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We survey graph theoretic analogues of the Selberg trace and pretrace formulas
along with some applications. This paper includes a review of the basic geometry
of a k-regular tree Ξ (symmetry group, geodesics, horocycles, and the analogue
of the Laplace operator). A detailed discussion of the spherical functions is given.
The spherical and horocycle transforms are considered (along with three basic ex-
amples, which may be viewed as a short table of these transforms). Two versions
of the pretrace formula for a finite connected k-regular graph X � Γ\Ξ are given
along with two applications. The first application is to obtain an asymptotic for-
mula for the number of closed paths of length r in X (without backtracking but
possibly with tails). The second application is to deduce the chaotic properties of
the induced geodesic flow on X (which is analogous to a result of Wallace for a
compact quotient of the Poincaré upper half plane). Finally, the Selberg trace for-
mula is deduced and applied to the Ihara zeta function of X, leading to a graph
theoretic analogue of the prime number theorem.
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1. Introduction. The Selberg trace formula has been of great interest to

mathematicians for almost 50 years. It was introduced by Selberg [16], who

also defined the Selberg zeta function by analogy with the Riemann zeta func-

tion, to be a product over prime geodesics in a compact Riemann surface.

But the analogue of the Riemann hypothesis is provable for the Selberg zeta

function. The trace formula shows that there is a relation between the length

spectrum of these prime geodesics and the spectrum of the Laplace operator

on the surface.

More recently quantum physicists (specifically those working on quantum

chaos theory) have been investigating the Selberg trace formula and its gen-

eralizations, because it provides a connection between classical and quantum

physics, see Hurt [11]. In fact, of late there has been much communication be-

tween mathematicians and physicists on this issue and matters related to the

statistics of spectra and zeta zeros. See, for example, Hejhal et al. [10]. Here,

our goal is to consider a simpler trace formula and a simpler analogue of Sel-

berg’s zeta function. The proofs will require only elementary combinatorics

rather than functional analysis. The experimental computations require only

a home computer rather than a supercomputer.
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The trace formula we discuss here is a graph-theoretic version of Selberg’s

result. Here, let Ξ be the k-regular tree where k > 2 (as the case k = 2 is de-

generate). This means that Ξ is an infinite connected k-regular graph without

cycles. We often write k= q+1 as this turns out to be very convenient. In this

paper, the Riemann surface, providing a home for the Selberg trace formula, is

replaced by a finite k-regular graph X. We can view X as a quotient Γ\Ξ where

Γ is the fundamental group of the X. There are at least three ways to think

about Γ -topological, graph theoretical, and algebraic. We will say more about

Γ in Sections 3 and 4. At this point, you can think of Γ as a subgroup of the

group of graph isomorphisms of the tree Ξ.

We will normally assume that X is simple (i.e., has no multiple edges or

loops), undirected, and connected. We will attempt to keep our discussion of

the tree trace formula as elementary as possible and as close to the continuous

case in [20] as possible. Thus, you will find in Figures 3.1 and 3.2 a tree analogue

of the tessellation of the Poincaré upper half plane by the modular group (see

[20, Volume I, page 166]).

This paper is organized as follows. Section 2 concerns the basic geometry

of k-regular trees. We consider the geodesics, horocycles, adjacency operator

(which gives the tree analogue of the Laplacian of a Riemann surface), and

the isomorphism group of the tree. We also investigate the rotation invariant

eigenfunctions of the adjacency operator, that is, the spherical functions, in

some detail. The horocycle transform of a rotation invariant function f on Ξ
is defined in this section.

In Section 3, we obtain two versions of the pretrace formula for a finite

k-regular graph X. These formulas involve the spherical transform of a ro-

tation invariant function f on the tree, which is just the tree-inner product of

f with a spherical function. The relation between the spherical and horocycle

transforms is given in Lemma 3.3. Three examples of horocycle and spherical

transforms are computed.

Also, to be found in Section 3, are two applications of pretrace formulas. The

first is an asymptotic formula for the number of closed paths of length r in X
without backtracking but possibly having tails as r goes to infinity (see (3.28)).

Here, “without backtracking but possibly having tails” means that adjacent

edges in the path cannot be inverse to each other except possibly for the first

and last edges. The second application of a pretrace formula is Theorem 3.8,

which says that the intersection of a small rotation invariant set B in X with

the image of B propagated forward by the induced geodesic flow on X (when

averaged over shells), tends to be what we expect when two random sets inter-

sect in X. This result is a graph-theoretic analogue of a result of Wallace [25],

where it is proved that the induced horocycle flow on a compact quotient of

the Poincaré upper half plane exhibits chaotic properties in the sense that, in

the long term, the area of the intersection of a small rotation invariant set B
with the image of B propagated forward by the induced horocycle flow (and
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averaged over rotations) tends to be what we expect if two random sets in-

tersect. This property is a measure-theoretic analogue of the ergodic “mixing

property.” Theorem 3.8 gives a graph-theoretic analogue of the Wallace theo-

rem in which the horocycle flow on a compact quotient of the Poincaré upper

half plane is replaced with the geodesic flow on a finite k-regular graph. This

result also has an interesting combinatorial interpretation, see Example 3.9.

In Section 4, we consider Selberg’s trace formula. Here we apply the formula

to deduce the basic fact about the Ihara zeta function of a finite regular graph.

That is, we show that this zeta function is the reciprocal of a polynomial which

is easily computed if one knows the spectrum of the adjacency matrix. And we

obtain a graph-theoretic analogue of the prime number theorem (see (4.13)).

Some additional references for the subject are Ahumada [1], Brooks [3],

Cartier [5], Figá-Talamanca and Nebbia [7], Hashimoto [9], Quenell [15], Stark

and Terras [17, 18], Sunada [19], Terras [21], Venkov and Nikitin [24].

2. Basic facts about k-regular trees

2.1. Geodesics and horocycles. The k-regular tree has a distance function

d(x,y) defined for x,y ∈ Ξ as the number of edges in the unique path con-

necting x and y . We have a Hilbert space L2(Ξ) consisting of f : Ξ→ R such

that (f ,f )Ξ <∞, where (f ,g)Ξ =
∑
x∈Ξf(x)g(x).

Our formulas involve the adjacency operator A on Ξ which is defined on f
in L2(Ξ) by

Af(x)=
∑

d(x,y)=1

f(y), (2.1)

where A is a selfadjoint operator (i.e., (f ,Ag)= (Af ,g) for f ,g ∈ L2(Ξ)) with

continuous spectrum in the interval

[
−2
√
(k−1),2

√
(k−1)

]
. (2.2)

For a proof, see Sunada [19, page 252] and Terras [21, page 410].

