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We characterize several large classes of periodic rings: periodic rings with identity, finite-
rank torsion-free periodic rings, and rank-two torsion-free periodic rings.

1. Introduction

There is a great deal of literature on periodic rings, respectively, torsion-free rings (espe-
cially of rank two). The aim of this paper is to provide a link between these two topics.

All groups considered here are Abelian, with addition as the group operation. By order
of an element we always mean the additive order of this element. All rings are associative
but not necessarily with identity. The additive group of the ring R will be denoted by R+.
�n(R) denotes the ring of all the n×n matrices with entries in R.

A ring R is called periodic if for each x ∈ R, the set {x,x2,x3, . . .} is finite, or equiva-
lently, for each x ∈ R there are positive integers m(x), n(x) such that xm(x) = xm(x)+n(x).
However, periodic rings can also be defined (see [20]) by requiring that (i) the multi-
plicative semigroup of R is periodic, or, (ii) if a∈ R, then a power of a generates a finite
subring. Examples of periodic rings are finite rings, nil rings, and direct sums of matrix
rings over finite fields. Z, the ring of all the integers, is not periodic.

Research on periodic rings (the term “periodic” seems to have been first used by
Chacron [16]) was mainly done in two directions:

(i) finding sufficient conditions on periodic rings which imply commutativity, Bell
being the prominent name in this direction (all over the last 40 years; e.g., see
[10, 11, 12]) but also Abu-Khuzam and Yaqub (see [1, 2, 13, 26]), respectively,

(ii) finding structure results for some special classes of periodic rings (e.g., see [3, 5,
12]).

However, it should be noticed that the starting point for these investigations was the
Jacobson theorem, whose proof contains many ideas which could be used also in more
general contexts.

For later convenience we state here some elementary properties for a periodic ring.
(iii) Any infinite-order element is a zero divisor (in the subring generated by itself).
(iv) Every idempotent in R has finite order.
(v) For each a∈ R some power of a is idempotent.
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On the other hand, research on the additive groups of rings begun much earlier. Defin-
ing ring structures on Abelian groups was first done by Beaumont [6] who considered
rings on direct sums of cyclic groups. Nearly at the same time, Szele investigated nil rings
[24] and Beaumont and Zuckerman described the rings on subgroups of the rationals.

Satisfactory results were obtained later by Beaumont and Pierce for finite-(and espe-
cially 2) rank torsion-free groups, see [7, 8]. Szele began the program of investigating the
additive structures of rings by the study of nilpotent rings (see [25]). However, a complete
status of the results (previous to 1973) is given in the Fuchs treatise [19]. As of special in-
terest for our paper, we also mention Freedman [18] and Stratton [23] who proved that
nonnil torsion-free Abelian groups of rank two possess a unique minimal type, and their
typeset has cardinality at most three. Here typeset (R), the typeset of R (or R+), denotes
the set of all types of the elements in R. For the definition of height and type of an ele-
ment, we refer to [19]. For any group G and any type τ, G(τ)= {x ∈ G | t(x)≥ τ}. For a
torsion-free group G, E(G) denotes the endomorphism ring and QE(G)=Q⊗Z E(G) the
quasiendomorphism ring.

Our main results can be summarized as follows. In Section 2, we determine the struc-
ture of the periodic rings with identity. In Section 3, we characterize periodic rings which
have a finite-rank torsion-free underlying additive group, obtaining as a by-product a
special case confirmation of Köthe’s conjecture. In Section 4, we characterize the peri-
odic torsion-free rings of rank two.

2. Periodic rings with identity

Given any ring R, for any fixed a∈ R, the left and right multiplications with a are endo-
morphisms of R+. Therefore, fully invariant subgroups of R+ are necessarily ideals in R, no
matter how multiplication is defined.

As a special case, the torsion part T(R) is a (two-sided) ideal of R. Moreover, the primary
components Rp (p prime numbers) of R+ are also ideals of R, and every ring with torsion
additive group decomposes (as a ring): R =⊕p∈PRp, P denoting the set of all prime
numbers. A ring will be called a p-ring (p prime number) if its additive group is an
(Abelian) p-group. An Abelian group is bounded if there exists a positive integer n such
that nR= {0}.
Definition 2.1. A ring property Λ is called non-Z, if the ring of integers does not have
property Λ.

