ON TRANSFORMATION SEMIGROUPS WHICH ARE $\mathscr{B 2}$-SEMIGROUPS

S. NENTHEIN AND Y. KEMPRASIT

Received 23 December 2005; Revised 6 June 2006; Accepted 22 June 2006

A semigroup whose bi-ideals and quasi-ideals coincide is called a $\mathscr{B 2} 2$-semigroup. The full transformation semigroup on a set X and the semigroup of all linear transformations of a vector space V over a field F into itself are denoted, respectively, by $T(X)$ and $L_{F}(V)$. It is known that every regular semigroup is a $\mathscr{B 2} 2$-semigroup. Then both $T(X)$ and $L_{F}(V)$ are $\mathscr{B} 2$-semigroups. In 1966, Magill introduced and studied the subsemigroup $\bar{T}(X, Y)$ of $T(X)$, where $\varnothing \neq Y \subseteq X$ and $\bar{T}(X, Y)=\{\alpha \in T(X) \mid Y \alpha \subseteq Y\}$. If W is a subspace of V, the subsemigroup $\bar{L}_{F}(V, W)$ of $L_{F}(V)$ will be defined analogously. In this paper, it is shown that $\bar{T}(X, Y)$ is a $\mathscr{B 2}$-semigroup if and only if $Y=X,|Y|=1$, or $|X| \leq 3$, and $\bar{L}_{F}(V, W)$ is a $\mathscr{B 2}$-semigroup if and only if (i) $W=V$, (ii) $W=\{0\}$, or (iii) $F=\mathbb{Z}_{2}$, $\operatorname{dim}_{F} V=2$, and $\operatorname{dim}_{F} W=1$.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The cardinality of a set A is denoted by $|A|$. The image of a map α at x in the domain of α will be written by $x \alpha$.

An element a of a semigroup S is said to be regular if $a=a b a$ for some $b \in S$, and S is called a regular semigroup if every element of S is regular. The set of all regular elements of S is denoted by $\operatorname{Reg}(S)$.

The full transformation semigroup on a nonempty set X is denoted by $T(X)$, that is, $T(X)$ is the semigroup of all mappings $\alpha: X \rightarrow X$ under composition. The semigroup $T(X)$ is known to be regular [4, page 4]. Magill [9] introduced and studied the subsemigroup

$$
\begin{equation*}
\bar{T}(X, Y)=\{\alpha \in T(X) \mid Y \alpha \subseteq Y\} \tag{1.1}
\end{equation*}
$$

of $T(X)$, where $\varnothing \neq Y \subseteq X$. Note that 1_{X}, the identity map on X, belongs to $\bar{T}(X, Y)$ and $\bar{T}(X, Y)$ contains $T(X, Y)$ as a subsemigroup, where $T(X, Y)=\{\alpha \in T(X) \mid \operatorname{ran} \alpha \subseteq Y\}$ and ran α denotes the range of α. The semigroup $T(X, Y)$ was introduced and studied by Symons [13].

For a vector space V over a field F, let $L_{F}(V)$ be the semigroup of all linear transformations $\alpha: V \rightarrow V$ under composition. It is known that $L_{F}(V)$ is a regular semigroup [5, page 63]. For a subspace W of V, we define the subsemigroup $\bar{L}_{F}(V, W)$ of $L_{F}(V)$ analogously, that is,

$$
\begin{equation*}
\bar{L}_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid W \alpha \subseteq W\right\} . \tag{1.2}
\end{equation*}
$$

Clearly, $1_{V} \in \bar{L}_{F}(V, W)$ and 0 , the zero map on V, also belongs to $\bar{L}_{F}(V, W)$. In addition, $\bar{L}_{F}(V, W)$ contains $L_{F}(V, W)=\left\{\alpha \in L_{F}(V) \mid \operatorname{ran} \alpha \subseteq W\right\}$ as a subsemigroup.

A subsemigroup Q of a semigroup S is called a quasi-ideal of S if $S Q \cap Q S \subseteq Q$, and a bi-ideal of S is a subsemigroup B of S such that $B S B \subseteq B$. The notions of quasi-ideal and bi-ideal for semigroups were introduced by Steinfeld [11] and Good and Hughes [3], respectively. Both quasi-ideals and bi-ideals are generalizations of one-sided ideals, and bi-ideals also generalize quasi-ideals. For a nonempty subset A of S, let $(A)_{q}$ and $(A)_{b}$ be the quasi-ideal and the bi-ideal of S generated by A, respectively, that is, $(A)_{q}\left[(A)_{b}\right]$ is the intersection of all quasi-ideals (bi-ideals) of S containing A [12, pages 10, 12]. Observe that $(A)_{b} \subseteq(A)_{q}$.