However, the adjacency operator is not a compact operator (i.e., there is a

bounded sequence fn such thatAfn does not have a convergent subsequence).

Thus, the spectral theorem for A involves a computation of the spectral mea-

sure. We summarized the theory for differential operators briefly in Terras [20,

Volume I, page 110]. See (3.12) for the spectral measure on the tree. We will

not actually need this result here.

A chain c = {x0,x1,x2, . . . ,xn, . . .} in Ξ is a semi-infinite path, that is, vertex

xj is adjacent to vertex xj+1. It is assumed that the chain is without backtrack-

ing; that is, xn+1 ≠ xn−1. A doubly infinite path is a geodesic. It may be viewed

as the union of two chains c and c′, both of which start at the same vertex x0.
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Figure 2.1. Horocycles in the 3-regular tree. Points in the nth horo-
cycle are labeled n. We fix a boundary element represented by the
chain c and a geodesic c∪c′. Here c consists of the points labeled
with n≤ 0 and c′ consists of the points labeled with n> 0.

In the Poincaré upper half plane, the y-axis is an example of a geodesic and

the horizontal lines perpendicular to it are horocycles. We have an analogous

concept for the tree.

The boundary Ω of Ξ is the set of equivalence classes of chains where two

chains c = {xn | n ≥ 0} and c′ = {yn | n ≥ 0} are equivalent if they have

infinite intersection. If we fix an element ω ∈ Ω, a horocycle (with respect to

ω) is defined as follows. The chain connecting x in Ξ to infinity along ω is

[x,∞]. If x and y are any vertices in Ξ, then [x,∞]∩[y,∞] = [z,∞]. We say

that x and y are equivalent if d(x,z)= d(y,z). Horocycles, with respect toω,

are the equivalence classes for this equivalence relation, see Figure 2.1. Note

that horocycles are infinite.

The horocycle transform of a function f : Ξ→ C is a sum over a horocycle h
of our function f ,

F(h)=
∑
x∈h

f(x). (2.3)

If we fix a boundary element ω of Ξ represented by {xn | n ≥ 0} and a

geodesic c∪c′ in our tree Ξ, then we can label the horocycles h with numbers

as in Figure 2.1, where each element of horocycle hn is labeled n. Assume that

f is invariant under rotation about the origin and write f(x) = f(d(x,o)),
where o is the origin of our tree Ξ and the point o is the intersection of c and

c′. Then we find that F(n)= F(hn)= cnHf(n), where cn = qn, if n> 0; cn = 1,

otherwise. Here Hf is defined by

Hf(n)= f (|n|)+(q−1)
∑
j≥1

qj−1f
(|n|+2j

)
, for n∈ Z. (2.4)

This transform is invertible,

f
(|n|)=Hf (|n|)−(q−1)

∑
j≥1

(Hf)
(|n|+2j

)
. (2.5)
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2.2. Isomorphism group of the tree. The elements of the groupG of graph-

theoretic isomorphisms of Ξ may be classified into three types of elements as

follows.

Type 1. Rotations fix a vertex of Ξ.

Type 2. Inversions fix an edge of Ξ and exchange endpoints.

Type 3. Hyperbolic elements ρ fix a geodesic {xn | n in Z} and ρ(xn) =
xn+s . That is, ρ shifts along the geodesic by s = ν(ρ). (See Figá-Talamanca and

Nebbia [7] for a proof of this result.)

Notes. A subgroup of G is the free group generated by k elements. The

tree is the Cayley graph on this group with edge set the set of k generators

and their inverses. By a Cayley graph X = X(G,S), we mean that the vertices

are the elements of the group G and there are edges from g ∈ G to gs for all

s ∈ S. The Cayley graph will be undirected if s ∈ S implies s−1 ∈ S.

If Γ is the subgroup of G consisting of covering transformations of a finite

graph X, then Γ consists only of hyperbolic elements and the identity.

Now consider our finite connected k-regular graph X = Γ\Ξ, where Γ is the

fundamental group of X (which may be viewed as covering transformations of

the covering ofX by Ξ, its universal cover). Then Γ is a strictly hyperbolic group

of automorphisms of Ξ; that is, if ρ ∈ Γ and ρ is not the identity, then ρ acts

without fixed points. We say that ρ is primitive if it generates the centralizer

Γρ of ρ in Γ . Note that Γρ must be cyclic since Γ is free.

2.3. Spherical functions on trees. Next we consider tree-analogues of the

Laplace spherical harmonics in Euclidean space. These are also analogous to

the spherical functions on the Poincaré upper half plane which come from

Legendre functions P−s(cosh(r)), r = geodesic radial distance to origin. See

[20, Volume I, page 141], where it is noted that these spherical functions are

obtained by averaging power functions (Im(z))s over the rotation subgroup

K = SO(2) of G = SL(2,R).
Fix o to be the origin of the tree. Define h : Ξ→ C to be spherical if and only

if it has the following three properties:

(1) h(x) = h(d(x,o)); that is, h is invariant under rotation about the ori-

gin o;

(2) Ah= λh; that is, h is an eigenfunction of the adjacency operator;

(3) h(o)= 1.

The spherical function corresponding to the eigenvalue λ is unique and can

be written down in a very elementary and explicit manner (see Brooks [3] and

Figá-Talamanca and Nebbia [7]).

Start with the power function ps(x) = q−sd(x,o) for s in C. Here q+1 = k as

usual. Then, as long as d= d(x,o) is nonzero, we have

Aps =
(
qs+q1−s)ps. (2.6)
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However, if d(x,o)= 0, we get Aps = (q+1)ps . So, the power function ps just

fails to be an eigenfunction of A. Now write

hs(d)= c(s)ps(d)+c(1−s)p1−s(d). (2.7)

This is analogous to a formula for the spherical functions on the Poincaré

upper half plane. (See [20, Volume I, page 144].)

