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The purpose of this note is to establish a strong convergence of a modified implicit itera-
tion process to a common fixed point for a finite family of Z-operators.
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1. Introduction and preliminaries

We recall the following definitions in a metric space (X ,d). A mapping T : X → X is called
an a-contraction if

d(Tx,Ty)≤ ad(x, y) ∀x, y ∈ X , (1.1)

where a∈ (0,1).
The map T is called Kannan mapping [7] if there exists b ∈ (0,1/2) such that

d(Tx,Ty)≤ b
[
d(x,Tx) +d(y,Ty)

] ∀x, y ∈ X. (1.2)

A similar definition is due to Chatterjea [3]: there exists c ∈ (0,1/2) such that

d(Tx,Ty)≤ c
[
d(x,Ty) +d(y,Tx)

] ∀x, y ∈ X. (1.3)

Combining these three definitions, Zamfirescu [12] proved the following important
result.

Theorem 1.1. Let (X ,d) be a complete metric space and T : X → X a mapping for which
there exists the real numbers a,b, and c satisfying a∈ (0,1), b,c ∈ (0,1/2) such that for each
pair x, y ∈ X , at least one of the following conditions holds:

(z1) d(Tx,Ty)≤ ad(x, y),
(z2) d(Tx,Ty)≤ b[d(x,Tx) +d(y,Ty)],
(z3) d(Tx,Ty)≤ c[d(x,Ty) +d(y,Tx)].

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 10328, Pages 1–6
DOI 10.1155/IJMMS/2006/10328

http://dx.doi.org/10.1155/S0161171206103282


2 Strong convergence of an implicit iteration process

Then T has a unique fixed point p and the Picard iteration {xn} defined by

xn+1 = Txn, n∈N, (1.4)

converges to p for any arbitrary but fixed x1 ∈ X .

One of the most general contraction conditions, for which the unique fixed point can
be approximated by means of Picard iteration, has been obtained by Ćirić [5]: there exists
0 < h < 1 such that

d(Tx,Ty)≤ hmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

} ∀x, y ∈ X. (QC)

Remark 1.2. (1) A mapping satisfying (QC) is commonly called quasicontraction. It is
obvious that each of the conditions (1.1)–(1.3) and (z1)–(z3) implies (QC).

(2) An operator T satisfying the contractive conditions (z1)–(z3) in the above theorem
is called Z-operator.

Let C be a nonempty closed convex subset of a normed space E.
Xu and Ori [11] introduced the following implicit iteration process for a finite family

of nonexpansive mappings {Ti : i∈ I} (here I = {1,2, . . . ,N}), with {αn} a real sequence
in (0,1), and an initial point x0 ∈ C:

x1 = α1x0 +
(
1−α1

)
T1x1,

x2 = α2x1 +
(
1−α2

)
T2x2,

...

xN = αNxN−1 +
(
1−αN

)
TNxN ,

xN+1 = αN+1xN +
(
1−αN+1

)
T1xN+1,

...

(1.5)

which can be written in the following compact form:

xn = αnxn−1 +
(
1−αn

)
Tnxn ∀n≥ 1, (1.6)

where Tn = Tn(modN) (here the modN function takes values in I). Xu and Ori proved the
weak convergence of this process to a common fixed point of the finite family defined
in a Hilbert space. They further remarked that it is yet unclear what assumptions on the
mappings and/or the parameters {αn} are sufficient to guarantee the strong convergence
of the sequence {xn}.

In [13], Zhou and Chang studied the weak and strong convergences of this implicit
process to a common fixed point for a finite family of nonexpansive mappings. More
precisely, they proved the following result.

Theorem 1.3 [13, Theorem 3]. Let E be a uniformly convex Banach space and let K be a
nonempty closed convex subset of E. Let {Ti : i ∈ I} be N semicompact nonexpansive self-
mappings of K with F =⋂N

i=1F(Ti) �= φ (here F(Ti) denotes the set of fixed points of Ti).
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Suppose that x0 ∈ K and {αn} ⊂ (b,c) for some b,c ∈ (0,1). Then the sequence {xn} defined
by the implicit iteration process (1.6) converges strongly to a common fixed point in F.

In [4], Chidume and Shahzad studied the strong convergence of the implicit process
(1.6) to a common fixed point for a finite family of nonexpansive mappings. They proved
the following results.

Theorem 1.4 [4, Theorem 3.3]. Let E be a uniformly convex Banach space and let K be a
nonempty closed convex subset of E. Let {Ti : i∈ I} be N nonexpansive self-mappings of K
with F =⋂N

i=1F(Ti) �= φ. Suppose that one of the mappings in {Ti : i∈ I} is semi-compact.
Let {αn}n≥1 ⊂ [δ,1− δ] for some δ ∈ (0,1). From arbitrary x0 ∈ K , define the sequence
{xn} by the implicit iteration process (1.6). Then {xn} converges strongly to a common fixed
point of the mappings {Ti : i∈ I}.
Remark 1.5. It is worth mentioning here that [13, Theorem 1] by Zhou and Chang is “for
convergence of modified implicit iteration process for a finite family of asymptotically
nonexpansive mappings in uniformly convex Banach spaces.”

Let C be a nonempty closed convex subset of a normed space E. Inspired and mo-
tivated by the above said facts, we suggest the following implicit iteration process with
errors and define the sequence {xn} as follows:

xn = αnxn−1 +
(
1−αn

)
Tnxn +un ∀n≥ 1, (1.7)

where Tn = Tn(modN), {αn} is a sequence in (0,1), and {un} is a summable sequence in C.
Clearly, this iteration process contains the process (1.6) as its special case.
The purpose of this note is to study the strong convergence of implicit iteration process

(1.7) to a common fixed point for a finite family of Z-operators in normed spaces.
The following lemma is proved in [2].

