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COMPLETE CONVERGENCE FOR ARRAYS
OF MINIMAL ORDER STATISTICS
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For arrays of independent Pareto random variables, this paper establishes complete conver-
gence for weighted partial sums for the smaller order statistics within each row. This result
improves on past strong laws. Moreover, it shows that we can obtain a finite nonzero limit
for our normalized partial sums under complete convergence even though the first moment
of our order statistics is infinite.
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Let {Xnj, 1 ≤ j ≤mn, n ≥ 1} be independently distributed random variables with

density fXnj (x)= pnx−pn−1I (x ≥ 1), where pn > 0. Let Xn(k) be the kth smallest order

statistic from each row of our array. Thus the density of Xn(k) is

fXn(k)(x)=
pn ·mn!

(k−1)!
(
mn−k

)
!
x−pn(mn−k+1)−1(1−x−pn)k−1I (x ≥ 1). (1)

We will establish laws of large numbers of the form

∞∑
N=k

cNP
{∣∣∣∣∣

∑N
n=kanXn(k)

bN
−L

∣∣∣∣∣> ε
}
<∞ (2)

for all ε > 0, where L is not zero even though EXn(k) =∞ and of course
∑∞
N=k cN =∞.

In order to have EXn(k) = ∞, we need pn → 0 whenever mn →∞. For results on fixed

sample sizes, see [2]. Strangely the theorems involving the larger order statistics proved

to be much simpler to prove than the corresponding theorems involving the smaller

order statistics, see [1].

This type of strong law is part of the fair games problem. The idea is to balance sums

of random variables with a sequence of constants. The random variables anXn(k) can

be considered as winnings from a game and the sequence of constants {bN, N ≥ 1}
as the cumulative entrance fee. We try to make the limit of the ratio of these two

approaches a nonzero constant. This can never happen when an = 1. That is why we

must examine weighted sums of random variables. Having a nonzero limit makes the
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game equable to both the house and the gambler. Otherwise, one of them would have

an unfair advantage.

We use the partition

b−1
N

N∑
n=k

anXn(k) = b−1
N

N∑
n=k

an
[
Xn(k)I

(
Xn(k) ≤ dn

)−EXn(k)I(Xn(k) ≤ dn)]

+b−1
N

N∑
n=k

anXn(k)I
(
Xn(k) > dn

)

+b−1
N

N∑
n=k

anEXn(k)I
(
Xn(k) ≤ dn

)
,

(3)

where dn = bn/an, in order to prove Theorem 2. Most of our proof will be devoted to

showing that the middle term of (3) vanishes. In order to achieve this, we will use a

result due to [4]. Their theorem is as follows.

Theorem 1. Let {(YNn, 1 ≤ n ≤ nN), N ≥ 1} be an array of rowwise independent

random variables and {cN, N ≥ 1} a sequence of positive constants such that
∑∞
N=1 cN =

∞. Suppose that for all ε > 0 and some δ > 0,

(i)
∑∞
N=1 cN

∑nN
n=1P{|YNn|> ε}<∞,

(ii) there exists J ≥ 2 such that
∑∞
N=1 cN(

∑nN
n=1EY

2
NnI(|YNn| ≤ δ))J <∞,

(iii)
∑nN
n=1EYNnI(|YNn| ≤ δ)→ 0 as N →∞.

Then
∑∞
N=1 cNP{|

∑nN
n=1YNn|> ε}<∞ for all ε > 0.

It should be noted that if pn(mn − k+ 1) > 1, then EXn(k) exists, hence classical

strong laws exist. When pn(mn−k+1) < 1 in past papers, see [2], it was shown that

not even an exact weak law can hold. So our concern was to establish a result when

pn(mn − k+ 1) = 1. This work started out as an attempt to extend the results that

can be found in [3]. That paper established exact strong laws for weighted sums for

the smallest order statistics from a Pareto distribution. The first result in that paper

obtained a strong law for the first order statistic in each row, no matter how slow or

fast our sample size grew. Unfortunately, that result could not be extended to the mode

of convergence here. However, the main theorem in that paper can be extended.

Before we establish our results, we need a few comments. As for notation, we define

lgx = log(max{e,x}) and lg2x = lg(lgx). Also, the constant C will denote a generic

real number that is not necessarily the same in each appearance.

Theorem 2. If mn = [[lgn]], pn(mn−k+1) = 1, α+k > 0, and a > 1, then for all

ε > 0,

∞∑
N=k

1

N
(
lg2N

)a P
{∣∣∣∣∣

∑N
n=k((lgn)α/n)Xn(k)

(lgN)α+k+1
− γk
α+k+1

∣∣∣∣∣> ε
}
<∞, (4)
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where

γk = 1
(k−1)!

[
1+

k−1∑
j=1

(k−1
j
)
(−1)j+1

jej
−
k−1∑
j=1

1
j

]
. (5)

Proof. We set an = (lgn)α/n, bn = (lgn)α+k+1, dn = bn/an =n(lgn)k+1, and cN =
1/(N(lg2N)a). From [3] we see that the last term in (3) converges to γk/(α+k+1).