Proposition 1.1 [2, pages 84, 85]. For a nonempty subset A of a semigroup S,
(i) $(A)_{q}=S^{1} A \cap A S^{1}$,
(ii) $(A)_{b}=A S^{1} A \cup A$.

Kapp [6] used $\mathscr{B} 2$ to denote the class of all semigroups whose bi-ideals and quasiideals coincide and Mielke [10] called a semigroup in $\mathscr{B 2}$ a $\mathscr{B} 2$-semigroup. Important $\mathscr{B} 2$-semigroups are the following ones.

Proposition 1.2 [8]. Every regular semigroup is a $\mathscr{B 2}$-semigroup.
Proposition 1.3 [6]. Every left (right) simple semigroup or every left (right) 0 -simple semigroup is a $\mathscr{B 2}$-semigroup.

Recall that a semigroup S is left (right) simple if S has no proper left (right) ideal, and a semigroup S with 0 is called left (right) 0 -simple if $S^{2} \neq\{0\}$ and S has no proper nonzero left (right) ideal. Kemprasit showed in [7] that if X is an infinite set, then the subsemigroup $\{\alpha \in T(X) \mid X \backslash \operatorname{ran} \alpha$ is infinite $\}$ of $T(X)$ is a $\mathscr{B 2}$-semigroup but it is neither regular nor left (right) simple. In fact, $\mathscr{B 2}$-semigroups have been characterized by Calais [1] as follows.

Proposition 1.4 [1]. A semigroup S is a $\mathscr{B 2} 2$-semigroup if and only if $(x, y)_{b}=(x, y)_{q}$ for all $x, y \in S$.

Every bi-ideal of a regular semigroup is a $\mathscr{B 2} 2$-semigroup. The proof is rather simple and is as follows: let T be a bi-ideal of a regular semigroup S and B a bi-ideal of T. Then $T S T \subseteq T$ and $B T B \subseteq B$. Let $x \in T B \cap B T$. Since S is regular, $x=x s x$ for some $s \in S$ which implies that $x=x s x \in B T s T B \subseteq B T S T B \subseteq B T B \subseteq B$. Thus $T B \cap B T \subseteq B$. Hence B is a quasi-ideal of T, as desired. Since $T(X, Y)$ and $L_{F}(V, W)$ are left ideals of $T(X)$ and $L_{F}(V)$, respectively, it follows that $T(X, Y)$ and $L_{F}(V, W)$ are always $\mathscr{B} 2$-semigroups. However, the semigroups $\bar{T}(X, Y)$ and $\bar{L}_{F}(V, W)$ need not be $\mathscr{B} 2$-semigroups. Notice
that if X is infinite, then the semigroup $\{\alpha \in T(X) \mid X \backslash \operatorname{ran} \alpha$ is infinite $\}$ is a left ideal of $T(X)$. Similarly, if V has infinite dimension over F, then the semigroup $\left\{\alpha \in L_{F}(V) \mid\right.$ $\operatorname{dim}_{F}(V / \operatorname{ran} \alpha)$ is infinite $\}$ is a left ideal of $L_{F}(V)$.

In Section 2, we give a necessary and sufficient condition for $\bar{T}(X, Y)$ to be a $\mathscr{B} 2-$ semigroup in terms of $|X|$ and $|Y|$. In Section 3, a necessary and sufficient condition for $\bar{L}_{F}(V, W)$ to be a $\mathscr{B 2}$-semigroup is given in terms of $|F|, \operatorname{dim}_{F} V$, and $\operatorname{dim}_{F} W$.

In the remainder, let X be a nonempty set, $\varnothing \neq Y \subseteq X, V$ a vector space over a field F, and W a subspace of V.

2. The semigroup $\bar{T}(X, Y)$

We begin this section by characterizing regular elements of the semigroup $\bar{T}(X, Y)$. Then it is shown that $\bar{T}(X, Y)$ is a regular semigroup if and only if $Y=X$ or Y contains only one element.

Proposition 2.1. The following statements hold for the semigroup $\bar{T}(X, Y)$.
(i) For $\alpha \in \bar{T}(X, Y), \alpha \in \operatorname{Reg}(\bar{T}(X, Y))$ if and only if $\operatorname{ran} \alpha \cap Y=Y \alpha$.
(ii) The semigroup $\bar{T}(X, Y)$ is regular if and only if either $Y=X$ or $|Y|=1$.

