(t) [p()]-l[r(7)]2dT)
0

t t 7
2p(7)h(s)r(s)sd7 2p(7)[p(s)]I/2h(s)[p(s)]-I/2r(s)dsd7
0 0 0 0

_< 2p() ph2ds [9(7)]i/2d -< 2 ph ds
0

t _i[0 i/2d7]
2

-< ph2ds + p(7)[9(7)]
0

t

P(7) [9(7) I/2d/
0

(2.9)

The last integral in (2.9) admits the estimate

1/2 1/2
7

1/2 1/2 1/2i/2d . [P(7) [p(.) [9() d7p(7) [9()1 <

0

T
where R(t) -17 "I

p()d for t < T. Since
t

0 s -R(7)9( 7-i(7)d7 t [P(7)]
0

and application of L’Hospital’s rule gives

(2.10)
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llm t_2j[p()].ir2()dt. llm
t*0 0 t*0

t
2

0

t
2

(1/2) lim r2(t)t/@(t) 0
t*0

where the last equality holds because r is bounded near zero and @(t)/t , we get

llm R(W)() 0. Using this result, we integrate by parts in the last integral in

(2.10) and obtain

_< (t) JR(t)(t) IR(.)’(.)d..
0

(2.11)

Since A(t) and (t) are nonnegative while R(t) is nonpositive, we may discard the

first expression on the right side of (2.11). Also (2.7) with k 2 gives exactly

-R()[p()] -I s 1 so that -R()’() S r2(). Substitution of this into (2.11) and

the resulting inequality into (2.9) yields (2.8). This completes the proof.

LEMMA 2. Suppose z C ([0,T];D) such that z(0) 0. Then

t t
lp(.)llz(.)ll2d. 4(t)III=’
0 0

where the functions p and A are given in Lemma i.

PROOF. Since z(0) 0 and the operator N is antisymmetrlc, we get

IIz(.)ll 2 2 Ref(z(s),z’(s)-N(s)z(s))ds s 2/llz(s)ll IIz’(s)-N(s)z()lld.
0 0

Now multiply (2.13) by p(), integrate over [0,t] and apply inequality (2.8)

to the resulting right side to get

t t
fp(.)llz(.)ll2d. 2Ip<.)fllz<s)llllz’ (s)-N(s)z(s)lldsd
0 0 0

(2.12)

(2.13)

t t
f(.)llz(.)ll2d. + ()fllz’ (s)-N(s)z(s)ll2d.
0 0

Taking 1/2 in this expression and simplifying yields (2.12). This completes the

proof.

LEMMA 3. Suppose 0 < T < mln {I,T} and to > 0 is such that tO + T < I. Also

suppose the operator A satisfies condition (I) and Lu u’ Au. Assume that u

C ([0,T];D) and u(0) u(T) 0. Then, for all sufficiently large /9 > 0, the size

depending only on the constants 71 and 72 from condition (I), the following holds

2
T -/9 .1,pe2r + C..,r/ge2r -/9 T -,8

/9 ff’/9"2e2f Ilull2dt + CO[X(T)] -/911ull2dt IIull2dt < C_fe2f IILull2dt
0 0 J’O :"0

(2.14)

where r t+t
0

p(t) t’2#(t) and C0, CI and C
2

are absolute constants.

PROOF. Following [I, p. 61], we set (t) -(t+t0)-/9 and define v- e-u. Then

Lu e[v’+’v-Mv-Nv], and defining the function (See [i, p. 62].) by (t) k0/9,
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we have Thus, integrating with respect to t

from 0 to T, we get

le-2llLull 2 _> 2 ReI(v’-Mv-Nv,’v-(l-)Mv + Illv’-Mv-Nvll 2

2 Re ’ (v’ ,v) + 2=(z-=)llvll 2 2e’ (Mv,v) 2 Re I(v’ ,Mv)

+ 2 Re I(Nv,Mv) + Illv’-Nvll 2

I
1
+ + 16.