You can use what you know about spherical functions to compute the coef-

ficients c(s). This gives

c(s)= qs−1−q1−s

(q+1)
(
qs−1−q−s) , if q2s ≠ 1. (2.8)

Writing z = qs−1/2 yields

hs(d)= q
−d/2

q+1

{
qz−d
(
z2+2d−1

)−zd(1−z2−2d)
z2−1

}
. (2.9)

We can rewrite this as a polynomial in z divided by zd,

hs(d)= 1
zdqd/2(q+1)

q
d∑
j=0

z2j−
d−2∑
j=1

z2+2j


= 1
zdqd/2(q+1)

q+qz2d+(q−1)
d−1∑
j=1

z2j

.
(2.10)

Take limits as z2 goes to 1 to obtain the value if z2 = 1, which is

hs(d)= 1
zdqd/2

{
q+1+(q−1)d

q+1

}
, if z2 = 1. (2.11)

Perhaps the easiest way to understand the spherical functions as a function

of the eigenvalue λ of the adjacency operatorA is to writehs(d)= hλ(d), where

λ= qs+q1−s . Then obtain a recursion from Ahλ(d)= λhλ(d). We obtain

hλ(d+1)= 1
q
(
λhλ(d)−hλ(d−1)

)
, for d= d(x,o) > 0,

hλ(1)= λ
q+1

hλ(0).
(2.12)

This allows hλ(n) to be written in terms of the Chebyshev polynomials of

the first and second kinds Tn(x) and Un(x), defined by

Tn(cosθ)= cos(nθ), Un(cosθ)= sin
(
(n+1)θ

)
sinθ

. (2.13)
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Figure 2.2. Ten spherical functions hλ(n), n = 0,1, . . . ,9, for the
degree 3 tree as a function of the eigenvalue λ of the adjacency

matrix.

(See Erdélyi et al. [6, pages 183–187] for more information on these polynomi-

als.) The final result is

hλ(n)= q−n/2
(

2
q+1

Tn

(
λ

2
√q

)
+ q−1
q+1

Un

(
λ

2
√q

))
. (2.14)

Note that since λ is real, so is hλ(n). Figure 2.2 shows graphs of hλ(d) as a

function of λ when q = 2 and d= 0,1, . . . ,9.

We will need to know what happens to the spherical function as d goes

to infinity. Suppose the eigenvalue λ of the adjacency operator A on the tree

acting on the spherical function hs(d) is given by λ= qs+q1−s . And suppose λ
is actually an eigenvalue of the adjacency operator on a connected, k-regular,

finite graph X. In this situation, we need to know the locations of the complex

numbers s in the complex plane. The answer is given in the following lemma.

Before stating the lemma, we note that a bipartite graph is one in which the

vertices can be partitioned into two disjoint sets V1 and V2 such that every edge

has one vertex in V1 and the other in V2. For such graphs, if λ is an eigenvalue

of the adjacency operator, so is −λ (and conversely).

Lemma 2.1. Suppose that X is a connected k-regular finite graph. Here k =
q+1.

(a) Assume that X is not bipartite. Then any eigenvalue λ of the adjacency

operator on X, with λ not equal to the degree k = q+1, satisfies λ = qs +q1−s

where 0< Re(s) < 1. We may assume Re(s)≥ 1/2.

(b) If X is not bipartite and k= q+1= qs+q1−s , then take s = 0 or 1.

(c) If X is bipartite and λ = qs +q1−s is an eigenvalue of A, so is −λ = qs′ +
q1−s′ , with s′ = s+iπ/ logq.



508 A. TERRAS AND D. WALLACE

Proof. (a) Let s = a+ib with a and b real. Then

λ√q = 2cosh
{(
a− 1

2

)
logq
}

cos(b logq)+2isinh
{(
a− 1

2

)
logq
}

sin(b logq).

(2.15)

Since λ is real, the imaginary part of this expression vanishes. This can happen

in two ways:

(1) sin(b logq)= 0 and λq−1/2 =±2cosh{(a−1/2) logq};
(2) a= 1/2 and λq−1/2 = 2cos(b logq).
In part (a), our hypothesis is |λ| < q+1 which implies that in case (1), we

have

cosh
{(
a− 1

2

)
logq
}
< cosh

{(
1
2

)
logq
}
. (2.16)

Thus, in case (1), |a−1/2|< 1/2 and 0<a< 1. In case (2), a= 1/2, and we are

done. In case (2), the eigenvalues satisfy |λ| ≤ 2
√q, which is the Ramanujan

bound (see Terras [21] for more information on this subject).

We leave parts (b) and (c) to the reader.

Note. In order for λ = qs + q1−s , in Lemma 2.1, to be actual eigenvalues

of the adjacency operator corresponding to the spherical function hs , it is

necessary for the spherical function to be in L2(Ξ). This will not be the case,

as you can see by noting that for the power function ps(x)= q−sd(x,o) to be in

L2(Ξ), we need Res > 1/2. But then, we cannot find any s for which both ps and

p1−s are square summable. This is similar to the situation in the Poincaré upper

half plane when the continuous spectrum of the non-Euclidean Laplacian on

the fundamental domain of the modular group is considered. See Remark 4.4

and Terras [20, Volume I, pages 206–207].

Corollary 2.2 Asymptotics of Spherical Functions. Suppose that X is a

finite connected k-regular graph which is not bipartite. Let λ be an eigenvalue

of the adjacency operator on X, with λ not equal to the degree k= q+1. Write

λ = qs+q1−s where 1/2 ≤ Res < 1. Then the corresponding spherical function

hs(d) goes to 0 as d goes to infinity.

Proof. If s is not 1/2, note that 0< Res < 1 implies

hs(d)= c(s)q−sd+c(1−s)q−(1−s)d (2.17)

approaches 0 as d goes to infinity. If Res = 1/2 and Ims = nπ/logq, n ∈ Z,

then

∣∣hs(d)∣∣= 1
qd/2

∣∣∣∣1−q−1
q+1

d
∣∣∣∣ (2.18)

approaches 0 as d goes to infinity.
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Note. For any finite connected k-regular graph X, the degree k is an eigen-

value of the adjacency operator corresponding to the constant spherical func-

tion h0(d) = 1, d = d(x,o), for o the origin of the tree. If the graph X is fi-

nite connected k-regular and bipartite, then −k is also an eigenvalue of the

adjacency operator and the corresponding spherical function is (−1)d where

d= d(x,o).

3. The pretrace formula. Again we assume that X = Γ\Ξ is a finite con-

nected k-regular graph. To obtain the pretrace formula, we follow the elemen-

tary discussion of Brooks [3]. Consider any rotation-invariant function on the

tree f(y) = f(d(y,x)), where x = o = the origin of the tree. Suppose that f
has finite support. Define the Γ -invariant kernel associated with f to be

Kf (x,y)=
∑
γ∈Γ
f
(
d(x,γy)

)
. (3.1)

So Kf (x,γy)=Kf (γx,y)=Kf (x,y), for all γ ∈ Γ and all x,y in the tree. We

may as well take

fr (x,y)=
1, if d(x,y)= r ,

0, otherwise.
(3.2)

We say this because any finitely supported and rotation-invariant function

about x will be a linear combination of the functions fr .

We need more lemmas.

