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ABSTRACT. We study the rate of approximation to functions in L? and, in particular, in Lip(c, p)
by weighted means of their Walsh-Fourier series, where & > 0 and 1 < p < oo. For the case
p = oo, LP is interpreted to be Cy, the collection of uniformly W continuous functions over the
unit interval [0,1) . We also note that the weighted mean kernel is quasi-positive, under fairly
general conditions.
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1. INTRODUCTION.

We consider the Walsh orthonormal system {wg(z) : k > 0} defined on the unit interval
I:= [0,1) using the Paley enumeration (see [4]).

Let P, denote the collection of Walsh polynomials of order less than n; that is, functions of
the form

n—1
P(z) := Zakwk(z),

k=0
where n > 1 and {ax} is any sequence of real numbers.
the approximation by Walsh polynomials in the norms of LP := L?(I),1 < p < oo, and
Cw = Cw(I). The class Cw is the collection of all functions f : I — R that are uniformly
continuous from the dyadic topology of I into the usual topology of R; briefly, uniformly W-
continuous. The dyadic topology is generated by the collection of dyadic intervals of the form

Ini= [k27™,(k+1)2"™), k=0,1,...,2" -1 m=0,1...

For Cw we shall write L. Set

1 1/p
£l = {/0 If(r)l”dz} , 1<p<oo,
1fllow = sup{If(@)] : z € I}.

The best approximation of a function f € LP,1 < p < 0o, by polynomials in Py, is defined by

Ba(f,L7) = jinf 1If = Pl
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For f € LP, the modulus of continuity is defined by
wp(f,8) = sup{llf(-8) — FO)lp : 1t < 8},
where 6 > 0 and + denotes dyadic addition. For a > 0, the Lipschitz classes in LP are defined by
Lip(a,p) := {f € L? : wp(f,6) = O(6%) as 6 —0}.

Concerning further properties and explanations, we refer the reader to [3], whose notations
are adopted here as well.

2. MAIN RESULTS.
For f € L', its Walsh-Fourier series is defined by

0o 1

Zakwk(z), where ai := / F)wk(t)dt. (2.1)
k=0 0

The nth partial sum of the series in (2.1) is

n—1

sﬂ(f1 I) = z ak'(Uk(z), n2> 11

k=0

which can also be written in the form

1 .
sa(fy7) = /0 f(z+t)Da(t)dt,

where )
Dn(t) =) wk(t), n21,
k=0
is the Walsh-Dirichlet kernel of order n.

Throughout, {px : k > 1} will denote a sequence of nonnegative numbers, with py > 0. The
weighted means for series (2.1) are defined by

tn(f) (L') = % Zpksk(fs z):
™ k=1

where "
P, := z Pk, n>1
k=1
We shall always assume that
nlim P, =00,
which is the condition for regularity.
The representation
1
ta(f,z) = /o FlzHt)La(t)dt (2.2)
plays a central role in the sequel, where
1 n
La®) =5 >_mDi(t), n21, (2.3)
" k=1

is the weighted mean kernel.
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THEOREM 1. Let f€e LP,1 <p<oo,n:=2"+k,1<k<2™ m>1.
(i) If {px} is nondecreasing and satisfies the condition

=0, (2.4)

then .

3 - .

Ita(f) = Fllp < 5~ Y Ppasnio1wp(f,277) + Olwp(£,27™)). (2.5)

n 2o

(ii) If {px} is nonincreasing, then
m—1

ln) = Fllp < o 3 Ppoplf;279) + Ofuop(f,27™). (2.6)

THEOREM 2. Let f € Lip(e, p) for some @ > 0 and 1 < p < 0o. Then for {px} nondecreas-

ing,

O(n™%) if 0<ax<l,
Itn(f) = fll, = { O(n~tlogn) if a=1, (27)
O(n™1) if a>1;
for {px} nonincreasing,
1 m—1
— 1-a) i —am
Ita(H = fl =0 | 5 ;:: 20=)py; + 2 : (2.8)

Given two sequences {px} and {gx} of nonnegative numbers, we write px < gi if there exist
two positive constants C; and Cj such that

Cigr < px < Cogx forall k large enough.

We present two particular cases for nonincreasing {pg}.
Case (i): pk < (logk)~ for some § > 0. Then P, =< n(logn)~#. It follows from (2.8)

O(n=?) if 0<a<1landf >0,

O(n~logn) if a=land0<fB<1,
ltn(f) = fllo = O(n~!lognloglogn) if a=pg=1,

O(n~!(log n)?) if a=1landf=1,

orif a>1land@>0.