Using estimates for II through 13 identical to those in [i, proof of Lemma I] and

estimates virtually identical to those of 14 and 15 in the same lemma (the only

difference is the i- in [I] is replaced with 1 here) and using (2.12) above to

estimate 16 gives (2.14) and the proof is complete.

We may now prove necessity. It should be noted that Theorem 2 contains the

results of [I; Theorem I] as a special case.

THEOREM 2. (Necessity) Suppose the operator A satisfies condition (I) and there

exists T (O,T] such that u C ([0,T];D) is a solution of (i.i) on (0,T] with u(0)

0. If the function # satisfies (2.6), then u 0 on [0,T).

PROOF. Following [i], we show that u 0 on [O,T’] for sufficiently small T’

Once this has been done, we may then apply the results of [i, Theorem I] on the

interval [T’,T] where #(t)/t
2

is bounded to get u 0 on [O,T]. We choose T’ less
-ithan one in such a way that A(T’) is large depending only on known constants (See

inequality (2.15) below.) where the function A is defined in Lemma 1 and by hypothe-

sis A(t) $ 0 as t 0.

Let > 0 be given and define the C function [ such that [(t) i for 0 s t s

T’-, 0 for t T’ and such that 0 < [ < 1 for T’- < t < T’. The proof now

proceeds as with [I]. (See inequality (2.6) of [i] and note that their TO is my T’.)

Applying Lemma 3 to [u we get

,2’’-,-2e2, "’,, ’-E 2,’’,.u,, i’-’e2"’’, __u__2dt + C0[A(T,)]-I
0 0

#e 2dt + CI llMull2dt

’’2 -/9 i’ e2r-/9_< 0
2

e IILull2dt + C
2 IIL(u)ll2dt.

Using nearly identical arguments as in [I] we get, for arbitrary k
2 > 0,

T’-e2r-/9 T’ "2,

T’’2 "#[ ]r i
r -- ic2 2+ I e 2c(l+p) + (k2) Ilu<=)ll dt.

0

Hence, by choosing k
2 sufficiently small (depending only on CI and C2), /9 sufficient-

ly large (depending only on to, 7 and k
2 (and hence CI and C2) and T’ sufficiently

small (so that A(T’)
"I > 2C27(P(t)-l+l)/C0 for 0<t<T), and doing more estimates as in

[I], we get

/9
2 .’- T’

Ilull 2tit -< 2c
2 I IIL(u)ll 2dr- (2.15)

0 T’ -



260 A.V. LAIR

Letting , we get u 0 on [0,T’-e] and hence on [0,T’]. This completes the

proof.

3. THE SECOND ORDER CASE.

C
2Throughout this section we assume i ((0,)), i-0,1, and

#i > 0, 0, # 0 on (0,), i 0,I. (3.1)

Consequently the functions i(t)/t are nonlncreasing and hence

t(t) #i(t) on (0,), i 0,I. (3.2)

We now give assumptions on the operator A which, except for (iii), match those

of [I] while (iii) is more general than the similar conditions in [i] in that here

the coefficients need not be bounded.

For to > 0, let C,([0,t0]’D be the set of u C([0,t0]’D)CI([0,t0]’H)
C2((0,t0]’H) such that llu"(t)ll is bounded on (0,t0].

Condition (II). We assume there exists T > 0 such that the linear operator

A(t), with nontrivial domain D (i.e., D{0)), satisfies the following:

(i) A(t) M(t) + N(t) M is symmetric and N is antisymmetric;

(ii) For each u C,([0,T];D), the functions M(t)u(t) and N(t)u(t) are bounded

and continuous on (0,T];

(iii) For nonnegative constant V3, we let

F(t) v ll=(t)ll 2 + II=’ (t)ll 2
t

For funtions u C,([0,T];D), we assume the functions Re(N(t)u(t),u’(t))

and (M(t)u(t),u(t)) are continuously differentiable on (0,T] and satisfy

the following on (0,T]:

(d/dt)Re(N(t)u(t),u’(t)) Re(N(t)u(t),u"(t)) e -F(t)

(d/dt)(M(t)u(t),u(t)) 2Re(M(t)u(t),u’(t)) >_ -F(t)

Re(M(t)u(t),N(t)u(t)) >_ -F(t).

