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ABSTRACT. A new class of contact manifolds (carrlng a global non-vanlshlng tlmellke

vector field) is introduced to establish a relation between spacetlme manifolds and

contact structures. We show that odd dimensional strongly causal (in particular,

globally hyperbolic) spacetimes can carry a regular contact structure. As examples,

we present a causal spacetlme with a non regular contact structure and a physical

model [Gdel Universe] of Homogeneous contact manifold. Finally, we construct a model

of 4-dimenslonal spacetlme of general relativity as a contact CR-submanlfold.

KEY WORDS AND PHRASES. Contact manifold, global tfmellke vector field, spacetlme
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I. INTRODUCTION.

A smooth (2n+l)-dimensional manifold N is called contact manifold if it carries a

global 1-form n such that

everywhere on N, where d is the exterior derivative of the contact from n. N is

then orlentable. The name contact is due to S. Lie [I]. Classlcally there have been

two large classes of contact manifolds, namely, the principle clrcle bundle of the

boothby-wang flbratlons includlng the odd-dlmenslonal spheres and the tangent sphere

bundles. A thorough dlsusslon may be found in [2]. The theory of contact manifolds

has been wldely used in mathematlcal physics. For example, in thermodynamics [3], a

contact manifold is named as thermodynamic phase space (TPS) with contact form du

Tds + pdv +**., where u, s, v, p and T are the internal energy, the entropy, the

volume, the pressure and the temperature respectlvely.

Contact manifolds have an interplay with Cauchy Riemann (CR) manifolds [4,5] in

the following way. The 2n-dlmenslonal contact distribution D {X TN/n(X) 0} has

a complex structure. Thus, the complexlflcation of D has a holomorphlc sub-bundle H

such that (N,H) is a CR-manlfold if the contact structure is normal [6]. Recently,

the present author introduced a new area of research, namely, Lorentzlan Geometry of

CR submaniflds with applications to relativity [7,8]; cf. also [9]. As normal contact

manlfold is an example of CR manifolds (see Blalr [2] p. 62), a systematic study on

the Lorentzan geometry (mathematical theory for relativity) of contact manifolds is

needed.
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Motivated by above, as a first step, the objective of this paper is to establish

a relation between spacetlme manifolds and contact structures.

Our study is in llne with the latest trend of relating the Riemannlan and

Lorentzlan geometry (see, for example [13, 14, 17]).

2. PRELIMINARIES.

A spacetlme (M,g) is a connected smooth Hausdorff manifold of dimension 2 with

a Lorentz metric g of signature (-,+,...,+) and is time oriented, that is, has a

global tlmellke vector field. All non-compact manifolds admit Lorentz metrics,

whereas, a compact manifold is Lorentz iff its Euler characteristic vanishes. Any

compact spacetlme contains a closed timellke curve. For example, on the cylinder

S
2 2 2R with ds -dt + de the circles t const, are closed tlmelIke curves. In

relativity, each point of spacetlme corresponds to an event relative to time. Thus,

physically, closed tlmellke curves are forbidden as this raises the possibility that a

person might meet himself in the past. Therefore, all physical spacetlmes are assumed

non-compact. Let C: [a,b] M be a curve in M. The point p M is called the end

poknt of C for t b if llm C(t) p. A nonspacellke curve is future (resp., past)
t b-

Inextendible if it has no future (resp., past) endpolnt. A nonspacellke future (resp.

past) inextendlble curve C does one of the following:

(I) Traps within a compact set.
(2) Does not trap in any compact set but continually re-enter a compact set.
(3) Does not trap in any compact set and does not re-enter in any such set more than a

flnlte number of times.

