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ABSTRACT. It is proved in [11 & [2] that a set bounded in an inductive limit E incllirnE,,, of

Frdchet spaces is also bounded in some E iff E is fast complete. In the case of arbitrary locally

convex spaces E every bounded set in a fast complete incllirnE, is quasi-bounded in some E,,
though it may not be bounded or even contained in any E,. Every bounded set is quasi-bounded.

In a Frchet space every quasi-bounded set is also bounded.
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quasi-bounded set.
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Let L be a vector space and B c L. The absolutely convex hull of B is denoted by abcoB.

The linear hull of B, with the topology generated by the gauge of abcoB, is denoted by Es. The

set B is called Banach disk if it is absolutely convex, EB is a Banach space, and B is closed in

Es. A locally convex space F is called fast complete if every set bounded in F is contained in a

Banach disk. For A C F, the closure of A in F is denoted by cFA.
Let E1 C E2 C be a sequence of Hausdorff locally convex spaces with the identity maps

id: E,., E,+I, n 1, 2,..., continuous and the inductive limit E indlirnE,., Hausdorff. Then

E is called regular if every set bounded in E is also bounded in some E,,. It is shown in [1] & [2]
that if all spaces E, are Frchet then E is regular iff E is fast complete. This result can not be

extended to inductive limits of arbitrary locally convex spaces.

We introduce the notion of a quasi-bounded set and show that if E is fast complete then every

set bounded in E is quasi-bounded in some E,, though it may not be bounded or even contained

in any En.
DEFINITION. Let F be a Hausdorff locally convex space. A set B, not necessarily contained

in F, is alled quasi-bounded (further we write q-bounded) in F if:

(a) Es is Hausdorff,

(b) for any 0-neighborhood U in F, the set cgs(U 3 Zs) absorbs B.
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PROPOSITION 1. In the above definition the property (b) could be replaced by:

(bb) for any 0-neighborhood U in F, the set c.,s(U N B) absorbs B.

PROOF. Clearly (bb) (b). Let a set B satisfy (b) and U be a 0-neighborhood in F.

Without the loss of generality we may assume both B and U to be absolutely convex and B C

cs,,(U E).
Take b 6_ B, > 0. Then (b+B)N(UNEB) (b+B)U # Jor b6_ U+B which implies

BcU+fiB. Putb=u+flv, whereu6_U, v6_B. Thenu=b-flv6_B+B= (l+fl)Band
e v(+} c (+)u(+) (+)(v).H:+e (+)(VB)+B

=d {( + )(V ) + Z; > 0} E,(V )-
PROPOSITION 2. Let Q(F) be the family of all q-bounded sets in a Hausdorff locally convex

space F. Then:

I. B bounded in F == B 6_ Q(F),
2. B 6_ Q(F} abcoB 6_ Q(F},. e (F) = e Q(F),
4. B 6 Q(F)&A C B == A 6_ Q(F),
5. B 6 Q(F)&B C F ===> eB 6 Q(F),
6. B 6 Q(F)&A a set bounded in f == A t3 B 6_ Q(F)&A + B 6_ Q(F),

7. B 6_ Q(F)&A the closed unit ball in the completion of EB ===> A 6 Q(F).
PROOF. The statements 1,2, and 3, are obvious.

4. Since A C B, the topology of EA is finer than that of E and EA is Hausdorff.

Take a 0-neighborhood U in F. We may assume that all A, B, and U, are absolutely convex

and B C cg.E(UB). Take a > 1 and assume there exists x 6_ A\acE.,,(U A). Then

x a(U fl A), x U and x U n B. o the other hand, x 6_ A C B C CF.(U n B).
Hence there exists a real f 6_ E such that f(x) a and U N B C ]’-1[-1,1]. But then also

c.,s(UB c ]’-*[-1,11. Since x 6_ A C B C c(Uf’IB), we have ’(x) 6_ [-1,1], a contradiction

with f(x) a.

5. Let B 6_ Q(F), B C F, B abcoB, and D c..B. By statement 4, it is sufficient to prove

D 6_ Q(F). Take x 6_ Eo, x #- 0. Since EB is Hausdorff, there exists fl > 0 such that x 2/B.

Take a real f 6_ F’ for which f(x) 2 and B C f-*[-1,1]. Then also/D C f-x[-1,1] and

x B which implies that Eo is Hausdorff.

To prove (b) take an absolutely convex 0-neighborhood U in F for which B c cE,,(U N E).

Since the toplogy of E is finer than that of ED, we have c.,,(U EB) C c,,:,(U Es) c

ctzo(UNE). For x 6_ D and / > 0, there exists y 6_ B such that x-y 6_ flu and x

x y + y 6,8(U ED) + B C clF.o(U ED) + cE,(U E) C ClFv(U ED) + c.E,(U ED)

(1 +/)cto(U N By). Hence D c [q{(1 + ,)ctEo(U S)); > 0} cl,o(U f ED).

6. The set B is contained in the completion of the normed space EBn’ whose topology is

stronger than that of E.a+{B,’,F}. Hence both sets A and B are contained in the completion of

E,t+{Bru), i.e., A t3 B and A + B make sense as subsets of a vector space.
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Next assume both A and B to be absolutely convex. To prove that JA+B is Hausdori, take

Zo E EA+B, Zo O. If zo Es, then Zo B for some > O. Zo EB, then zo B for the

se > 0. Let a real f F’ be such that f(xo) d B f-l[-1,1]. Put U f-[-1,1].
Since U absorbs A, wehaveA C aU for some a > 0. % (0,) d z %(A+B), then

l/C=) I A + A < while fCxo) . Hence z0 A(A +
The space EAu is also Hadorff since id: EAvB EA+B iS continuous.