Examples of such properties are Λ≡ has zero divisors, or, Λ≡ periodic.

Proposition 2.2. Let R be a ring with identity which satisfies a non-Z property Λ together
with its subrings. Then R+ is torsion. Moreover, R+ is bounded.

Proof. If 1R denotes the identity, there is a canonical ring homomorphism f : Z→ R such
that f (n) = n1R, ker f = (char(R)), the ideal generated by the characteristics of R, and
im f = 〈1〉 � Z/ker f , the subring generated by 1R. Together with R, 〈1〉 � Z/ker f has
property Λ and so, ker f = (char(R)) 	= {0}. Since char(R) = ordR+ (1R), it follows that
1R ∈ T(R). Hence T(R)= R, the torsion part being an ideal in R.

As for the last claim, if n= char(R)= ordR+ (1R), for an arbitrary element r ∈ R, nr =
n(1Rr)= (n1R)r = 0, and nR= {0}. �
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Corollary 2.3 (see [19]). A structure of ring with (left) identity exists on a torsion group
G if and only if G is bounded.

Corollary 2.4. Every periodic ring with identity is torsion (as a group). Moreover, it is
bounded, and so, it is a direct sum of cyclic groups.

As a special case, any semisimple periodic ring R is bounded (this will be used in the
next section).

Corollary 2.5. Every periodic ring with identity decomposes (as a ring) in a direct sum of
p-rings. Each periodic p-ring is (as a group) a direct sum of cyclic p-groups.

Corollary 2.6 (see [21]). A periodic ring with identity such that R+ is finitely generated,
is finite.

According to Corollary 2.5, the structure of periodic rings with identity reduces to p-
rings which (as groups) are direct sums of cyclic p-groups. A special case of an early result
due to László Fuchs settles this.

Theorem 2.7 (see [19]). A multiplication µ on a direct sum G =⊕i∈I〈ai〉 of cyclic p-
groups is completely determined by the values µ(ai,aj) with ai, aj running over this p-basis
of G. Moreover, any choice of µ(ai,aj)∈G with ai, aj from this p-basis of G—subject to the
condition ord(µ(ai,aj)) ≤ min(ord(ai),ord(aj))—extends to a multiplication on G. The
multiplication is associative (commutative) if (and only if) it is associative (commutative)
on the p-basis {ai}i∈I .

More can be done (this is the last needed step): G being bounded, any element ai0 of
maximum order of this p-basis can be taken as identity of a ring, by letting ai0 act as
multiplication by 1 on 〈ai0〉 and by trivial multiplication on the other summands (see
[19, Theorem 120.8]).

It should be noted that a function µ : G×G→ G is called a multiplication on G if it
satisfies

µ(a,b+ c)= µ(a,b) +µ(a,c), µ(a+ b,c)= µ(a,c) +µ(b,c) (2.1)

for all a, b, c in G. Further, if G =⊕i∈I Hi and Hi are fully invariant subgroups of G,
multiplications on Hi (i∈ I) extend to multiplications on G (and conversely).

According to [19], an Abelian group is called a nil group if there is no ring structure on
G other than the zero-ring.

Theorem 2.8 (Szele [24]). A torsion group is nil if and only if it is divisible.

3. Torsion-free periodic rings of finite rank

Notice that for an arbitrary ring (denoting by J(R) and Nil(R) the Jacobson and the nil-
radicals, resp.) the following statements (known as Köthe’s conjecture) are equivalent:

(i) the upper nilradical contains every nil left ideal;
(ii) the sum of two nil left ideals is necessarily nil;

(iii) Nil(�n(R))=�n(Nil(R)) for all rings and for all n;
(iv) J(R[λ])=Nil(R)[λ] for all rings R, where λ is an indeterminate commuting with

all elements of ring.
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From the elementary properties we mentioned in the introduction it follows that any
periodic torsion-free ring is nilpotent. Moreover (for an elementary proof see [21]) the
following holds.

Lemma 3.1. A torsion-free ring is periodic if and only if it is nil.

Corollary 3.2. If Köthe’s conjecture holds, the matrix ring of a periodic torsion-free ring is
also periodic.