Proof. (i) Since $Y \alpha \subseteq Y$, we have $Y \alpha \subseteq \operatorname{ran} \alpha \cap Y$. Assume that $\alpha=\alpha \beta \alpha$ for some $\beta \in$ $\bar{T}(X, Y)$. If $x \in \operatorname{ran} \alpha \cap Y$, then $x \in Y$ and $x=a \alpha$ for some $a \in X$ which imply that $x=a \alpha=a \alpha \beta \alpha=x \beta \alpha \in Y \beta \alpha \subseteq Y \alpha$. Hence we have $\operatorname{ran} \alpha \cap Y=Y \alpha$.

Conversely, assume that $\operatorname{ran} \alpha \cap Y=Y \alpha$. Then for each $x \in \operatorname{ran} \alpha \cap Y$, we have $x \alpha^{-1} \cap$ $Y \neq \varnothing$. We choose an element $x^{\prime} \in x \alpha^{-1} \cap Y$ for each $x \in \operatorname{ran} \alpha \cap Y$. Also, for $x \in \operatorname{ran} \alpha \backslash$ Y, choose an element $\bar{x} \in x \alpha^{-1}$. Then $x^{\prime} \alpha=x$ for all $x \in \operatorname{ran} \alpha \cap Y$ and $\bar{x} \alpha=x$ for all $x \in \operatorname{ran} \alpha \backslash Y$. Let a be a fixed element in Y and define $\beta: X \rightarrow X$ by a bracket notation as follows:

$$
\beta=\left[\begin{array}{ccc}
x & t & X \backslash \operatorname{ran} \alpha \tag{2.1}\\
x^{\prime} & \bar{t} & a
\end{array}\right]_{\substack{x \in \operatorname{ran} \alpha \cap Y \\
t \in \operatorname{ran} \alpha \backslash Y .}}
$$

Then $Y \beta \subseteq\left\{x^{\prime} \mid x \in \operatorname{ran} \alpha \cap Y\right\} \cup\{a\} \subseteq Y$, and for $x \in X$,

$$
x \alpha \beta \alpha=(x \alpha) \beta \alpha= \begin{cases}(x \alpha)^{\prime} \alpha=x \alpha & \text { if } x \alpha \in \operatorname{ran} \alpha \cap Y, \tag{2.2}\\ (\overline{x \alpha}) \alpha=x \alpha & \text { if } x \alpha \in \operatorname{ran} \alpha \backslash Y .\end{cases}
$$

Hence $\beta \in \bar{T}(X, Y)$ and $\alpha=\alpha \beta \alpha$.
(ii) Suppose that $Y \subsetneq X$ and $|Y|>1$. Let a and b be two distinct elements of Y. Define $\alpha: X \rightarrow X$ by

$$
\alpha=\left[\begin{array}{cc}
Y & X \backslash Y \tag{2.3}\\
a & b
\end{array}\right] .
$$

Then $\operatorname{ran} \alpha=\{a, b\} \subseteq Y$, so $\alpha \in \bar{T}(X, Y)$ and $\operatorname{ran} \alpha \cap Y=\{a, b\} \neq\{a\}=Y \alpha$. It follows from (i) that $\alpha \notin \operatorname{Reg}(\bar{T}(X, Y))$. Hence $\bar{T}(X, Y)$ is not a regular semigroup.

4 On transformation semigroups which are $\mathscr{B 2} 2$-semigroups
If $Y=X$, then $\bar{T}(X, Y)=T(X)$ which is regular. Next, assume that $Y=\{c\}$. In this case, $\bar{T}(X, Y)$ is isomorphic to the semigroup $P(X \backslash Y)$ consisting of all partial transformations of $X \backslash Y$, via the map $P(X \backslash Y) \rightarrow \bar{T}(X, Y), \alpha \mapsto \bar{\alpha}$, where

$$
\bar{\alpha}=\left[\begin{array}{cc}
x & X \backslash \operatorname{dom} \alpha \tag{2.4}\\
x \alpha & c
\end{array}\right]_{x \in \operatorname{dom} \alpha}
$$

It is well known that $P(X \backslash Y)$ is regular [4, page 4]. Hence $\bar{T}(X, Y)$ is a regular semigroup, as required.