Let U be a 0-neighborhood in F. Te a, < 0 such that A C aU d B

Then A c aUEA c aCECUEA)d A+B C aCECUEA)+CgE(UEv) C aCE+(U
+) + =E+.( +) ( + )=E+.( +).

Similly, A B C az(a,). czCU
7. TheBhspe EA is Hausdorff. Te absolutely conv 0-neighborhood U in F and

sume B c cEs(U E). Let a A. There exists a sequence {b} c B which is Cauchy in

d converges to a in EA. For eve m there ts a sequence {u,} C UB such that u, b

inEvn. Choosensothatu,.-b ,m=1,2, .dputa u,.. Then

a U B d a a in EA m . Hence a CECU B) C CECU A) d
A c CE(g A).

PROPOSITION 3. Let F be a locally convex space d B c F a Banach disk. There B is

q-bounded in F.

PROOF. Te a 0-neighborhood in F. Then B C {nU Ev; n 1, 2,.-.}. By the Category

Argument cEs(nU E) CEv(U E) is 0-neighborhood in EB for some n. Hence

EXAMPLE 1. Let F be infinitely dimensional Bach space, B its closed unit ball, nd

H the vtor space underlying F equipped with the tinct locally conv topolo. Since every

set bounded in H is contaed in a itdimensional subspace, B is not bounded in H.

On the other hd, B c H a Bach disk d, by Prop. 3, q-bounded in H.

PROPOSITION 4. Let F be a Fchet spaced B c F q-bounded in F. Then B is bounded

in F.

PROOF. We may sume that B is absolutely convd closed in F. Let U0 D U C be

a fdental sequence of 0-neighborhoods in F such that each U absolutely conv, closed

F, d U+ + U+ c U, n 0,1,2,---. It is sufficient to show that U0 absorbs B.

For eh n, there > 0 such that B C ClEsCU Ev). Put

C CtEs(UEv), 1,2,.--, d te z B. There ts z0 0U0Ev such that

z-z0 IB cC C C1. Hence thereists z UIE such that z-zo-

2C C C, etc. By the induction, there ests z U Ev such that z (Zo + z +--. + z)

e+B c +1+C+ C C+. The sequence z- (z0 + z + + z), n 0,1,2,..-, converges

to 0 in Es. Hence z zo + z +--. C 0U0 + U + U +.-- c 0Uo + Uo d B C (0 + 1)Uo.

THEOREm. Let E C E C be a sequence of locally convex spies, with identity mps

E E+,n 1,2,..., continuo d E inimE Hausdorff. Let B C E be Bch

dk. Then B is q-bounded in some E.
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PROOF. Put for brevity B B f3 E, n I, 2,.-.. We first prove that B czaB for some

n. By the Category Argument there exists such that czsB absorbs B. Hence B

for some A > 0. TakebG B and > a > I. There is asequence bA E ABe, b= 1,2,...,such

that bA b in EB. If bA B for infinitely many indices k, then b abe, a contradiction.

A bThus we may assume bA G (1 + i)B for each k. This implies cA A G B cA b in E8 and

b G C?.EBB,,. Since B is closed in EB, we have B D CEsB and B

Next we show that there exists m

_
n such that B, is q-bounded in E,. Assume the

contrary. Then for every k >_ n, there exists an absolutely convex 0-neighborhood

such that ceEs (UA N BA) does not absorb BA. Since CEv (UA N BA) EB CEs

Es cEs(UA B), the set VA cEs(UA A B) also does not absorb B.

Put for brevity WA CEsBA, k >_ n. The spaces E, and Ewe, k >_ n, are all Banach and the

identity maps: Et, -, E, k _> n are all continuous, hence the map id" Ew. [J(E;k >_ n} is

closed. By [3; Cot.IV.6.5] there exists m >_ n such that id" E - E. is continuous. But then

V, absorbs W B, a contradiction.

Since m _> n, we also have B CEsB,. By Prop. 2, #7, B is q-bounded in E,.

EXAMPLE 2. Let F, B, and H, be the same as in Example 1. For each n, put E F HN

where N 1, 2, 3,...}. Then E indlirnE FN is fast complete, the set BN is bounded in

E, but not bounded in any E. By Example 1, BN is q-bounded in every E, n N.

Theorem 5 in [2] reads: Let E be an inductive limit of Frdchet spaces E. Then E is regular

iff E is fast complete. We show that this result follows from the above theorem.

To prove it, we first observe that in any inductive limit E iadlirnE any set bounded in

some E is bounded in E. Assume all spaces E to be Frchet and E fast complete. Take a set

B bounded in E. Since E is fast complete, we may assume that B is a Banach disk. By our

Theorem there exists rn such that B CFsB and B is q-bounded in E,,. By Prop. 4, B,, is

bounded in E,. It remains to show that B., B.

Take x0 B and a sequence {xA} C B,, such that xA --, x0 in E. Since B is bounded in E,

the topology of Ev is stronger than that of E and xA x0 in E.

The topology of Es.. is inherited from the superspace Es. Thus (xA} is Cauchy in EB.. Now,

B, is bounded in E, hence the toplogy of E. is stronger than that of E.,. This implies that

xA) is also Cauchy in the Frdchet space E, and as such it converges in E, to some y0 E,.

But then xA y0 also in E.

Since E is Hausdorff, we have x0 y0 B E, B.
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