If (3) holds then C goes off to the edge of spacetlme to infinity or a singularity

point. For (I) and (2), C is called totally and partially imprisoned in
respectlvely. Carter [I0] has given following example of a causal spacetlme M having

imprisoned nonspacellke inextendlble curves. The metric is:

ds
2

(cosh t l)2(dy 2
dt 2) dtdy + dz

Identify

Identi fy ef ter shifting
en irr(]tionel number

(1)

(Fig. i)

M--RxSIxS {(t,y,z) R3: (t,y,z) (t,y,z+l)and (t,y,z)- (y,y+l,z+a), where a

is an irrational number. A Cauchy hypersurface S in M is a subset that meets exactly

once every inextendible nonspacellke curve in . M is globally hyperbolic Iff it
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admits a Cauchy hypersurface. According to Geroch [11] a globally hyperbolic

spacetlme is a product manifold of the form (M RxS: g -dt 2 G) with (S,G) a

compact Riemannlan manifold. Minkowskl spacetlme and Einstein static universe are

simple examples. Given any two points p,q of M, q is in the chronological future

(resp. past) of p, denoted by p << q (resp. q << p), if there is a future (resp. past)

directed tlmellke curve from p to q. The chronological future (resp. past) of p are

the sets l+(p) {q c M: p << q} and l-(p) {q c M: q << p}. The causal future

(resp. past) of p are the sets J+(p) {q E M: p q} and J-(p) {q E M: p < q} for

nonspacellke curves. This means that M, with no closed nonspacellke curve is causal

space. Also, as any compact spacetlme contains a closed tlmellke curve, it fails to

be causal. The sets l+(p) and l-(p) are always open in any space time, but the sets

J+(p) and J-(p) are neither open nor closed in general. M is strongly causal if its

every point has arbitrarily small nelghbourhoods which no nonspacellke curve

intersects more than once. A strongly causal M is globally hyperbolic, if for each p,

q of M, J+(p) N J-(q) is compact.

PROPOSITION I. If the strong causality condition holds on a compact set of a

spacetlme, then there can be non imprisoned inextendlble curves (Hawking and Ellis

[12]). For details on above (with examples) we refer [13].

3. CONTACT SPACE TIMES.

A (2n+1)-dlmenslonal smooth manifold N is called an almost contact metric

manifold if there exists a tensor fleld of type (l,l), a vector field , l-

form and a semi-Riemannlan metric g such that:

g(,) e, g(,bY) g(X,Y) erl(X) rl(Y)

(2)

where c +I or -I according as is spacellke or tlmellke and rank(@) 2n.

If dn(X,Y) g(X,Y) for every X,Y of N, then N is called a contact metric manifold.

For +I and g definite, N is the usual contact metric structure [2]. Here, we

study a larger class to allow indefinite metric. For example, if -I,

then N contains a tlmellke vector field. However, the signature of g is restricted by

the following result.

PROPOSITION 2. The 2n-dlmenslonal contact distribution D( O) of a contact

manifold (n > 2) cannot carry a Lorentz metric.

PROOF. D admits a Hermltlan structure which cannot carry a Lorentz metric unless

n (for details see Flaherty [14]). Based on above proposition the followlng holds.

THEOREM I. For a contact metric manifold N, the following are equivalent:

(a) N is a spacetlme manifold

(b) the contact vector field is tlmellke and the contact distribution D (defined

by n 0) is spacellke [except when dlm(N) 3, then spacellke and D tlmellke is

posslble].

In this paper, a contact manifold with a Lorentz metric will be called a contact

spacetlme. An almost contact manifold is said to be normal if the NiJenhuls tensor

of satisfies:

[, ] + 2dn (R) 0 (3)
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EXAMPLE. Consider a (2n+l)-dlmenslonal spacetlme manifold N with a local

coordinate system (Xi; yl, t) i 1,...,n. N being tlme norlented admits a global

tlmellke vector fleld, say . Define a l-form =I/2(dt E yidxl) so that

2t. Then, from a classlcal theorem of Darboux [2], N is a contact manlfold with

contact from and tlmellke contact vector field . The Lorentz metric g:

n
g =I/4 Z ((dxl) 2 + (dyi)2) ]

gives a contact metric structure to the spacetlme N for -I. Therefore, N is a

contact spacetlme. With respect to an orthonormal @-basis (Ui; Un+i, ), where

U
i 2yl, Un+i 2(

i
+ yit)’ $Ui Un+i’ SUn+i Ui

the metrix of the components of g is given by:

lj yiyj 0 yl

o lj o

-yJ 0

THEOREM 2. An odd dimensional globally hyperbolic spacetime can carry a contact

structure.