Sufficiency. Not all of Condition (II) will be needed to prove sufficiency, and as

in the the first order case, we show that our solution actually satisfies a much

sharper estimate than (1.2). (See inequalities (3.4) and (3.10).) However, before

proving sufficiency, we need a preliminary result.

LEMMA 4. Let (t) min (0(t),C} where C is any positive number and suppose

(1.4) holds. The function 4(t)/t is nonincreasing on (0,) and

i
(t)/t dt . (3.3)
0

PROOF. Clearly 4(t)/t is nonlncreasing since @0 (See inequality (3.2).) has

that same property. To prove (3.3), we shall assume, without loss of generality,

that there exists a decreasing sequence of numbers (a in the open interval (0,I)
n

converging to zero such that 4(an) C @0(an), n 1,2 If this were not the

case, it must be that 4 @0 < C near zero or 4 C < @0 near 0 and in either case

the result would hold trivially. Choose a subsequence (anj} of {a
n

such that anl-
aI, and 2anj +IS an. for all j. Since 4(t)/t is nonlncreasing and 4(an)/an C/an, we
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get a a
1 ;n414(t)/t dt- (t)/t dt- 4(t)/t dt
0 n-I an+I j-I a

nj+l

a

nj anj [ anj +i/anj] C/24( )/anjdt C I

j-I a j-i j-I
nj+l

This completes the proof.

THEOREM 3. (Sufficiency) Suppose that either (1.4) or (1.5) holds and the

operator A satisfies condition (II) except possibly for part (ill). Then there

exists T > 0 such that inequality (1.2) has a nontrivial solution on (O,T] contained

in C,([0,T]’D) which vanishes at t 0.

PROOF. Suppose (1.5) holds and let v be any nonzero element of D. Using the

function I in place the function @ in the proof of Theorem i, choose the constants K

and T and the function f as in the proof of Theorem i. (In addition, we must have T S

i.) Using analysis similar to that of the first order case, it is easy to show that

onthe function u(t) e-(S)ds v satisfies flu (t) A(t)u(t)ll 2
S flu (t)

2

(0,T] with u(O) u’(O) O. Hence u satisfies (1.2) and vanishes along with its

first derivative at t 0.

Now suppose (1.4) is satisfied. We shall find T > 0 and function u(t) which is

a nontrivial solution of

llu.(t A(t)u(t)ll2 _< 7(t) 2
4 flu(t) on (0,T] (3.4)

t

u(0) u’(0) 0. (3.5)

where 4(t) min {0(t),8/7}. Thus u will also be a nontrivial solution of (1.2)

since 4 _< @0" Let v be any nonzero element of D. Since (1.4) holds and hence (3.3)

holds (for C-8/), we may, in a manner similar to that in the proof of Theorem I,

< o < o == <=)/=2 >_ </v>[/ll<=)vll2]llvll-U for all te(0,T0] where 7choose 0

comes from (1.2).

condition (II).

Define K- sup {llA(t)vll" 0<t_<TO} which is finite because of

Then (/8)t’2(t) K211vl1-2 is nonnegative on (0,T0] and we define

i0 -2b _K2 "2]<=> [<-x8), <,) llvll i/2d"
t

Before defining T and u, we make some observations concerning the function

I
result of (3.3) and the boundedness of 4, we have It’l[4(t)]i/2dt .