Lemma 3.1. Suppose that φ is any eigenfunction of the adjacency operator

A on Ξ. That is, suppose Aφ= λφ. Then if r > 0,∑
y∈Ξ

fr (x,y)φ(y)= k(k−1)r−1hsλ(r)φ(x), (3.3)

and the sum is equal to φ(x), if r = 0. Here hsλ is the spherical function (ex-

pressed as a function of the distance to the origin x) corresponding to the eigen-

value

λ= qsλ+q1−sλ (3.4)

for the adjacency operator.

Proof. The case r = 0 is clear. When r > 0, fix y0 in a shell of radius

r about x. Let φ#(y0) denote the average of φ over the shell of radius r =
d(x,y0) about x. To getφ#(y0), you must sumφ(u) over all u with d(u,x)=
d(y0,x) = r and divide by the number of such points u which is k(k−1)r−1.

So, φ#(y0) is invariant under rotation about x and it is an eigenfunction of A
(as A commutes with the action of the rotation subgroup of G or any element

of G).
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By the uniqueness of the spherical function associated with the eigenvalue

λ of A,

φ#(y0
)= hsλ(d(x,y0

))
φ(x), (3.5)

where sλ is defined by λ= qsλ+q1−sλ .

Note. We have to think a bit about what happens ifφ# is zero. (See Quenell

[15].)

So, now we find that, with y0 fixed such that d(y0,x)= r ,

∑
y∈Ξ

fr (x,y)φ(y)=
∑

y∈Ξ,d(x,y)=r
φ(y)=φ#(y0

)
k(k−1)r−1. (3.6)

This completes the proof of the lemma.

Note. The operator on the left-hand side of (3.3) (with x = the origin) is the

r th Hecke operator which we denote Trφ. See Cartier [5]. The algebra generated

by the Tr is called the Hecke algebra. We see that T0 = Identity, T1 =A, (T1)2 =
T2+(q+1)T0, and T1Tm = Tm+1+qTm−1 = TmT1, for m> 1. Thus, the Hecke

algebra is a polynomial algebra in A= T1. Moreover,

∑
m≥0

Tmum =
(
1−u2)(1−uT1+qu2)−1. (3.7)

Corollary 3.2 (Selberg’s lemma). If f is a finitely supported rotation in-

variant (real-valued) function on Ξ and φ is an eigenfunction of the adjacency

operator A on Ξ with Aφ= λφ, then, writing o for the origin of Ξ,

(f ,φ)Ξ =φ(o)
(
f ,hs
)
Ξ, (3.8)

where λ= qs+q1−s and hs is the spherical function in (2.7). Here (f ,g)Ξ denotes

the inner product defined by

(f ,g)Ξ =
∑
x∈Ξ

f(x)g(x). (3.9)

Proof. Setx=o in Lemma 3.1. If r =0, we get (f0,φ)Ξ=φ(o)=φ(o)(f0,hs)Ξ
since hs(o)=1. If r > 0, then Lemma 3.1 implies that

(
fr ,φ
)
Ξ = k(k−1)r−1hs(r)φ(o)=φ(o)

(
fr ,hs

)
Ξ. (3.10)

Since the fr form a vector space basis of the space of finitely supported rota-

tion invariant functions on Ξ, the proof is complete.
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The inner product on the right-hand side of the formula in Selberg’s lemma

has a name—the spherical transform of f . The spherical transform of any

rotationally invariant function f on the tree is defined to be

f̂ (s)= (f ,hs)Ξ. (3.11)

This is an invertible transform. The inversion formula is part of the spectral

theorem for the adjacency operator on the tree. It can be obtained by making

use of the resolvent Rµ = (A−µI)−1. See Figà-Talamanca and Nebbia [7, page

61]. The Plancherel theorem for rotation-invariant functions f on the tree with

finite support says

f(o)=
∫ π/ logq

0
f̂
(

1
2
+it
)

q logq
2π(q+1)

∣∣c(1/2+it)∣∣2dt, for c(s) as in (2.8).

(3.12)

We will not need this result here.

The following lemma proves useful when applying the Selberg trace formula

in Section 4.

Lemma 3.3 (relation between spherical and horocycle transforms). Suppose

that f is a rotation-invariant function on the tree and that z = qs−1/2. If f̂ (s) de-

notes the spherical transform in (3.11) andHf denotes the horocycle transform

in (2.4), then

f̂ (s)=
∑
n∈Z

Hf(n)q|n|/2zn. (3.13)

Proof. Using (2.10), we have

(
f ,hs
)= f(0)+ ∞∑

n=1

(q+1)qn−1f(n)hs(n)

= f(0)+
∞∑
n=1

f(n)qn/2z−n
1+z2n+ q−1

q

n−1∑
j=1

z2j

. (3.14)

Rearranging the sums finishes the proof after a bit of work.

In the following examples, we essentially find a short table of horocycle and

spherical transforms.

Example 3.4. By Lemma 3.3, we find that if the horocycle transform is de-

fined to be

Hα(n)=
u|n|−1, for n≠ 0,

0, for n= 0,
(3.15)
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then the spherical transform (α,hs) = qs/(1−uqs)+q1−s/(1−uq1−s) when

|u|< 1/q. Setting λ= qs+q1−s as usual, this means

(
α,hs
)= d

du
log

1
1−λu+qu2

. (3.16)

Then using the inversion formula for the horocycle transform with |u|< 1,

we have

α(n)=


(1−q)u
1−u2

, for n= 0,

u|n|−1
(
1−qu2

)
1−u2

, for n> 0.
(3.17)

Example 3.5. Set f = fr as in (3.2). Then

(
f ,hs
)=
1, for r = 0,

(q+1)qr−1hs(r), for r > 0,

Hfr =


1, if |n| = r ,
(q−1)qj−1, if |n|+2j = r ,
0, otherwise.

(3.18)

So

Hfr = δr
(|n|)+(q−1)

[r/2]∑
j=1

qj−1δr−2j
(|n|). (3.19)

Example 3.6. Suppose that Hgn(m) = δn(|m|). Then using the inversion

formula for the horocycle transform in (2.5), we have

gn = δn−(q−1)
[n/2]∑
j=1

δn−2j . (3.20)

By Lemma 3.3, with z = qs−1/2, the spherical transform is

(
gn,hs

)= qn/2(zn+z−n)= qns+qn(1−s). (3.21)

Let A be the adjacency operator on the finite graph X = Γ\Ξ. It is essentially

the same as that on the tree covering X by the local isomorphism. Suppose

that {φi}i=1,...,|X| is a complete orthonormal set of eigenfunctions of A on X.