PROOF. Consider an almost Hermltlan manifold [M2n,G,J2 -I] and G(JX,JY)
G(X,Y) for every X,Y of M2n. Construct a globally hyperbolic spacetlme

d"tRM2n, g =-dt
2 + G}. Denote a vector field on N by X ((X) -, X)where XN

is tangent to M2n t is the coordinate of R and () is a smooth functlon on N
dSet dt so that - O) is timelike global vector field. Then with

d((X) -, X) (O,JX)

g[(n(x) -f, x), (u(Y) -f, Y)] G(X,Y) n(x)n(Y),

we recover a contact metric structure on N for -I.

In particular, let Rn be n-dlmensional pseudo-Euclldean space of signature (-
q

,...,-,+,..,+) with q negative and n-q positive eigenvalues. Hence, for a local

coordinate system (Xi), i l,...,n, its metric is given by:

ds
2

q n 2. dx + . dx
i

q+l

Define for r 0 (see Wolf [15 section 4.2])

n n+ 2 2 X
2

r2}S {X e R X + X
2
+ +

n+l

and
n+ 2 2 2 2}n {X e X X + + X -rHI R1 n+l
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n
is R S

n-I
and HIn is S R

n-I n
is a Lorentzlan analogueTopologically S Also, S

of the sphere of radius r with positive curvature r-2. The Universal

covering of
n n

and, thus a hyperbolic space of negative
-2 HI is topologically RI,

curvature-r S
n (n ni) are called de-Sltter (anti de-sitter) spaces [12]. S is

globally hyperbolic but H is not. Thus, we have

COROLLARY. Odd dimensional de-sltter spaces can carry a contact structure.

4. REGULAR CONTACT SPACE TIMES.

A contact structure on N is regular if every point p of N has a cubical

coordinate nelghbourhood such that the integral curves of passing through pass

this neighborhood only once. If N is compact, then the maximal integral curves

of are homeomorphlc to circles and therefore Boothby-Wang theorem [16] will hold.

For noncompact spacetlmes, comparing the definitions of strongly causal spacetlmes and

regular contact spaces, we get

THEOREM 2. An odd dimensional strongly causal spacetlme can carry a regular

contact structure.

COROLLARY. Odd dimensional globally hyperbolic spacetlmes can carry a regular

contact structure.

Well-known examples are Minkowski spacetime, Lorentz spheres and Robertson-Walker

spacetimes.

On the other hand, there exist causal spacetimes which can not carry a regular

contact structure. To illustrate this point consider a 3-dimensional contact manifold

+ sinh zy for a coordinateM3 defined by n cosh z dt slnh z dy and cosh z
t

system (t,y,z). The Lorentz metric

g cosh 2z dy
2 + dz

2
(I + slnh 2z)dtdy n

cosh2z[dy2 dt2] + dz
2

dtdy. (4)

gives a contact metric structure on spacetlme M3. In particular, for cosh2z=cosht-1) -l
and t > 0, M3 is Carter’s example (see section 2) of a causal spacetlme with

inextendlble nonspacellke imprisoned curves. Note that the integral curves
of through (y,y+1,a) induce an irratlonal flow as a is irratlonal. Therefore is

not regular.

The discussion, so far, opens the way to address the following basic problem.

"Characterlse regular contact spacetlmes"

For the characterlsatlon of regular contact Riemannlan manifolds, we refer [16]. The
followlng results may be useful.