Next, recall that if R is a torsion-free ring of finite rank, then QR=Q⊗R becomes in
a natural way a finite-dimensional Q-algebra (this comes back to Cartan and Eilenberg,
see [14] or [19, Section 119]). This is a divisible envelope for R+, and the dimension of
QR over Q equals the rank of R+. QR may have an identity even if R does not (actually
this happens exactly when there is an element e and an integer n such that ex = nex for
all elements x in R). Using the previous lemma it follows that R is a periodic ring if and
only if QR is periodic.

The following result shows that in the torsion-free finite rank case, any periodic ring
must be nilpotent (the converse obviously also holds).

Theorem 3.3. Let R be a periodic torsion-free ring of rank n. Then Rn+1 = 0.

Proof. Since R is periodic, every element of R is nilpotent. Thus, the endomorphisms
of the group R+ of the form tr : R→ R, tr(x) = rx, are nilpotent endomorphisms, hence
they belong to N(E(R+)), the nil-radical of the endomorphism ring of R+. But (see [4,
Theorem 9.1]) this nil-radical is nilpotent and so there exists a positive integer k > 0 such
that tr1 ··· trk = 0 for any r1, . . . ,rk ∈ R. Therefore R is a nilpotent ring.

Next, if R is a torsion-free ring of finite rank, the finite-dimensional Q-algebra QR=
Q⊗ R is an Artinian Q-algebra. As previously noticed, R is a periodic ring if and only
if QR is periodic (indeed, for all s∈ R, ∃m : rm = 0 implies for all αs∈QR (α∈Q)∃m :
(αr)m = αmrm = 0).

But QR is an n-dimensional Q-algebra, hence every strictly descending chain of Q-
ideals of QR has at most n nonzero terms. Since QR is nilpotent as a periodic ring, we
use the chain (QR)≥ (QR)2 ≥ ··· ≥ (QR)n+1, and the fact that if (QR)s = (QR)s+1, then
(QR)s = (QR)k for all k > s, to obtain 0= (QR)n+1 =QRn+1. �

Corollary 3.4. Let R be a torsion-free ring of finite rank. Then R is periodic if and only if
R is nilpotent.

In the literature, rings which are finitely generated as rings have been rarely studied.
Obviously, if a ring is finitely generated as a group, it is also finitely generated as a ring.

Corollary 3.5. Let R be a periodic ring of finite torsion-free rank. Then it is finitely gener-
ated as a ring if and only if it is finitely generated as a group.

Proof. Let n be the rank of R+. If R= 〈r1, . . . ,rm〉, then

R+ =
〈 k∏

i=1

xi | k = 1, . . . ,n, xi ∈
{
r1, . . . ,rm

}〉
. (3.1)

�
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Remark 3.6. Actually more can be proved (see [21]):
(A) if R is a commutative periodic ring, the two ways of being finitely generated are

equivalent.

Corollary 3.7. If R is a periodic finite-rank torsion-free ring, then �n(R) is periodic.

Corollary 3.8. If R is a rank 1 torsion-free periodic ring, then R2 = 0.

4. Rank-two torsion-free periodic rings

In this section, R denotes a torsion-free ring of rank two. We continue the discussion
initiated by Beaumont and Wisner in [9] and continued by Beaumont and Pierce in [8].

The structure of rank-two torsion-free groups which admit a nontrivial noncommu-
tative multiplication was intensively investigated in [9, 17]. First we show that such peri-
odic rings are commutative. We recall that there exists (up to an isomorphism) only one
structure of two-dimensional nilpotent Q-algebra (see [15] or [8, Section 9]) and this is
commutative. Using this and the Q-algebra QR, we obtain the following.

Proposition 4.1. A rank-two torsion-free periodic ring is commutative.

An important result towards finding the structure of the not nil rank-two torsion-free
rings was a theorem due to Freedman and Stratton (see [18, 23]):

(A) the typeset of a not nil rank two torsion-free ring possesses a unique minimal
element, and has at most three elements.

The next result determines rank-two torsion-free groups which admit a nontrivial
multiplication of periodic type.

Theorem 4.2. Let G be a rank-two torsion-free group. G admits a nontrivial multiplica-
tion of periodic type if and only if there exists a proper pure subgroup H of G such that
(type(G/H))2 ≤ type(H).