0

Thus lim f(t) and lim (t)/t . Using L’Hospltal’s Rule, it is easy
t0 t0

As a

to show lim ef(t)je_f(S)dst. 0.
t40 0

Hence we may choose T(0,T0] so that
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e-f(t) }e-f(S)ds for all t[0,T]. (3.6)
0

Furthermore, if we define the function S by S(t) te "(t)- 2}e-f(S)ds, then S’(t)
0

{[V@(t)/8 K211vll-2t2] I/2 l}e "f(t)-- so that S’(t) 0 on (0,T0] since 8/V. Thus

since lim S(t) 0, we have S(t) 0 on (0,T0] and hence on (0,T]. That is,
t$0

t

2e-f(S)ds te
-f(t) for all t[0,T]. (3.7)

0

-(s)we now let u(t) e ds v for t [0,T] and show that u, which is obviously

nontrivial, satisfies (3.4), and hence also satisfies (1.2) and (3.5). Clearly u(0)

0 and u’(0) 0 since lim (t) . To show that (3.4) holds, notice that on (0,T]
t$0

2

Ilu" *ull 2 2 Ilu" 2 + 2 II*ull 2 2 (e’) 2-2 Ilvll 2 + 2 d= II*vll (3.8)

Using IIA=II K d substituting for ’ in (3.8), we get

2

2
(3.9)

_< (v/4) (t) t" 2e- 2’ (t) Ilvll 2
where the last inequality is a result of (3.6). We now apply (3.7) to (3.9) to get

.,u,, Au,,2 _< v(t)t_4[0 ]2e-2CS)ds i1112
(3.10)

v@(t)t’411u(t)ll 2 _< v0(t)t-411u(t)ll 2.
Hence u is a nontrivial solution of (3.4) (and therefore (1.2)) on (0,T]. This

completes the proof.

Neceisi ty. Suppose I I

I0(t) Il(t)

t
dt < and

t
dt < .

0 0

(3.11)

We define the function (suppressing its dependence on e since e will be chosen to

be 1/2 later (in the proof of Lemma i0)) by

(t) 0(te)+l (te)

where 0<<i. Notice that the function inherits the relevant properties of 0 and

I along with one additional property. In particular, satisfies the following"

>0, b’__.O, #"_<0 on (0,,), (3.12)
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and
1
/@(t)/t dt < (as a result of (3.11)). (3.13)
0

In addition, the monotonicity of #i yields #i(t) #i(t) for Otl, i 0,i, so

that, for any interval (0,To], TO S I, on which (1.2) is satisfied, we get

flu"(t) A(t)u(t)ll 2 s 7 (t) + I#(N)dN 0 < t S TO (3.14)
0

where #(t)- <)[’llu(t)ll 2 + ’211’<=)112] Also, part (iii) of condition (II)may

be restated with 0 and I replaced with . Lastly, and very importantly, as a re-

sult of (3.2), we get

t#’(t) S (t) (i.e., #(t)/t is nondecreasing.) on (0,-). (3.15)

Hence, using analysis similar to that for getting inequality (2.7), we get

kT_
t JN-k’I@(N)dN S (t)/(k-) k>u0 and 0 < t S T.

t

Before proving necessity, we develop several lemmas.

LEMMA 5. If u C.([0,T]’D) for some T > 0 and u(0) u’(0) 0, then

(3.16)

t
-2le -2(s)s p(s)llu(s)ll2ds _< 4(3-e)

-2 }e 2o(S)p<)llu, (s)ll2ds
0 0

0<t_<T (3.17)

where #(t) @(t)/t
2

(t) -(t+t0)’# and to > 0
S

PROOF. Since u(O) u’(O) O, we have llu(s)ll 2 2f(u,u’)d s 2111ullllu’lld,.
0 0

Multiply this inequality by e-2s’20 and integrate to get

t
-2

t s s

fe’2s Pllull2ds _< 2fe-2s’2p/llull Ilu’ IId.ds -2}e’2 <s)Illull Ilu’ lid.as
0 0 0 0 0

(3.18)

t
where (s) In’2p(,)d, for 0<s_<t. Now integrate by parts on the right side

of (3.18) to get

-2;e "2%’ Ilullllu’lld.d- i= -2-2eIIlullll’lld. + 2I d -2
e ull I1’ d. ds

0 0 c$0 0 c 0 0

(3.19)

< lira 2-2()()lllullll’lld. + 2I a -2
S e 11 u’ d, ds.