We can assume that the φi are real valued. Let Φi be the lift of φi to the tree Ξ;

that is, Φi(x)=φi(π(x)) for x ∈ Ξ, where π : Ξ→ X is the natural projection

map. Then, AΦi = λΦi since π : Ξ → X is a local graph isomorphism. Usually

we will omit π .
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1

24

3

2 3 1 2 3 1 2 3 1 2 3 1

4 4 4 4 4 4 4 4 4 4 4 4
1 3 1 2 2 3 1 3 1 2 2 3 1 3 1 2 2 3 1 3 1 2 2 3

2 3 1 2 2 3 1 3 1 3 1 2 2 3 1 2 2 3 1 3 1 3 1 2 2 3 1 2 2 3 1 3 1 3 1 2 2 3 1 2 2 3 1 3 1 3 1 2

Figure 3.1. Tessellation of the 3-regular tree from the complete
graph on 4 vertices (K4 or the tetrahedron). Obtain the tessellation
by choosing a spanning tree in K4—the dashed edges. Repeat the
spanning tree for each of the infinitely many sheets of the cover.
Connections between sheets are forced by the ordering of points on
the geodesic labelled with 1, 2, 3 repeated infinitely many times.

Now, using our favorite functions fr (x,y), defined in (3.2), we have for

π(x),π(y)∈X,

Kfr (x,y)=Kfr
(
π(x),π(y)

)= ∑
γ∈Γ
fr
(
d(x,γy)

)= (Ar )π(x),π(y). (3.22)

Here, the right-hand side is the number of paths of length r without backtrack-

ing fromπ(x) toπ(y) in X. A path C in X consists of a set of adjacent vertices

C = (v0, . . . ,vn), vj ∈X. As before, we say C has backtracking if vj−1 = vj+1 for

some j, 2≤ j ≤ r−1. To see that we are counting paths without backtracking,

consider Figure 3.1.

So, there must be constants ci,j such that Kf is a sum over i,j from 1 to |X|
of ci,jφi(x)φj(y). We find these constants in Lemma 3.7.

Lemma 3.7. Suppose that the notation is as in (3.7) and {φi, i = 1, . . . ,|X|}
forms a complete orthonormal set of eigenfunctions of the adjacency operator

on X. Let hsi be the spherical function associated with the same eigenvalue for

the adjacency operator on Ξ

λi = qsi+q1−si (3.23)
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as φi. Then for r > 0,

Kfr (x,y)=
|X|∑
i=1

k(k−1)r−1hsi(r)φi(x)φi(y). (3.24)

If r = 0, the right-hand side of (3.24) becomes the sum of φi(x)φi(y).

Proof. Look at r > 0. Then, as above, Φi is the lift ofφi to Ξ. So, by Lemma

3.1, we have

∑
y∈X

Kfr (x,y)φm(y)=
∑

y∈Γ\Ξ

∑
γ∈Γ
fr (x,γy)φm(y)

=
∑
y∈Ξ

fr (x,y)Φm(y)

= k(k−1)rhsm(r)φm(x).

(3.25)

Now, by Lemma 3.7, pretrace formula I says

∑
x∈X

Kfr (x,x)=
|X|∑
i=1

k(k−1)r−1hsi(r)=
|X|∑
i=1

(
fr ,hsi

)
. (3.26)

This can be viewed as the trace of the operator Kfr , acting on functions g ∈
L2(X) via Kfr (g)=

∑
y∈X Kfr (x,y)g(y) and it is the left-hand side of the trace

formula in Theorem 4.2 when f = fr .

Note that using (3.22), the trace of Kfr is aX(r) = the number of closed

paths without backtracking of length r in X. Here, we count paths as different

if they start at a different vertex. Note also that the paths being counted can

have tails. A tail in a path means that the starting edge is the inverse of the

terminal edge. More explicitly, we have, for r > 0,

aX(r)= # closed paths without backtracking, length r in X

=
|X|∑
i=1

(q+1)qr−1hsi(r),
(3.27)

where si corresponds to the eigenvalue λi = qsi +q1−si of the adjacency oper-

ator A of X.

Brooks [3] uses (3.27) to obtain bounds on the second largest (in absolute

value) eigenvalue of A on X. We will use it to obtain an asymptotic formula for

aX(r).
Suppose that X is a nonbipartite k-regular finite graph. Then

aX(r)∼
(

1+ 1
q

)
qr , as r �→∞. (3.28)
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To prove this, we can use (3.27) and the method of generating functions. For

set

w(λ,x)=
∞∑
n=1

xn−1hλ(n). (3.29)

From the recursion (2.12), we see that

w(λ,x)= λ/(q+1)−x/q
x2/q−λx/q+1

. (3.30)

It follows that

∞∑
n=1

aX(n)xn−1 =
|X|∑
i=1

λi−x(q+1)
qx2−λix+1

. (3.31)

The closest pole to the origin of the right-hand side is x = 1/q. It comes from

the largest eigenvalue (the degree of the graph). Then, a standard method from

generating function theory, using the formula for the radius of convergence

of a power series, leads to (3.28). See Wilf [26, page 171].

Now, we need to discuss the right-hand side of the trace formula.

Define Γγ = the centralizer of γ in Γ ; that is,

Γγ =
{
σ ∈ Γ | γσ = σγ}. (3.32)

And let {γ} be the conjugacy class of γ in Γ ; that is,

{γ} = {σγσ−1 | σ ∈ Γ}. (3.33)

Then we break up Γ into the disjoint union of its conjugacy classes and note

that the conjugacy class {γ} is the image of Γγ\Γ under the map that send σ
to σγσ−1. And Γγ\Ξ is a union of images of Γ\Ξ under elements of Γγ\Γ . So we

obtain, writing f(d(x,y))= f(x,y),∑
x∈X

Kfr (x,x)=
∑

x∈Γ\Ξ

∑
γ∈Γ
fr (x,γx)=

∑
{γ}

∑
x∈Γγ\Ξ

fr (x,γx), (3.34)

where the sum over {γ} is a sum over all conjugacy classes in Γ .
Thus, we have the pretrace formula II which says that for any f which is

rotation invariant and of finite support on Ξ,

|X|∑
i=1

f̂
(
si
)=∑

{γ}
Iγ(f ), (3.35)

where {γ} is summed over all conjugacy classes in Γ . Here the orbital sum is

Iγ(f )=
∑

x∈Γγ\Ξ
f(x,γx). (3.36)



516 A. TERRAS AND D. WALLACE

Note that γ ∈ Γ , γ ≠ identity, implies that γ is hyperbolic. For Γ is the group

of covering transformations of X. See Figure 3.1 for a tessellation of the 3-

regular tree covering the tetrahedron orK4, the complete graph with 4 vertices.