PROPOSITION 3 (O’Neill [17]). Maxlmal Integral curves of a vector fleld V of a

spacetlme are inextendlble.

This means that the maximal integral curves of the regular contact vector

field are extendlble. On the topology of such spacetlmes, we know that Open sets of

the form l+(p) N l-(q) for any p,q of any spacetlme N form a basis of a topological
structure on N, called Alexandrov topology. This topology is related with the

strongly causal spacetlmes (and, therefore, regular contact spacetlmes) by the

followlng result:



gl

550 K.L. DUGGAL

PROPOSITION 4. (Penrose [18]) The Alexandrov topology for a spacetlme N agrees

with the given manifold topology iff N is strongly causal.

A contact manifold N is said to be homogeneous if there is a connected Lie group

G acting transitively and effective as a group of dlfferentlable homomorphlsm on N

which leave invarlant. Boothby and Wang [16] have proved that the integral curves

of are necessarily regular for homogeneous contact manifolds but N need not be

compact. Also, following holds:

THEOREM 4 (Boothby-Wang) [16]). The integral curves of the contact vector

field of a homogeneous contact manifold are either closed curves or open arcs.

Relating above result with homogeneous spacetlmes, we present the following

example:

Kurt G6"dell [19] discovered a homogeneous spacetlme, called Gd’del[ Universe,

whose metric g is a direct sum of the metric:

gl -dt2 + dx2 1/2 exp(2 () ax)dy2 2exp(() ax)dtdy, (5)

on the 3-dlmenslonal manifold M3 defined by the coordinates (t,x,y), where a > 0 is a

constant, and the metric g2 dz2 on the manifold R defined by the coordinate z. For

9olutlons of the Einstein’s field equations, it is sufficient to consider only

(M3,gl). Transforming into new coordinates (t’,r,) by

exp((2)ax) cosh 2r + cos slnh 2r,

ay exp((/2)ax) sin slnh 2r,

tan I/2 ( + at (/2)t’) exp(-2r)tan I/,

the metric gl takes the new form

2 + dr2 (s Inh4r-slnh2r)d 2 + 2() slnh2r d#dt].
2a-2[-dt

Matter
world line

r =0 coordinate axis

(r, ) constant}
r (log (1,VJ
(closed spocelike
curve

r) log (1,)
(closed timelike
curve

r: log(1,vr}
(closed null
curve}

(Fig. 2)
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The flow vector of the fluid is u (a/J2) t" The space is rotatlonally

symmetric about the axis r 0 (see fig. 2). The light cones on the axis r 0

contain the direction of u. The light cone opens out and tips over as r increases

resulting in closed tlmellke curves. At a radius r log (l+J2), is a null

vector. For a greater value of r, @ is a tlmellke vector and circles of constant r,

t’ are closed tlmellke curves. (M3,g I) is a contact spacetlme define by

[t Thus,(/a)(dt’ + Ad), (a/) + A I@], where A2 slnh4r slnh2r.
Gdel universe is an example of a homogeneous contact spacetlme such that the integral

curves of [for r > log (I + 2) and t’ constant] are closed tlmellke curves.

Further research in this direction is needed to find the topology of homogeneous

contact spacetlmes. For results on these topics with respet to Riemanlan metric see

[16].

5. CONTACT STRUCTURE AND PHYSICAL SPACE TIME.

By a physical spacetlme we mean 4-dimenslonal spacetime in the context of

relativity (special or general). As contact manifolds are odd dimensional (there do

exist even dimensional contact manifolds [20] which we are not discussing here), to

relate them with the physical spacetlme, we embed physical spacetlme as submanifold of

contact manifold. There are three popular classes of submanlfolds of contact

manifolds. First, Invarlant submanifolds [21] which inherit almost all properties of

the ambient manifold. Second, antl-lnvarlant submanlfolds [22]. Third, contact CR

manifolds [4,5] (See Genner [23] for details on the isometric embedding of

spacetlmes. In particular, every 4-dlmenslonal spacetlme M can be seen (locally) as a
n

submanlfold of a Mlnkowskl space R of n I0. Globally, n 46 or 87 according as M

is compact or noncompact). An invarlant submanlfold of a contact manifold inherits

contact struture and, therefore, must be ruled out for our purpose. Out of the other

two classes, we consider CR submanlfolds as they include antl-lnvarlant class.