0 0 0 0

We now observe that the limit on the right side of (3.19) is zero. To prove this,

note that (3.13) implies the existence of a positive constant C (depending on t) for

t .3
t

which f(s)/s ds _< C which yields (c) <_ f(s)/s ds C "3. Now apply

L’Hospital’s rule to get

Iim ull u’ d c i= u u’ d. i= 3 u u’ ) o
0 0 0 0 0
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since u(0) u’ (0) 0 and u" is bounded near zero.

differentiation, inequality (3.19) becomes

Thus, after doing the indicated

t s t s t

-2re-2, fllull flu, lldr/ds _< -4f’ e-2fllull flu’ lldr/ds + 2f@e-2llull flu’ llds
0 0 0 0 0

t
_< 2J’" 2II.lI flu’ lld=

0

(3.20)

where the last inequality holds since ’>0. Inequality (3.16) with k-3 yields (s) _<

olps 3(s)/(3-a) s (s)/(3-m). Substitution of this into (3 20) and application of

Cauchy-Schwarz gives

} "21l-2fe’2%’fllullll’ Ildnd - 2(3-a)
"l s-lp(s) e ullllu’ IId

0 0 0

_< 2(3-a)
-1

t
"2 2ds] I/2 [_)pe 2Pll ’ll2ds] I/20J0[s pe 2’llull

t

Substitution of (3.21) into (3.18) and simplification yields (3.17). This

tompletes the proof.

LEMMA 6. Suppose z C,([0,T0]’D) for some TO > 0 and z(0)-z’(0)-0.

t t

I(,) 2Pllll2d x(z)Yll2 z’+"z-Nzll2ds for any T min{T0,TI}
0 0

t

where and p are defined as in Lemma 5 and A(t) f(s)/s ds.
0

t.

(3.21)

Then

(3.22)

PROOF. Since the function A is increasing, it suffices to prove (3.22) for TI
The operator N is antisymmetrlc and hence (r/ > 0)

p" Re 2 ,. 2ref(cp’z,2o’z’ z Nz)ds- [20p’) (z,.,)+ I1.11 ]ds
0 0 (3.23)

r/ 2 2 r/ r/

-I[() Ilzll ]’d -l’"llzll2ds- (’(.))211z(.)112 -l’"llzll2d (’())211z(.)112
0 0 0

since ’" O. Multiply (3.23) by p(r/) and integrate to get

t
Refp(r/)f(o’z 2o z o"z-Nz)dsdr/f.(’) Ilzll dr/ _<

0 0 0

0 0

(3.24)

Application of (2.8) to (3.24) (with h-ll’zll and r-ll2’z’+"z-Nz)ll) yields

t 2
t t

fp(q’) Ilzll2d _< (/2)fPll,’zll2dr/ +(2)’iI(t)fll2’z’+"z-Nzll2dr/.
0 0 0

(3.25)

Putting I in (3.25) and simplification yields (3.22) for TI t.

the proof.

This completes

LEMMA 7. Suppose the operator A satisfies condition (II) and Lu u" Au. Let

and p be as in Lemma 5 with to + T < i and suppose u C.([0,T]’D).
assume u(0) u’ (0) u(T) u’ (T) 0. Then, for >0, we get

In addition,
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;pe’2(Mu,u)dt -I + 4{3+2+4-l(T)}(3-e) "2 Ipe u’ll2dt
0 0

(3.26)
T T

+ (3/)f(’)2e-2llul12d + fe’2llLull2dt.
0 0

PROOF. Using the definition of the operator L and the antisymmetry of N, we get

(All of the following integrals are taken over [0,T].)

pe-2(Mu,u)dt pe-2(u"-Lu-Nu,u)dt (3.27)

-2( + J2Repe 2(u",u)dt Repe Lu,u)dt Jl
Integration by parts twice in Jl and using the fact that u and u’ vanish at both 0

and T yields

Jl "Ipe-2llu’ ll2dt + (I/2)I(pe’2)"llull2dt" (3.28)

2tSince (pe 2) -e" "4(t2%6"-4t%6’+6%6-4t2’%6 +St’+4t2%6(’)2-2t2"), %6’>_0, %6"<_0 and

’>0, we get

-2( -4 3, -2 2 2k,,(pe 2) _< e 6t + 8t- + 4t (’) 2t

e-2(6t-2 i, 2
p + St- p + 4p(o’) 2po").