Lemma 1.6. Let {rn}, {sn}, and {tn} be sequences of nonnegative numbers satisfying

rn+1 ≤
(
1− sn

)
rn + sntn ∀n≥ 1. (1.8)

If
∑∞

n=1 sn =∞ and limn→∞ tn = 0, then limn→∞ rn = 0.

2. Main results

Theorem 2.1. Let C be a nonempty closed convex subset of a normed space E. Let {T1,T2,
. . . ,TN} : C→ C be N Z-operators with F =⋂N

i=1F(Ti) �= φ. From arbitrary x0 ∈ C, define
the sequence {xn} by the implicit iteration process (1.7) satisfying

∑∞
n=1(1− αn) =∞ and

‖un‖ = 0(1−αn). Then {xn} converges strongly to a common fixed point of {T1,T2, . . . ,TN}.
Proof. It follows from F =⋂N

i=1F(Ti) �= φ that the operators {T1,T2, . . . ,TN} have a com-
mon fixed point in C, say w. Consider x, y ∈ C. Since each Ti : i ∈ I is a Z-operator, at
least one of the conditions (z1), (z2), and (z3) is satisfied. If (z2) holds, then

∥
∥Tix−Tiy

∥
∥≤ b

[∥∥x−Tix
∥
∥+

∥
∥y−Tiy

∥
∥]

≤ b
[∥∥x−Tix

∥
∥+‖y− x‖+

∥
∥x−Tix

∥
∥+

∥
∥Tix−Tiy

∥
∥]

(2.1)
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implies

(1− b)
∥
∥Tix−Tiy

∥
∥≤ b‖x− y‖+ 2b

∥
∥x−Tix

∥
∥, (2.2)

which yields (using the fact that 0≤ b < 1)

∥
∥Tix−Tiy

∥
∥≤ b

1− b
‖x− y‖+

2b
1− b

∥
∥x−Tix

∥
∥. (2.3)

If (z3) holds, then similarly we obtain

∥
∥Tix−Tiy

∥
∥≤ c

1− c
‖x− y‖+

2c
1− c

∥
∥x−Tix

∥
∥. (2.4)

Denote

δ =max
{
a,

b

1− b
,

c

1− c

}
. (2.5)

Then we have 0≤ δ < 1 and in view of (z1), (2.3)–(2.5) it results that the inequality

∥
∥Tix−Tiy

∥
∥≤ δ‖x− y‖+ 2δ

∥
∥x−Tix

∥
∥ (AR)

holds for all x, y ∈ C.
Using (1.6), we have

∥
∥xn−w

∥
∥= ∥∥αnxn−1 +

(
1−αn

)
Tnxn +un−w

∥
∥

= ∥∥αn
(
xn−1−w

)
+
(
1−αn

)(
Tnxn−w

)
+un

∥
∥

≤ αn
∥
∥xn−1−w

∥
∥+

(
1−αn

)∥∥Tnxn−w
∥
∥+

∥
∥un

∥
∥.

(2.6)

Now for y = xn and x =w, (AR) gives

∥
∥Txn−w

∥
∥≤ δ

∥
∥xn−w

∥
∥, (2.7)

and hence, by (2.6), (2.7) we obtain

∥
∥xn−w

∥
∥≤ αn

1− δ(1−αn)

∥
∥xn−1−w

∥
∥+

1
1− δ(1−αn)

∥
∥un

∥
∥. (2.8)

Let

An = αn,

Bn = 1− δ
(
1−αn

)
,

(2.9)

and consider

βn = 1− An

Bn
= 1− αn

1− δ
(
1−αn

)

= (1− δ)
(
1−αn

)

1− δ
(
1−αn

) ≥ (1− δ)
(
1−αn

)
.

(2.10)



Arif Rafiq 5

Indeed

1− δ ≤ 1− δ
(
1−αn

)≤ 1 (2.11)

implies

An

Bn
≤ 1− (1− δ)

(
1−αn

)
. (2.12)

Thus from (2.8), we get

∥
∥xn−w

∥
∥≤ [1− (1− δ)

(
1−αn

)]∥∥xn−1−w
∥
∥+

1
1− δ

∥
∥un

∥
∥. (2.13)

With the help of Lemma 1.6 and using the fact that 0≤ δ < 1, 0 < αn < 1,
∑∞

n=1(1−αn)=
∞, and ‖un‖ = 0(1−αn), it results that

lim
n→∞

∥
∥xn−w

∥
∥= 0. (2.14)

Consequently xn→w ∈ F and this completes the proof. �

Corollary 2.2. Let C be a nonempty closed convex subset of a normed space E1. Let {T1,T2,
. . . ,TN} : C → C be N operators satisfying condition Z with F =⋂N

i=1F(Ti) �= φ. From ar-
bitrary x0 ∈ C, define the sequence {xn} by the implicit iteration process (1.6) satisfying
∑∞

n=1(1 − αn) = ∞. Then {xn} converges strongly to a common fixed point of {T1,T2,
. . . ,TN}.
Remark 2.3. (1) Chatterjea’s and Kannan’s contractive conditions (1.3) and (1.2) are both
included in the class of Zamfirescu operators.

(2) Recently the convergence problems of an implicit (or nonimplicit) iterative process
to a common fixed point of finite family of nonexpansive mappings in Hilbert spaces have
been considered by several authors (see, e.g., [1, 6, 8–11, 13]).
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