See Stark and Terras [17, 18] for examples of finite covers of the tetrahedron.

We say that ρ ∈ Γ is a primitive hyperbolic element if ρ ≠ the identity and

ρ generates its centralizer in Γ . As in the case of discrete groups Γ acting on

the Poincaré upper half plane, primitive hyperbolic conjugacy classes {γ} in Γ
correspond to closed paths in X, which are the graph theoretic analogues of

prime geodesics or curves minimizing distance which are not traversed more

than once. We call the equivalence classes of such paths primes in X. Here,

the equivalence relation on paths simply identifies closed paths with differ-

ent initial vertices. We will make use of this fact when considering the Ihara

zeta function (4.7). See Terras [20, Volume I, page 277] for a discussion of the

hyperbolic plane case.

Now, we proceed to a discussion of another application of a pretrace for-

mula. Take some geodesic {xm}m∈Z which is a union of two chains c and c′, on

Ξ. We assume that c and c′ intersect in the origin o of Ξ. The geodesic flow is

defined by τn(xm)= xm+n on the geodesic itself and by moving points off the

geodesic by just shifting the whole picture n units to the left if the geodesic

is, for example, the top horizontal line in Figure 2.1.

We could also consider the horocycle flow, but this seems somewhat less

natural since it does not travel along edges of the tree. By a small set B in

Ξ, we mean a set contained in a fundamental region for Γ\Ξ. If B is a small

rotation-invariant set in Ξ such as the shell of radius r defined by S(r)= {y ∈
Ξ | d(y,o) = r}, for r sufficiently small, then define Bn = τn(B). For example,

consider Figure 2.1 and let B = {x | d(x,o) = 1}. Then, Bn consists of points

having distance ≥n−1 from the origin.

This flow induces trajectories on X which are not true flows, as they have

many self-intersections. If the radius of B is less than or equal to 1, it is locally

mapped by the projection π : Ξ→X = Γ\Ξ, one-to-one, onto the corresponding

set in X. It is natural to ask, to what extent does the induced flow on X mix up

the vertices of B on X. Theorem 3.8 gives an answer to this question.

Let f denote the characteristic function of the set B and define F(x) to be

the Γ -periodization of f ,

F(x)=
∑
γ∈Γ
f(γx). (3.37)

Similarly, define the rotationally averaged Γ -periodization of the shift of f ,

F#
n(x)=

∑
γ∈Γ

1
k(k−1)d−1

∑
y∈Ξ

d(y,o)=d(γx,o)=d

f
(
τ−ny

)
. (3.38)

Theorem 3.8. Assume that the k-regular graph X is connected and non-

bipartite. Using definitions (3.37) and (3.38), with f equal to the characteristic
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function of the rotation-invariant set B, consider the sum

U(n,B)= 1
|X|
∑
x∈X

F(x)F#
n(x). (3.39)

Then U(n,B) approaches |B|2|X|−2, as n goes to infinity.

Proof. Suppose φi, i = 1, . . . ,|X|, denotes a complete orthonormal set of

eigenfunctions of the adjacency operator on X. Now

F(x)=
|X|∑
i=1

ciφi(x), (3.40)

where ci = (F,φi)X . By Selberg’s lemma, we have

ci =
∑
x∈X

F(x)φi(x)=
∑
y∈Ξ

f(x)φi(x)= f̂
(
si
)
φi(o) (3.41)

with f̂ (si) defined by (3.11).

Then the sum U(n,B) is

U(n,B)= 1
|X|
∑
x∈X

|X|∑
i=1

f̂
(
si
)
φi(o)φi(x)F#

n(x). (3.42)

We look at the term corresponding to i = 1, where we have chosen φ1 =
|X|−1/2 to be the constant eigenfunction of the adjacency operator on X. This

term is

S = 1
|X|2

∑
x∈X

f̂
(
s1
)
F#
n(x). (3.43)

Since f is the characteristic function of the set B and the spherical function

corresponding to s1 = 0 is the function which is identically 1, we have

f̂
(
s1
)= (f ,1)Ξ = |B|. (3.44)

Therefore, we find, using definition (3.38), that the sum S in (3.43) is |B|2|X|−2.

It remains to estimate the terms given by

R = 1
|X|

|X|∑
i=2

ci
∑
x∈X

∑
γ∈Γ

1
(q+1)qd−1

∑
y∈Ξ

d(y,o)=d(γx,o)=d

f
(
τ−ny

)
φi(x). (3.45)

We can combine the sums over X and Γ to get a sum over the tree Ξ. Then by

Selberg’s lemma, we have

R = 1
|X|

|X|∑
i=2

ci
∑
x∈Ξ

1
(q+1)qd−1

∑
y∈Ξ; d(y,o)
=d(x,o)=d

f
(
τ−ny

)
hsi(x)φi(o). (3.46)
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Here y = kx where k is a rotation about o. Make the change of variables from

x to y and use the fact that the spherical function is rotation invariant to see

that

R = 1
|X|

|X|∑
i=2

ci
∑
y∈Ξ

f
(
τ−ny

)
hsi(y)φi(o). (3.47)

Since f(y) is the characteristic function of the rotation-invariant set B,

f(τ−ny) is the characteristic function of Bn = τn(B) whose distance from

o approaches infinity as n goes to infinity.

So, now we must make use of the asymptotics of the spherical function

as d approaches infinity. Corollary 2.2 says that our spherical function does

approach 0 as the distance from the origin increases. And thus, the sum R of

the remaining terms approaches 0 and the theorem is proved.

Theorem 3.8 says that the intersection of a small rotation-invariant set B
with the image of B, propagated forward by the geodesic flow induced on X
(when averaged over shells), tends to be what we expect when two random sets

are intersected in X.

What happens if X is bipartite? Then you must look at the term correspond-

ing to the eigenvalue −k separately and this is harder to compute.

Example 3.9. Consider Figure 3.1. Let X be the tetrahedron. Take f = f0 in

Theorem 3.8. Then the function F#
n in (3.38) has support consisting of Γ -trans-

lates of rotations of τno. So the sum in Theorem 3.8 isU(n,{o})=un/12(2n−1),
where un is the number of points in the tree of Figure 3.1 which are labeled 1

and are at a distance n from the origin o.

It might help to have a more detailed version of Figure 3.1. So see Figure 3.2.

From Figure 3.2, we see that u3 = u4 = u5 = 6 and u6 = 30, u7 = 54.

Theorem 3.8 says that U(n,o) approaches 1/16 as n approaches infinity. We

see in the example that 16U(n,o) has the values 2,1,1/2,5/4,9/8 for n =
3,4,5,6,7. When n ≥ 35, we can check, using a computer, that 16U(n,o) is

very close to 1.