Proof. Let R be a periodic ring such that R2 	= 0 and the additive group R+ is isomor-
phic to G. Then there exists r ∈ R such that the (left) multiplication with r (i.e., tr :
R→ R, tr(x) = rx) is a nonzero endomorphism of R+. Since R3 = 0, we obtain t2

r = 0
so that H = ker(tr) is a pure subgroup of R with tr(R)≤H . Therefore there is a nonzero
monomorphism R/H → H . Moreover, since H is of rank 1, for every h ∈ H there is a
rational number q and x ∈ R such that h = qrx. Consequently RH = 0 and it follows
that r /∈H . If x1,x2 ∈ R, there are integers mi, ni, and elements hi ∈H (i ∈ {1,2}) such
that nixi =mir + hi. Hence n1n2x1x2 =m1m2r2 ∈ H and so r2 	= 0 and (type(G/H))2 ≤
type(H).

Conversely, suppose H is a proper subgroup of G with (type(G/H))2 ≤ type(H). Let
S ≤ T be rational groups such that 1 ∈ S with type(G/H) = type(S) and type(H)
= type(T). From the type hypothesis, we can suppose S2 = {s1s2 | s1,s2 ∈ S} ⊆ T . Fix
a ∈ G such that S(a + H) = G/H and h ∈ H with Th = H and define a multiplication
as follows: if x1,x2 ∈ G and nixi =mia+ hi with mi/ni ∈ S and hi ∈ H for all i ∈ {1,2},
then x1x2 = (m1m2/n1n2)h. It is easy to verify that this multiplication defines a periodic
ring structure on G. �
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Remark 4.3. From the previous proof, notice that if G is a rank n torsion-free group which
admits a nontrivial periodic ring multiplication, then G has a nonzero nilpotent endo-
morphism. Hence, in the n = 2 case, using [22, Theorem 7.1], the quasiendomorphism
ring of G must be one of the following matrix rings:

(i) �2(Q), or
(ii) the ring of all 2× 2 rational triangular matrices, or

(iii) the ring of all 2× 2 rational triangular matrices with equal diagonal entries.

We summarize from [4, Section 3] what we need in the sequel. For a torsion-free group
G of rank two, we have the following possible situations:

(a) the quasiendomorphism ring of G is isomorphic to �2(Q) if and only if G=H ⊕
K with type(H)= type(K) (i.e., G is homogeneous completely decomposable),

(b) the quasiendomorphism ring of G is isomorphic to the ring of all 2× 2 rational
triangular matrices if and only if G=H ⊕K with type(H) < type(K),

(c) the quasiendomorphism ring of G is isomorphic to the ring of all 2× 2 rational
triangular matrices with equal diagonal entries if and only if G is strongly inde-
composable, |typeset(G)| = 2, and G has a nilpotent endomorphism.

Notice that in all these cases typeset(A)= {τ1,τ2} with τ1 ≤ τ2.
Here, a torsion-free group G is strongly indecomposable if whenever 0 	= k ∈ Z and

kG⊆H ⊕K ⊆G, then H = 0 or K = 0.

Theorem 4.4. A rank-two torsion-free group G admits a nontrivial periodic ring structure
if and only if one of the following conditions holds:

(i) G is homogeneous completely decomposable of idempotent type, or
(ii) G=H ⊕K with type(H)2 < type(K), or

(iii) G is strongly indecomposable, typeset(G)= {τ1,τ2}with τ1 < τ2, and type(G/G(τ2))2

≤ τ2.

Proof. The (i) case corresponds to (a) in the preceding discussion. In this situation every
pure subgroup is a direct summand, hence the kernel ker( f ), for every nilpotent en-
domorphism f of G, is a direct summand too. Then type(G/ker( f )) = type(ker( f )) =
type(G) and so type(G) is idempotent. The same conclusion can be deduced from [23].

If G satisfies one of the conditions (b) or (c), the typeset(G)= {τ1,τ2} with τ1 < τ2. If
f is a nonzero nilpotent endomorphism of G, then ker( f ) = G(τ2) (see [4, Section 3]).
The proof is now complete using Theorem 4.2. �
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