Case (ii): px < k™7 for some 0 < < 1. Then P, xn!"? if0< B < 1and P, <logn if 8 = 1.
The case 8 > 1 is unimportant since P, = O(1). By (2.8),

O(n;"‘) if a+8<1,

_ ) O@Pllogn+n™®) if a+f=1,

Ien(f) = fll = Onf1) if a+f>1andf>1,
O((logn)™") if g=1,

where a > 0 and 5 > 0.
REMARK 1. The slower P, tends to infinity, the worse is the rate of approximation.
REMARK 2. Watari [6] has shown that a function f € L? belongs to Lip(a,p) for some
a>0and 1 <p< oo if and only if

Ea(f,L7) = O(n™).
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Thus, for 0 < & < 1, the rate of approximation to functions f in the class Lip(c, p) by tn(f) is as
good as the best approximation.
REMARK 3. For o > 1, the rate of approximation by t,(f) in the class Lip(, p) cannot be

improved too much.
THEOREM 3. If for some f € L?,1 < p < 00,

litzm(£) ~ fllp = o(P3m) as m — oo, (2.9)

then f is a constant.

If pr = 1 for all k, then the t,(f,z) are the (C,1) — means (i.e., the first arithmetic means)
of the series in (2.1). In this case, Theorem 2 was proved by Yano [8] for 0 < a < 1 and by
Jastrebova [1] for a = 1; Theorem 3 also reduces to a known result (see e.g. [5, p. 191]).

3. AUXILIARY RESULTS
Let

Kn(t) = %ipk(t), n>1 @3.1)
k=1

by the Walsh-Fejer kernel.
LEMMA 1. (see [7]). Let m > 0 and n > 1. Then Kom(t) > 0 for each t € I,

1 1
/ |Kn(®ldt <2, and / Kom()dt = 1.
0 0

LEMMA 2. Let n:=2™+k,1< k < 2™, and m > 1. Then for L,(t) defined in (2.3),

m—1 27-1
PaLa(t) == Y ri(tywas_1(t) Y i(Pasa—s — possr—i—1) Ki(t)
3=0 =1
m—1 )
= > ri(Owas 1 ()2 pes Kas (2) 32)
=0
m—1
+ Z (Paj+1-1 — Pas_1)Dasi(t)
=0
k
+ (Pn = Pak—1)Dam(t) + rm(t) Zm"‘+t'Di(t)’
=1
where the r;(t) are the Rademacher functions.
Proof. From (2.3)
2m_1 2™ 4k
P.La(t) = ) p:Di(t) + Y mDi(t)
i=1 =2m
m-12/-1 k
= Z Z P2r+iD2i4i(t) + Zm"'+iD2'"+i(t) (3.3)
3=0 =0 =0
m—12/-1
=" Y peri(Dasti(t) — Dasga (1))
j=0 i=0
m—1 21 k
> Dasa(t) Z P2iyi + ZM"‘+iD2m+i(t)-
j=0 =0 =0

We will make use of formula (3.4) of [3]:
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Das+1(t) — Dasyi(t) = 75 (t)wasi —1(t) Das - (¢), 0<i<?,
and the formula in line 4 from below of [4, p. 46):

D2M+;(t) = Dam(t) + TmDi(t), 1<i<2™,

Substituting these into (3.3) yields

m—1 27 -1
PoLn(t) == Y rj(t)was_1() Y P24 Das(t)
7=0 =0
m-—1
+ Y (Pyres = Poy_1) Dy i(t)
=0

k
+ (Pa = Pack=1)Dam(t) + m(t) D _ pamia Di(t).
i=1
Hence (3.2) follows, by noting that
D;(t) = iK;(t) — (i — 1)Ki_1(2), i1>1, Kp(t):=0,

(see (3.1)) and accordingly

291
Z p2-”+sD2-"—-l(t) = ZW‘“—%D ®)
1=0 i=1
21
=) i(ppsnioy — Pori_ic) Ka(t) + 22905 Koo (2).
=1

Motivated by (3.2), we define a linear operator R, by

*

Ralt) = = Y Pamis D) (34)

=

where n := 2™+ k,1 < k < 2™, and m > 1. A Sidon type inequality of [2] implies that R, as
well as the weighted mean kernel L,, defined in (2.3) are quasi-positive.

LEMMA 3. Let {px} be a sequence of nonnegative numbers either nondecreasing and satis-
fying condition (2.4) or merely nonincreasing, and let R, be defined by (3.4). Then there exists
a constant C such that .

L= /0 Ra®)ldt<C, n>1 (3.5)

PROOF. By [2, Lemma 1 for p = 2],

k1/2 1/2
Zp2"‘+t

Due to monotonicity,
8pr < 22 if (p} is nondecreasing,
In < n n

%ﬁp’% <4 if {px} is nonincreasing.