There is another interpretation of un. As in (3.22), let An be the 4×4 matrix

whose i,j entry is the number of paths in X of length n with no backtracking

starting at vertex i in X and ending at j in X. Then un is the 1,1 entry of An. In

Stark and Terras [17, Lemma 1] says thatA0 = I,A1 =A= the adjacency matrix

of the tetrahedron, A2 = A2−3I, An = An−1A−2An−2 for n ≥ 3. We can use

this recursion to prove Theorem 3.8 in the case that B = {o}. These recursions

for An are the same as those defining the Hecke operator Tn in (3.7). Using

the method of generating functions (see Wilf [26, page 171]) plus the fact that

(An)1,1 = (1/|X|)Tr(An), we easily prove un ∼ 3·2n−3, as n→∞.

4. The trace formula. In order to derive the trace formula, we only need to

recall pretrace formula II (3.35) and to evaluate our orbital sums Iγ (3.36). If γ
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Figure 3.2. Another view of the tessellation in Figure 3.1.

is the identity, this is easy. Writing f(x,y)= f(d(x,y)), we find Iγ = f(0)|X|.
Otherwise, use Lemma 4.1. Recall that we say ρ ∈ Γ is primitive hyperbolic if

ρ ≠ the identity and ρ generates its centralizer in Γ .

Lemma 4.1 (orbital sums for hyperbolic elements are horocycle transforms).

Suppose that ρ is a primitive hyperbolic element of Γ . Then we have the follow-

ing formula relating the orbital integral defined by (3.36) and the horocycle

transform defined by (2.4) for r ≥ 1,

Iρr (f )= ν(ρ)Hf
(
rν(ρ)

)
. (4.1)

Here ν(ρ) is the integer giving the size of the shift by ρ along its fixed geodesic.

Proof. The quotient Γρ\Ξ is found by looking at the geodesic fixed by the

primitive hyperbolic element ρ. Then consider this geodesic modulo ρ. Assume

ν(ρ) = 3 and look at Figure 4.1 where there are only three Γρ-inequivalent

points on the geodesic fixed by ρ, which is the left line of points in the picture.

We claim that

#
{
y ∈ Γρ\Ξ | d

(
y,ρry

)= rν(ρ)+2j
}= ν(ρ)(q−1)qj−1. (4.2)
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



ρry

y
ν(ρ)

j edges
Geodesic
fixed by ρ

Figure 4.1. Finding the fundamental domain Γρ\Ξ when ν(ρ) = 3,
r = 2, j = 5.

For Figure 4.1, we have q = 2, j = 5, r = 2, ν(ρ)= 3 and the number in (4.2) is

3·16. Why does ν(ρ) appear? Because y can be any of ν(ρ) things. It follows

that the orbital sum of f associated with ρr is

Iρr (f )=
∑

y∈Γρ\Ξ
f
(
d
(
y,ρry

))

= ν(ρ)f (rν(ρ))+ν(ρ)(q−1)
∞∑
j=1

qj−1f
(
rν(ρ)+2j

)
.

(4.3)

This completes the proof of the lemma.

So, we have proved the trace formula finally.

Theorem 4.2 (the trace formula for a k-regular finite graph). Suppose that

f : Ξ→ R has finite support and is invariant under rotation about the origin o
of Ξ. Then if PΓ denotes the set of primitive hyperbolic conjugacy classes in Γ ,

|X|∑
i=1

f̂
(
si
)= f(o)|X|+ ∑

{ρ}∈PΓ

ν(ρ)
∑
e≥1

Hf
(
eν(ρ)

)
. (4.4)

Here, Aφi = λiφi where the φi form a complete orthonormal set of eigenfunc-

tions of the adjacency operator A on X. Here the sum on the left is of spherical

transforms of f at the si corresponding to the eigenvalues λi as in Lemma 3.7.

In the sum on the right, Hf is the horocycle transform defined by (2.4).
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Special case. Suppose f = f0, defined by (3.2) with r = 0. Then the trace

formula is trivial—saying that |X| = |X|. If f = fr , defined by (3.2) for r > 0,

the trace formula says

k(k−1)r−1
|X|∑
i=1

hsi(r)= fr (o)|X|+
∑

{ρ}∈PΓ

ν(ρ)
∑
e≥1

Hfr
(
eν(ρ)

)
, (4.5)

where Hfr (m) was computed in (3.19).

If r = 1 or 2, fr (eν(ρ)+2j)= 0 as e≥ 1, ν(ρ)≥ 1, and j ≥ 1. And fr (eν(ρ))=
Hfr (eν(ρ)) is only nonzero for eν(ρ) ≤ 2. In particular, when r = 1, we see

that the trace formula says

k
|X|∑
i=1

hsi(1)= #
{{ρ} ∈PΓ | ν(ρ)= 1

}= 0. (4.6)

If we plug in our formula forhs(1), we see that the sum on the left is Tr(A)= 0.

It is also obvious that there are 0 primitive hyperbolic conjugacy classes {ρ} in

Γ with ν(ρ)= 1 since there are no closed paths in X of length 1. For our graph,

X is assumed to have no loops. It is a simple graph.

Rather than proceeding in this way, to find how many primes there are of var-

ious lengths, we put all the prime information together into a zeta function—

Ihara’s zeta function, which is the graph theoretic analogue of the Selberg zeta

function. It can also be viewed as an analogue of the Dedekind zeta function

of an algebraic number field. References are Ahumada [1], Bass [2], Hashimoto

[9], Ihara [12], Stark and Terras [17, 18], Sunada [19], Venkov and Nikitin [24].

Consider a connected finite (not necessarily regular) graph with vertex set X
and undirected edge set E. For an example, look at the tetrahedron. We orient

the edges of X and label them e1,e2, . . . ,e|E|,e|E|+1 = e−1
1 , . . . ,e2|E| = e−1

|E|. Here,

the inverse of an edge is the edge taken with the opposite orientation. A prime

[C] in X is an equivalence class of tailless backtrackless primitive paths in

X. Here, write C = a1a2 ···as , where aj is an oriented edge of X. The length

ν(C) = s. Backtrackless means that ai+1 ≠ a−1
i for all i. Tailless means that

as ≠ a−1
1 . The equivalence class of C is [C] = {a1a2 ···as,asa1a2 ···as−1, . . . ,

a2 ···asa1}; that is, the same path with all possible starting points. We call the

equivalence class [C] a prime or primitive if C ≠ Dm, for all integers m ≥ 2,

and all paths D in X. It can be shown that such [C] are in one-to-one corre-

spondence with primitive hyperbolic conjugacy classes PΓ . See Stark’s article

in Hejhal et al. [10, pages 601–615].

