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ABSTRACT. We find new sufficient conditions for the uniqueness of solutions of

quadratic and in general multillnear equations in a Banach space X, by assuming the

existence of a certain limit of linear operators in a suitable subspace of X.

I. INTRODUCTION. Consider the quadratic equation

x y + S(x, x) (1.1)

in a Banach space X, where y e X is fixed and B is a billnear operator on X [I],

[2]. We can assume without loss of generality that B is symmetric, otherwise we can

replace B in (I.I) by

B(x, y) = (B(x, y) + B(y, x)) for all x, y e X

which is a symmetric billnear operator on X and bounded if B is.

Using some ideas given in [3], [4], and [5] for the linear case, we derive some

new existence and uniqueness results for the solutions x of (I.1) slmilar to the ones

in [4] for the llnear case and different than the results in [6].

Moreover, under the assumption that for all Zl, z2..., Zn, x e X

lira B(Zl)B(z 2) B(Zn)(X) (1.2)

exists, where B(z i) denotes a llnear operator on X for i 1,2, ,n such that

B(zi)(x) B(zl, x) B(x, zi),

we give more insight into the behavior of equation (1.1).
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Finally, it will be obvious from the proofs of the theorems that the results

obtained here can be easily generalized to include multil[near equations [2], [7],

[8].

Let z., z,..., z be fixed in X. If the limit in (1.2) exists as

n % then (1.2) defines a linear operator L, depending on the choice

of Zl,...,z on X. given by

L(x) lim B(Zl)B(z2)...B(z )(x).
n

n

We denote the domain of L by D(L) and the null space of L by N(L).

By x e D(L) or x e N(L) we mean

(1.3)

L(x) exits or L(x) 0

where L is given by (1.3). Note that N(L) , since 0 E N(L).

MAIN RESULTS.

The following is essentially Rall’s theorem [6] proved in a different way which

allows us to associate it with (1.3).

THEOREM 2.1. If the linear operator B(z) has no nonzero fixed point for

all z E X then (I.I) has at most one solution.

PROOF. If (I.I) has no solution there is nothing to prove. Let x be a solution

of (I.I), then any other solution x can be given by

x x + h, for some h e X.

We now have by (I.I),

x + h y + B(x + h, x + h)

or

B(z)(h) h, z 2x + h.

By hypothesis h 0. Therefore, the solution x is unique.

If the equation (I.I) has a solution x then the totality of the solutions is

given by x x + h where h is a fixed point of the linear operator B(z) with

z 2x + h. The solution x is unique if h O. Every fixed point of the operator

B(z) is a fixed point of the operator

The equation

L(x) lim (B(z))n(x), with z 2 + h
n/

L(h) h shows that h 0 if X N(L).
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Thus, the solution x is unique in this case. Therefore, for this particular choice of

L the condition X N(L) is a sufficient condition for the uniqueness of x.

The assumptions that X is indeed a Banah space was not used in the derivation of

the above results. It will be used, however, in the following results.

We now prove Thoerems 2.2-2.5 which are generalizations of the thoerems in [3],

[5] and of the remarks -5 in [4].

THEOREM 2.2. Let w be a solution of (I.I). Define the sequence {x }, n 1,2,
n

by

Xn y + B(Xn_ I, Xn_ I) for some x
0

e X. (2. I)

Then {Xn}, n I, 2 converges to some point v e X f and only if

-w eD(L),x0

where L is given by (1.3) for z z + w, n I, 2, 3,n n-I
PROOF. We have

Xn v (Y + B(Xn-l’ Xn-l)) (y + B(w, w))

B(Xn_l, Xn_I) B(w, w)

B(Xn_ + w, Xn_ w)

B(Xn_ + w)B(Xn_2 + w, Xn_2-w)

--B(z )S( S(z )(x0 -w)
n Zn-I

where z
k Xk_l+ w, k I, 2, n. Now if x0 -w e D(L)the limit on the right

hand side of the above exists, therefore {Xn}, n=l,2, converges to some point

veX.

Conversely, if {x }, n I, 2, converges to some v e X as n then
n

x0 w e D(L)

Sometimes this weaker condition sufficies, as indicatted next:

THEOREM 2.3. Let x0 be an approximate solution of equation (I.I) in the sense

that x0 B(xo, x0) y e N(L), where L is given by (1.3) with z
k Xk_ + xk, k

1,2 and the x’s are given by (2.1).
n

Then every limit point of the sequence {x }, n 2, satisfies equation
n

(1.1).

PROOF. As in Theorem 2.2,

Xn B(Zn)B(Zn-l)’’’B(Zl)(X0 XlXn+
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where z
k Xk_ + Xk, k I, 2, n.

Now if x x for n n , then n+l x for n n , and the result
n i i

follows if we let n
i

in Xn+ y + B(Xn, Xn )"

Furthermore we can show:

THEOREM 2.4. If x e D(L) is a solution of (l.l), then every other solution w is

in D(L) where L is given by (1.3) with z x + w, n 0, I, 2,

PROOF. Since x y + B(x, x) and w y + B(w, w) then w x is a fixed point of

B(x + w) and hence w x e D(L). Therefore w (w x) + x E D(L).

The followlng result complements Theorem 2.2.

THEOREM 2.5. Equation (I.I) has a solution x E D(L) where L is as in Theorem 2.2

if and only if the sequence {t {so + s + + s converges, where
n n

s o y,

k-!

Sk I BCs j’ Sk-3-’-I0
), k I, 2,

PROOF. The given sequence {t n 2 corresponds to {Xn+ with x
0

0.
n

If it converges to some x X then x is a solution of (1.1). By Theorem 2.2.,

x E D(L) (for x
0 O, w x). Now since x

0
0 e D(L), the converse follows from

Theorem 2.2.

3. APPLICATIONS.

We now complete this paper with an example. Let X =IR2 and consider the bilinear

operator on X given by

S(x,y) 0 Yl
’(x x2) y

0 -I

x y
x y

Xl -x2 Y2

xlY + x2Y2 ]xlY x2Y2

Note that B is symmetric bilinear operator on X. We consider the equation

x 0 + B(x, x)

or
2 2

x x + x2

2 2
x2

x x2
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m2Define a norm on by

Let z
z

then

zl
B(z)B(x) (y)

z!

xlY + x2Y2 ]
xly| x2Y2

ZlXlY + ZlX2Y2 + Z2XlY z2x2Y2]
ZlXlY + ZlX2Y 2 Z2XlY + z2x2Y2J

If we apply the above for

will be of the form

i
z
i

zi=
i

g

i

i-- 1, 2, n, then B(Zl)B(z2) S(Zn)(X)

V

2n

k.l k k k
ClC2 C2n+l

2n. ddk
.d
k

kj 2" 2n+l
where dk’m ckm e {x, zl}, I, 2, n, k I, 2, 2n, m I, 2, 2n+l.
o us .t= x o 0, 1/41 [0, 1/41, hen

ilVnll , 2n (1/4)n+l 0 as n ;
2n+l

therefore

L(x) 0 for all x e [0, ] x [0, ] --X

so X N(L) and equation (3.1) has a unique solution in X, namely x
0
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