Hence substitution of this into (3.28) yields

Jl < -Ipe-2IIu’ II2dt + le-2(3t’2 -i, 2 p"p + 4t p + 2p(’) ),u,,2dt. (3 29)

2To estimate the right side of (3.29), we observe that -" _< 2(’) for # large since

t0+T < i and for > 0 we get 4t’l p < 2t
-2 -I 2

p + 2 p(’) Applying these two

inequalities to (3.29) produces

Jl -< -Ipe-2llu’ II2dt + (3+2)le-2et-2
Now apply (3.17) to the second integral on the right side of this inequality to get

Jl <- [-I + 4(3+2)(3-e)-2]e-2pllu’l12dt + (4+2/)1p(’) 2 -2IIe u,2dt.ll (3.30)

The monotonicity of and application of (3.17) allows the estimate

J2 -< e’2IIeuII2dt + (4/)fe-2p211ull2dt

(3.31)_< le-2llLull2dt + (4/)(T)It’2pe’2llull2dt

_< fe-2llLull2dt + 4{4-l(3-)-2}(T)fpe-2llu’ll2dt.
Substitution of (3.30) and (3.31) into (3.27) gives (3.26) provided is sufficiently

small that 4+2/ < 3/. This completes the proof.

LEMMA 8. Let z, u, p and be as in Lemma 7. Then, for >0 small, we get

Ipllz’ll2dt >_ It 4E(3-e)
-2

pe 2llu’ll2dt 2 (e’)2pe" Ilull d=.
0 0 0

PROOF. Since z e-2u we get (All integrals are taken over [0,T] .)

(3.32)

(3.33)

fpe 2llu 112dr 2Refpp e (u,u’)dt + fp(’)2e 2llul12d=.
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Integrating by parts in the second integral on the right side of (3.33) and using "
>_ _(,)2, for large, gives

-2o-2Re/p e 2(u,u’)dt f(p e 2)’llull2dt I(P’’ + P" 2p(’)2)e Ilull 2at

>- I(P’’ 3p(’)2)e ull2dt
Since 4’>_0, we get p’ >_ -2p/t and hence p’o’ >_ -2po/t >_ -p/t

2 p(,)2/.
tute this into (3.34) and that result into (3.33) to get

lpllz’ ll2dt >- J’pe’2llu’ ll2dt j’t’2e’2pllull2dt (2+l/)fp(,)2e’2llull2dt.

(3.34)

Substi-

(3.35)

Now apply (3.17) to the second integral of the right side of (3.35) and use 2+I/ <

2/ for small , we get (3.32). This completes the proof.

LEMMA 9. Suppose the operator A satisfies condition (II) and z C,([O,T]’D)
such that z(0) z’(O) z(T) z’(T) O. Then, for TO Z T and u e’z, we get

T TIA -+ 2z(2-CT)Ipe’2llu’ll2dn (ro)lllz <’) -Mzll2dn
0 0 (3.36)

T T
+ (5/<)j’(’)2.e’2llul12d + <Ie’2llLull2dt.

0 0

where >0, cT +V3(2-e)(l-e)-24(T)+4(3+3+4-14(T))(3-e)’2, the function A is

defined in Lemma 6, p and are defined in Lemma 5 and the operator L is defined in

Lemma 7.