The Ihara zeta function of X is defined for u∈ C with |u| sufficiently small

by

ζX(u)=
∏

[C] prime in X

(
1−uν(C))−1. (4.7)
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Note that the preceding product is infinite since X cannot be a cycle graph as

its degree is greater than two.

Theorem 4.3 can be attributed to many people in the case of both regular

and irregular finite graphs. Bass [2], Hashimoto [9], and Sunada [19] certainly

should be mentioned. The proof we sketch is due to Ahumada [1]. We found

the discussion we outline in Venkov and Nikitin [24]. Ihara [12] considers these

zeta functions within the framework of p-adic groups.

Theorem 4.3 (Ihara [12]). If A denotes the adjacency matrix of X and Q,

the diagonal matrix with jth entry qj = (degree of the jth vertex-1), then

ζX(u)−1 = (1−u2)r−1
det
(
I−Au+Qu2). (4.8)

Here, r denotes the rank of the fundamental group ofX. That is, r = |E|−|V |+1.

Proof. Following Venkov and Nikitin, plug the following function into the

trace formula:

Hf(d)= g(d)=
u|d|−1, for d≠ 0,

0, for d= 0.
(4.9)

After a certain amount of computation, we find the following formulas. The

right-hand nonidentity terms= d logζX(u)
du

. (4.10)

By the inversion formula for the horocycle transform,

right-hand identity term=nf(0)= d log
(
1−u2

)n(q−1)/2

du
. (4.11)

Here, n = |X| and n(q−1)/2 = r −1 where r is the rank of the fundamental

group of X. See Stark’s article in Hejhal et al. [10, pages 604–605] for a proof.

Using (3.16) Example 3.4 of spherical and horocycle transforms, the left-

hand side is a sum over the eigenvalues λ of the adjacency matrix of X of

terms of the form

−d log
(
1−λu+qu2

)
du

. (4.12)

In the general case, when X is not a regular graph, formula (4.8) for the Ihara

zeta function still holds. There are many proofs. See Stark and Terras [17, 18]

for some elementary ones and more references.

We can use Theorem 4.3 to obtain an analogue of the prime number theorem.

First, we define a prime path to be a closed path without backtracking or tails

that is not a power of another closed path modulo equivalence. Here, two paths

running through the same edges (vertices) but starting at different vertices are

called equivalent. Let πX(r) denote the number of prime path equivalence
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classes [C] in X where the length of C is r . Then, we have for nonbipartite

(q+1)-regular graphs X,

πX(r)∼ q
r

r
, as r �→∞. (4.13)

To prove (4.13), look at the generating function

u
d
du

logζX(u)=
∞∑
m=1

nX(m)um, (4.14)

where nX(r) is the number of closed paths C in X of length r without back-

tracking or tails. Since the closest singularity of ζX(u) to the origin is at 1/q,

it follows that nX(r)∼ qr , as r →∞. Compare this with (3.28) where we were

counting paths that could have tails. Then, we easily see that the asymptotic

behavior of the number of prime paths C of length r is the same as that of

nX(r). Counting equivalence classes [C] of prime paths of length r divides

the result by r .

Note that since the Ihara zeta function is the reciprocal of a polynomial,

it has no zeros. Thus, when discussing the Riemann hypothesis, we consider

only poles. When X is a finite connected (q+1)-regular graph, there are many

analogues of the facts about the other zeta functions. For any unramified graph

covering (not necessarily normal or even involving regular graphs), it is easy

to show that the reciprocal of the zeta function below divides that above (see

Stark and Terras [17, 18]). The analogue of this for Dedekind zeta functions of

extensions of number fields is still unproved. There are functional equations.

Special values give graph theoretic constants such as the number of spanning

trees. See the references mentioned at the beginning of this section for more

details.

For example, when X is a finite connected (q+1)-regular graph, we say that

ζX(q−s) satisfies the Riemann hypothesis if and only if

for 0< Res < 1, ζX
(
q−s
)−1 = 0⇐⇒ Res = 1

2
. (4.15)

Remark 4.4. It is easy to see that (4.15) is equivalent to saying that X is a

Ramanujan graph in the sense of Lubotzky et al. [14]. This means that when

λ is an eigenvalue of the adjacency matrix of X such that |λ| ≠ q+ 1, then

|λ| ≤ 2
√q. Such graphs are optimal expanders and (when X is nonbipartite)

the standard random walk on X converges extremely rapidly to uniform. See

Terras [21] for more information. The statistics of the zeros of the Ihara zeta

function of a regular graph can be viewed as the statistics of the eigenval-

ues of the adjacency matrix. Such statistics have recently been of interest to

number theorists and physicists. See Katz and Sarnak [13]. This has been inves-

tigated for various families of Cayley graphs such as the finite upper half plane

graphs. See Terras [22, 23] for a discussion of some connections with quantum

chaos.
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Example 4.5 (the Ihara zeta function of the tetrahedron). It is really easy

to compute the eigenvalues of the adjacency operator in this case. They are

{3,−1,−1,−1}. So, we find that the reciprocal of the Ihara zeta function of K4

is

ζK4(u)
−1 = (1−u2)2(1−u)(1−2u)

(
1+u+2u2)3. (4.16)

In this case, the generating function for the nK4(r) in (4.14) is

x
d
dx

logζK4(x)=
∞∑
m=1

nK4
(m)xm

= 24x3+24x4+96x6+168x7+168x8

+528x9+1200x10+1848x11+O(x12).
(4.17)

Equation (4.17) says that there are 8 equivalence classes of closed paths of

length 3 (without backtracking or tails) on the tetrahedron, for instance. It

is easy to check this result, recalling that we distinguish between paths and

their inverses, the path traversed in the opposite direction. And there are six

classes of closed paths of length four. There are no closed paths of length five.

Note that the coefficient of x9 is not divisible by nine. This happens since a

nonprime path such as that which goes around a given triangle three times

will have only three equivalent paths in its equivalence class rather than nine.

Many more examples can be found in Stark and Terras [17, 18]—as well as

examples of Artin L-functions associated with graph coverings. In [18, Figure

19], we find an example of two nonisomorphic graphs without loops or mul-

tiple edges having the same Ihara zeta functions. This is analogous to similar

examples of Dedekind zeta functions of two algebraic numbers fields being

equal without the number fields being isomorphic. It comes from an example

of Buser [4], which ultimately led to the example of two planar drums whose

shape cannot be heard since they have the same Laplace spectra but cannot be

obtained from one another by rotation or translation. See Gordon et al. [8].
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