B); (2.4), hence (3.5) follows.
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LEMMA 4 (see [3]). If g € Pam, f € LP, where m > 0 and 1 < p < o0, then

”/: r"f(t)g(t) (f(-+t) = £()lat

<27 'wp(£,27™) gl
P

4. PROOFS OF THEOREMS 1-3.
PROOF OF THEOREM 1. We shall present the details only for 1 < p < 00. By (2.2), (3.2),
and the usual Minkowski inequality,

Paltat) = 1l ={ [ [ Pat@lri@io - f(zndtr’dx}”p

3> (1] rosore - f(z)]dt]”dx}l/p

7=0
m-—1

+ { /0 ! | /O ! ri(&)h; (B f(z+t) - f(“)]dtrdz}l/p

j=0

m-~1

3 Bunrcs= B {[[| [ Dam Ol - e}

=0

+(Pa = Pack-1) { /0 l l /o D () [f(wh) - f(z)ldtlpd-r}w

' ! 1/p
+ P {/0 | /o Tm(t) Ra (t)[f (z+t) — f(:c)]dtlpdg;}
=: Ity + Iy + I3, + Isp + I, say, (41)
where

251
g5 (t) 1= was 1 (t) E i(poi+1—i — Pas+1—i—1) Ki(t),
=1

h;(t) := 2 pyswai_1 () Kas ().
From Lemma 1,

1 -1 1
[ losde < Y isnas = pasenical [ 1Ko
o i=1
Qi+1_q
<2 Z (2j+1 - T)lp,- _pr—ll = Aj) say,
r=2+1

If {pi} is nondecreasing, we have

+iy 2ty 23+l
Ai=2%23 (p-p1)=2 Y (P —(r=Dpr-1)+2 Y Pra
r=241 r=27i41 r=2741

= 2+2(poss1_y — pos) — 2{(27 — D)pgs+1g — 29p9s] + 2(Pos+1_g — Pai_y)

< 2(Py+11 = Pyi_y) S P pyina_y.

If {px} is nonincreasing, we have

i+l i+l 1 2i+1 1

A4;=27 F pa-p)+2 Y (pe— (= Dp) =2 3 P <2p
r=27+1 r=2741 r=2341
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Thus, by Lemma 4, for {Px} nondecreasing,
m—1
ha < ];) 2 pas ywp(f,279), (4.2)
and for {px} nonincreasing,
I, < 'i_:ol 2 paswp(f,277). (4.3)
3=
Again, by Lemmas 1 and 4,

1 ‘ 1 .
/o Ihs (£)]dt < 27pys / Ky (8)dt = 2py,
0

whence
m-—1
Ln <271 Y Ppyiw(f,279), (4.9)
j=0
Since

_l2m ifte [o,27m)
Dom t) = ] )
2 (t) {o if te [27™,1)
(see, e.g., [5, p.7]), by the generalized Minkowski inequality,

m—1 1 1 1/p
Isn < E(Pﬁ“—l - P2J-—l)/o Das+(t) {/ |f(z+t) — f(:c)l”da:} dt
i= 0
1 (4.5)
< (Paysry - Pys_1)wp(f,27771)
=0
and
IAn < (Pn. - Pn-—k—l)wp(f) 2-m)' (46)
Note that
P P, < pgs+1_y if {pk} is nondecreasing, 4.7
PR-1 T TB-1 =2 2dpy, if {px} is nonincreasing. ’
By Lemmas 3 and 4,
1
lon <27 Py (£,27™) [ 1RaE)l
(4.8)

< Z—ICinp(.ﬂ 27m).
Combining (4.1) - (4.8) yields (2.5) and (2.6).
PROOF OF THEOREM 2. For {px} nondecreasing we have, from (2.4) and (2.5),

m—1
ltn(f) = fllp = © (’% DIE 2“’"‘)

=0

m-—1
=0 (2-"1 Z 2(1—a)j + 2—am) .

=0
Hence (2.7) follows easily.
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For {px} nonincreasing, (2.8) is immediate.
PROOF OF THEOREM 3. By a theorem of Watari [6]
lls2m(f) = fllp < 2E2m (£, LP).

Thus, from (2.9),
llsam (£) = fllp = o( Pgwa). (4.9)

Clearly,

-
Pym{som(f,7) — tom(£,2)} = Y_ pi{s2m(f,7) — sk(f, )}
k=1

m_1  2m-1

= Z Pk Z atwt(z)
k=1 i=k
2m—1

= Z P,a,w;(z).
=1

Now (2.9) and (4.9) imply s
lim ” Z Ra.-wg(:c)llp=0.
i=1

m-—00

Since the LP-norm dominates the L!-norm for p > 1, it follows that for j > 1,

2m—1

1
(Prasl = Jim | [ wy2) 3 Proswn(o)ds]
i=1

< jm | % Rawa)], -0
=1

Hence we conclude that a; = 0 for all j > 1. Therefore, f = ao, a constant.
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