PROOF. Since z’(O) O, we get

t t

2IIIz’ IIz"+(’ )2z-zllds 2ReI<z’ ,z"+(’ )2z-z)ds
0 0 (3.37)

t
2-IIz,<t)ll 2 + 2Ref(o (z ,z)ds 2Re}(z ,Mz)ds-IIz (t)ll 2

0 0
+ II + 12

We now estimate II and 12. Integration by parts gives

t t
II 2Re/(’)2(z’,z)ds f(’)2(llzll2)’ds

0 0 (3.38)

t
t t

(,)211z112 2I,,,llzll2ds (,(t))211z(t)ll 2 2I’"llzll2ds o.
0 0

0
This last inequality is true since ’"0. To estimate 12, we use (iii) of condition

(II) (using 4 in the expression for F instead of 40 and 41) to get

t t

12 -2f(z’,Mz)ds Z /(-F (Mz,z)’)ds
0 0 (3.39)

t

0

-1311zl12d + IIz’ll2)ds ([(t)z(t),z(t))

t
We now give an estimate for ls’3(s)llzll2ds.

0
Since z(0)-0, we know
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t
I1-()112 -< fllz’ ()112

0
ds and apply this to get

t

fs 3@(s)llzll2ds _< Ip(s)Illz’ ()l12das -< ()df z
0 0 0

0
0

(,)112d,ds.

Integrating by parts in (3.40) and using (3.16) with k-l, we get

(3.40)

ls-3(s)llzll2ds -< :-2@()d IIz (s)ll2ds -< (1-) l’W()llz’(s)ll2ds.
0 0 0

(3.41)

Substitution of (3.41) into (3.39) gives

t
x
2 -== Is-(s)llz,(s)lleas (M(t)z(t),z(t))

0

where c 73(2-)/(i-)____. and comes from the definition of @.
(3.38) and (3.42), we get

t

IIz’ (t)ll 2 I ,- (s)llz (s)ll2ds- (M(t)z(t) z(t))
0

(3.42)

Combining (3.37),

(3.43)

t

-< 2fllz’ll IIz"+<o’) 2z-Mzllds.
0

Multiply (3.43) by p(t) and integrate to get

T T t T
fllz’ll2dt c r(t)fs’l,(s)llz’(s)ll2dsdt fp(Mz,z)dt
0 ) 0 0 (3.44)

T t
_< 2f(=)fllz’ IIz"+(’ )2z-Mzlldsdt.

0 0
T

To estimate the second integral in (3.44), we let P(t) -/p()d and note that integ-
t

ration by parts produces (h(t) t’l%b(t)llz ’(t)ll 2)
T t T t

/(t)/h(,)d,dt -fP’
0 0 0 0 (3.45)

T a T
-P(T)fh(.)d. + lim P()lh(.)d. +

0 0 0 0

[! I#(But P(e)fh(s)ds s t" t) (I/e)fh(s)ds and since z’(0)-O (and @(0)-0 because of
0 0

(3.13)), we get lim (i/e)lh(s)ds lim h() O. Hence lim P()lh(s)ds O.
e$0 0 e$0 e;0 0

Combining this result with the fact that the first term on the right side of

(3.45) is nonpositive, we get

T f T
fp()fh(,l)d,ld <- /P()h()d.
0 0 0

(3.46)
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However, t2p(t) t2, (w)d, _< t@(t)/(l-a) (We have used (3.16) here with k- i and
t

0 < a < i to get the last inequality.) Thus P(t) _< (l-a)-It’l#(t) and hence substi-

tution of this into (3.46) gives

T f T
p()h()dd _< (I-=) -I -l()h()d. (3.47)
0 0 0

Substituting h(t) t-l%b(t)llz ’(t)ll 2 in (3.47) and using the monotonicity of @ yields

Z T
Ip()lh()dd _< (l-a)’l#(T)Ip[lz’[[d.
0 0 0

Substitution of this inequality into (3.44) gives

T T T t
pllz ll2dt p(Mz,z)dt _< 2o(t)llz’llllz"+(’)2z-Mzlldsdt. (3.48)
0 0 0 0

l-(l-a)’ica@(T). Application of (2.8) to the right side of (3.45) gives,where

for TO
>_ T,

T T T-I 2(-) /p[Iz’ll2dt /p(Mz,z)dt _< (T)/llz"+(o’) z-Mz[[2dt
0 0 0 (3.49)

T-IA "+ 2
z_< (To) llz (0’) -Mzll2dt.