As for the first term in (3), we use Chebyshev’s inequality. Setting

Wnk =Xn(k)I
(
Xn(k) ≤ dn

)−EXn(k)I(Xn(k) ≤ dn), (6)

we have, since α+k > 0,

∞∑
N=k

cNP
{∣∣∣∣∣

N∑
n=k

anWnk

∣∣∣∣∣> εbN
}

<C
∞∑
N=k

cN
b2
N

N∑
n=k

a2
nEX

2
n(k)I

(
Xn(k) ≤ dn

)

<C
∞∑
N=k

cN
b2
N

N∑
n=k

a2
n

∫ dn
1

mn ···
(
mn−k+2

)
(k−1)!

dx

< C
∞∑
N=k

cN
b2
N

N∑
n=k

a2
nmk−1

n dn

< C
∞∑
N=k

cN
(lgN)2α+2k+2

N∑
n=k

(lgn)2α

n2
(lgn)k−1n(lgn)k+1

= C
∞∑
N=k

cN
(lgN)2α+2k+2

N∑
n=k

(lgn)2α+2k

n

< C
∞∑
N=k

cN
(lgN)2α+2k+2

(lgN)2α+2k+1

= C
∞∑
N=k

cN
lgN

= C
∞∑
N=k

1

N lgN
(
lg2N

)a
<∞.

(7)

As for the middle term of (3), we will use Theorem 1 with

YNn = anXn(k)I
(
Xn(k) > dn

)
bN

. (8)
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Note that in proving (i) we can, without any loss of generality, let 0 < ε < 1. Observe

that there exist 0< γ1 < γ2 < 1 such that

∞∑
N=k

cN
N∑
n=k

P
{∣∣YNn∣∣> ε}

=
∞∑
N=k

cN
N∑
n=k

P
{
Xn(k) >max

{
dn,

εbN
an

}}

<
∞∑
N=k

cN

[γ2N∑
n=k

P
{
Xnk >

εbN
an

}
+

N∑
n=γ1N

P
{
Xnk > dn

}]

<
∞∑
N=k

cN

[γ2N∑
n=k

mk−1
n

∫∞
εbN/an

x−2dx+
N∑

n=γ1N
mk−1
n

∫∞
dn
x−2dx

]

<C
∞∑
N=k

cN

[γ2N∑
n=k

anmk−1
n

bN
+

∞∑
n=γ1N

mk−1
n
dn

]

<C
∞∑
N=k

cN

[∑γ2N
n=k((lgn)α+k−1/n)
(lgN)α+k+1

+
∞∑

n=γ1N

1
n(lgn)2

]

<C
∞∑
N=k

cN

[
(lgN)α+k

(lgN)α+k+1
+ 1

lg(γ1N)

]

<C
∞∑
N=k

cN
lgN

= C
∞∑
N=k

1

N lgN
(
lg2N

)a <∞

(9)

since a> 1.

We next establish (ii) with J = 2 and δ= 1. Thus

∞∑
N=k

cN

( N∑
n=k

a2
n

b2
N
EX2

n(k)I
(
dn < Xn(k) ≤ bNan

))2

<
∞∑
N=k

cN

( N∑
n=k

a2
nmk−1

n

b2
N

∫ bN/an
1

dx
)2

<
∞∑
N=k

cN

( N∑
n=k

anmk−1
n

bN

)2

<C
∞∑
N=k

cN

(∑N
n=k((lgn)α+k−1/n)
(lgN)α+k+1

)2

<C
∞∑
N=k

cN

(
(lgN)α+k

(lgN)α+k+1

)2

= C
∞∑
N=k

cN
(lgN)2

= C
∞∑
N=k

1

N(lgN)2
(
lg2N

)a <∞.

(10)
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Finally, we show that (iii) holds, where once again δ= 1. Hence

N∑
n=k

EYNnI
(∣∣YNn∣∣≤ 1

)

=
N∑
n=k

an
bN
EXn(k)I

(
dn < Xn(k) ≤ bNan

)

<
1
bN

N∑
n=k

anmk−1
n

∫ bN/an
dn

x−1dx

= 1
bN

N∑
n=k

anmk−1
n

[
lg
(
bN
)− lg

(
an
)− lg

(
dn
)]

<
C

(lgN)α+k+1

N∑
n=k

(lgn)α+k−1

n
[
(α+k+1) lg2N+ lgn−α lg2n− lgn+(k+1) lg2n

]

= C
(lgN)α+k+1

N∑
n=k

(lgn)α+k−1

n
[
(α+k+1) lg2N+(k−α+1) lg2n

]

<
C lg2N

(lgN)α+k+1

N∑
n=k

(lgn)α+k−1

n

<
C lg2N

(lgN)α+k+1
(lgN)α+k

= C lg2N
lgN

�→ 0

(11)

as N →∞. Therefore, via Theorem 1, the second term of (3) converges to zero, which

completes the proof.

It should be pointed out how delicate these proofs are. Just observe how we needed

the lower bound of dn in order to have
∑N
n=k EYNnI(|YNn| ≤ 1)→ 0. If we were not able

to cancel the lgn from the lg(an) term via the lg(dn) term, this proof would fail.
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