Let M be a real m-dimenslonal submanlfold of a contact metric manifold

(N, , , B, g) with semi-Rlemannlan metric metric g. We use same symbol g for the

metric of M. Let be tangent to M.

DEFINITION. M is called a contact CR submanlfold of N if there exist two
+/-

distributions D and D on M satisfying

(I) TM DOD+/- @ {}, where D, D I
and {} are mutually orthogonal to each other;

(2) D is invarlant by [(D) D];

(3) D
+/-

is anti-lnvarlant by [(Di cTM +/-

The same concept was studied under the name semi-lnvarlant submanlfolds [5]. Here we

define a larger class to include indefinite metric. Dim(D) 0 (resp. dim(D
+/- 0

implies M is antl-lnvarlant (resp. invarlant), otherwise it is a non-trivlal contact

CR submanlfold.

Based on above definition, we now construct a mathematical model of 4-dlmenslonal

spacetlmes as contact CR submanlfolds.

MODEL. Let (N,g) be a 5-dimensional spacetlme with a local coordinate system

(x,s,y,z,t). Define a l-form -I/2 [dt- ydx- zds] so that there exists a vector

field - 2
t
on N. N has a contact metric structure (, , n,g) with contact form and

g =I/4 [dx2 + dy2 + ds2 + dz 2 n ] (6)
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as the defining equations (2) hold for e -I. There exists an orthonormal -basls

(UI;Vi; ) where

u 2y, u
2 =z v 2( +yt v2 2( +.tZ’ S

#Ui
V
i, Vi

U
i, i 1,2

Let (M,g) be a 4-dimenslonal spacetlme embedded in N. So that (UI,U2,VI,) is an

orthonormal basis for Tp(M). Then, the complexified tangent space CT(M) has a

holomorphic subbundle H generated by (Z,Z) with Z UI+ iV and JZ -iZ(J is complex

structure on H). Thus, there exists a real distribution D Re(H + H) generated by

(UI,V I) invariant by and anti-invariant distribution D i {U2} D, D i and are

mutually orthogonal to each other. Therefore, by definition, M is a contact CR

submanlfold of N with timelike contact vector field and spacellke invariant

distribution D. In general, the dimension of the embedding manifold N may be higher

than 5 (subject to restrictions as stated in [23]).

REMARK. It is worth mentioning that the embedding manifold has been used as

auxiliary space for deriving physical properties of the embedded spacetime. In

particular, several exact solutions of the Einstein’s field equations have been found

by this technique, at least for some cases of low embedding class (the minimum number

of extra dimension is called the embedding class). For example, the maximal analytic

extension of the Schwarzschild solution was found by embedding technique [24].

However, unfortunately, no systematic research has been done to find solutions of

embedding class greater than two. Difficulty is the lack of effective method for

solving embedding equations.

Hopefully, by supplying some differential geometric structure (such as the

contact structure discussed in this paper), it may help to provide more insight on the

geometry of spacetlme needed for physical problems (including finding exact solutions)

in relativity.

In another direction, the disussion in this section leads to a new area of

research, namely, Lorentzian geome of CR submanifolds (including contact CR

submanifolds as subcase), introduced by the present author [7,8]. For related

references on some progress in this direction and, in general, bridging the gap

between Differential Geometry and Mathematical Physics of Relativity, see [13, 14, 17,

25-27].
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