To complete the proof, we substitute (3.32) and (3.26) into (3.49) and simplify.

This completes the proof.

LEMMA i0. Suppose the hypothesis of Lemma 9 holds. Then

T T
_211 2d=] _< iiLull2d=J’(o’)2pe’2llull2dt + C(T,T0) J’pe =’11 e’2

0 0 0
(3.50)

where C(T,T0) [A(T0)]-I[.02 (373+23.36)b(T)].
PROOF. Since e’Lu- z"+2’z’+(’)2z+"z-Mz-Nz, we get (All integrals are taken

over [0,T].)

(3.51)J’e’2llLull2dt fllz"+2W’ z’+(W’) 2z+"z-tz-Nzll2dt

fllz"+( 2---zll2d= + 2 Re(z"+(o )2 2z-Mz,2’z’+"z-Nz) + lll2’z’+"z-Nzll

In [i" pp. 70-72], it is shown (for vI v2 3 0) that

ReI(z"+(’)2z-Mz,2’z’+o"z-Nz) >_ 0.

We now apply this result along with (3.22) and (3.36) to (3.51) to obtain

(I+2[A(z0) i-l) je-2WllLull2dt _> [A(Z0 ]-l(2.CT)J,pe-2llu, 112dr

+ [1/A(T1) 5/A(T0) ]J’(o’) 2pe-2llull2dt

In (3.52), choose a 1/2, [A(To)]I/2, and TI > 0 sufficiently small that

(3.52)
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I/A(TI) 5/A(T0) > 2 so that (3.50) follows after simplification. This completes

the proof.

We may now prove necessity. We note that Theorem 4 contains the results

of [I; Theorem 3] as a special case.

THEOREM 4. (Necessity) Suppose the operator A satisfies condition (II) and

there exists T (0,T] such that u C,([0,T];D) is a solution of (1.2) on (0,T] with

u(0) u’(0) 0. If the functions #i’ i-0,1, satisfy (3.11), then u 0 on [0,T].

PROOF. Proceeding in the same manner as in the proof of Theorem 2, we again use

the function [u, T’ to be chosen below, and note that inequality (3.50) yields

,2 ’’-2,-2 2,-’ T’- 2,’’ ] ’, e Pllull2dt + C(T’,T0) f e llu’ll2dt S e IIL(cu)ll2dt
0 0 0

Application of inequality (3.14) to the right side of (3.53) gives

92 }’--2#-2 2r -# T’- 2r-# ]’r e Pllll2dt + c(T’ ,To) f e PlI"’ 2dr
0 0 (3.54)

T’-e -[. t

]
T’ -S 7 I e2f (t) + I#(s)ds dt + I e2r llL(u)ll 2dr.

0 0 T’-

Using estimates identical to those of [I, p.64], inequality (3.54) may be simplified

t
to get rid of the fp(s)ds term (and then 7 is replaced with 27). If we then apply

0

inequality (3.17) to the resulting inequality, we get

#2 }’--2#-2 2r -# T’- 2r-# ]e PIlll2dt + C<T’ ,To) f e 11’ 2dr
0 0 (3.55)

2r-# T’ 2r-#< 27[1+4(3-c)
-2

e llu’ll 2dt + I e IIL(u)ll2dt.
0 T’ -Thus we choose T’ (0,T] small and TO T’ so that C(T’ ,To) >_ 2711 + 4(3-)

=- 1/2) so that (3.55) may be simplified to get

#2 }’- -2#-2 2r -9 T’ 2r-9, e Pllull2d= _< f e IIL(u) 112d=.
0 T’ -:

-2
(with

As in [I, p.64], for large, we may now conclude that

T’ - T’
2 I llull 2dr -< I IIL<u) ll2dt.

0 T’ -:

Letting we get u 0 on [0,T’]. This completes the proof.

I.

2.

3.
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