To characterize when $\bar{T}(X, Y)$ is a $\mathscr{B} 2$-semigroup, Propositions 1.1, 1.2, 1.4, and 2.1 and the following three lemmas are needed.

Lemma 2.2. Let S be a semigroup. If $\varnothing \neq A \subseteq \operatorname{Reg}(S)$, then $(A)_{b}=(A)_{q}$.
Proof. We know that $(A)_{b} \subseteq(A)_{q}$. Let $x \in(A)_{q}$. By Proposition 1.1(i), $x=s a=b t$ for some $s, t \in S^{1}$ and $a, b \in A$. Since $a \in \operatorname{Reg}(S), a=a a^{\prime} a$ for some $a^{\prime} \in S$. Then

$$
\begin{equation*}
x=s a=s a a^{\prime} a=b t a^{\prime} a \in A S A \subseteq(A)_{b} \tag{2.5}
\end{equation*}
$$

by Proposition 1.1(ii). Hence we have $(A)_{b}=(A)_{q}$, as desired.
Lemma 2.3. Let S be a semigroup, let $\varnothing \neq A \subseteq S$, and let $B \subseteq \operatorname{Reg}(S)$. If $(A)_{b}=(A)_{q}$, then $(A \cup B)_{b}=(A \cup B)_{q}$.

Proof. We first show that $S^{1} A \cap B S^{1}$ and $S^{1} B \cap A S^{1}$ are subsets of $(A \cup B)_{b}$. Let $x \in S^{1} A \cap$ $B S^{1}$. Then $x=s a=b t$ for some $s, t \in S^{1}, a \in A$, and $b \in B$. Since $b \in \operatorname{Reg}(S), b=b b^{\prime} b$ for some $b^{\prime} \in S$. It follows that

$$
\begin{equation*}
x=b t=b b^{\prime} b t=b b^{\prime} s a \in B S A \subseteq(A \cup B) S(A \cup B) \subseteq(A \cup B)_{b} . \tag{2.6}
\end{equation*}
$$

This shows that $S^{1} A \cap B S^{1} \subseteq(A \cup B)_{b}$. It can be shown similarly that $S^{1} B \cap A S^{1} \subseteq(A \cup$ $B)_{b}$. Consequently,

$$
\begin{align*}
(A \cup B)_{q} & =S^{1}(A \cup B) \cap(A \cup B) S^{1} \\
& =\left(S^{1} A \cup S^{1} B\right) \cap\left(A S^{1} \cup B S^{1}\right) \\
& =\left(S^{1} A \cap A S^{1}\right) \cup\left(S^{1} A \cap B S^{1}\right) \cup\left(S^{1} B \cap A S^{1}\right) \cup\left(S^{1} B \cap B S^{1}\right) \\
& =(A)_{q} \cup\left(S^{1} A \cap B S^{1}\right) \cup\left(S^{1} B \cap A S^{1}\right) \cup(B)_{q} \tag{2.7}\\
& =(A)_{b} \cup\left(S^{1} A \cap B S^{1}\right) \cup\left(S^{1} B \cap A S^{1}\right) \cup(B)_{b},
\end{align*}
$$

from the assumption and Lemma 2.2,

$$
\subseteq(A)_{b} \cup(A \cup B)_{b} \cup(A \cup B)_{b} \cup(B)_{b}=(A \cup B)_{b} .
$$

But $(A \cup B)_{b} \subseteq(A \cup B)_{q}$, so $(A \cup B)_{b}=(A \cup B)_{q}$.

Lemma 2.4. If $|X|=3$ and $|Y|=2$, then for all $\alpha, \beta \in \bar{T}(X, Y),(\alpha, \beta)_{b}=(\alpha, \beta)_{q}$ in $\bar{T}(X, Y)$.
Proof. For convenience, let X_{a} denote the constant map whose domain and range are X and $\{a\}$, respectively.

Assume that $X=\{a, b, c\}$ and $Y=\{a, b\}$. Clearly,

$$
\begin{align*}
\bar{T}(X, Y)= & \left\{1_{X}, X_{a}, X_{b},\left[\begin{array}{lll}
a & b & c \\
a & a & b
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
a & a & c
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & b & a
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & b & c
\end{array}\right]\right. \tag{2.8}\\
& {\left.\left[\begin{array}{lll}
a & b & c \\
a & b & a
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
a & b & b
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & a & a
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & a & b
\end{array}\right],\left[\begin{array}{lll}
a & b & c \\
b & a & c
\end{array}\right]\right\} . }
\end{align*}
$$

By Proposition 2.1(i), $\bar{T}(X, Y) \backslash \operatorname{Reg}(\bar{T}(X, Y))=\left\{\left[\begin{array}{lll}a & b & c \\ a & a & b\end{array}\right],\left[\begin{array}{lll}a & b & c \\ b & b & a\end{array}\right]\right\}$. Let $\lambda=\left[\begin{array}{lll}a & b & c \\ a & a & b\end{array}\right]$ and $\eta=$ $\left[\begin{array}{lll}a & b & c \\ b & b & a\end{array}\right]$. Note that $\lambda^{2}=X_{a}=\eta \lambda$ and $\eta^{2}=X_{b}=\lambda \eta$. To show that $(\alpha, \beta)_{b}=(\alpha, \beta)_{q}$ for all $\alpha, \beta \in \bar{T}(X, Y)$, by Lemma 2.3, it suffices to show that $(\lambda)_{b}=(\lambda)_{q},(\eta)_{b}=(\eta)_{q}$, and (λ, $\eta)_{b}=(\lambda, \eta)_{q}$. By direct multiplication, we have

$$
\begin{align*}
\bar{T}(X, Y) \lambda=\left\{\lambda, X_{a}\right\}, \quad \lambda \bar{T}(X, Y)=\left\{\lambda, X_{a}, X_{b}, \eta\right\}, \quad \lambda \bar{T}(X, Y) \lambda=\left\{X_{a}\right\}, \\
\bar{T}(X, Y) \eta=\left\{\eta, X_{b}\right\}, \quad \eta \bar{T}(X, Y)=\left\{\eta, X_{a}, X_{b}, \lambda\right\}, \quad \eta \bar{T}(X, Y) \eta=\left\{X_{b}\right\}, \tag{2.9}\\
\lambda \bar{T}(X, Y) \eta=\left\{X_{b}\right\}, \quad \eta \bar{T}(X, Y) \lambda=\left\{X_{a}\right\} .
\end{align*}
$$

Hence

$$
\begin{align*}
(\lambda)_{b} & =\lambda \bar{T}(X, Y) \lambda \cup\{\lambda\}=\left\{X_{a}, \lambda\right\}=\bar{T}(X, Y) \lambda \cap \lambda \bar{T}(X, Y)=(\lambda)_{q}, \\
(\eta)_{b} & =\eta \bar{T}(X, Y) \eta \cup\{\eta\}=\left\{X_{b}, \eta\right\}=\bar{T}(X, Y) \eta \cap \eta \bar{T}(X, Y)=(\eta)_{q}, \\
(\lambda, \eta)_{b} & =\{\lambda, \eta\} \bar{T}(X, Y)\{\lambda, \eta\} \cup\{\lambda, \eta\} \\
& =\lambda \bar{T}(X, Y) \lambda \cup \lambda \bar{T}(X, Y) \eta \cup \eta \bar{T}(X, Y) \lambda \cup \eta \bar{T}(X, Y) \eta \cup\{\lambda, \eta\} \\
& =\left\{X_{a}, X_{b}, \lambda, \eta\right\}, \tag{2.10}\\
(\lambda, \eta)_{q} & =\bar{T}(X, Y)\{\lambda, \eta\} \cap\{\lambda, \eta\} \bar{T}(X, Y) \\
& =(\bar{T}(X, Y) \lambda \cup \bar{T}(X, Y) \eta) \cap(\lambda \bar{T}(X, Y) \cup \eta \bar{T}(X, Y)) \\
& =\left\{\lambda, X_{a}, \eta, X_{b}\right\}=(\lambda, \eta)_{b} .
\end{align*}
$$

Theorem 2.5. The semigroup $\bar{T}(X, Y)$ is a $\mathscr{B 2}$-semigroup if and only if one of the following statements holds.
(i) $Y=X$.
(ii) $|Y|=1$.
(iii) $|X| \leq 3$.

6 On transformation semigroups which are $\mathscr{B} 2$-semigroups

Proof. Assume that (i), (ii), and (iii) are false. Then $X \backslash Y \neq \varnothing,|Y|>1$, and $|X|>3$. Case $1((|Y|=2)$). Let $Y=\{a, b\}$. Since $|X|>3,|X \backslash Y|>1$. Let $c \in X \backslash Y$. Then $X \backslash$ $\{a, b, c\} \neq \varnothing$. Define $\alpha, \beta, \gamma \in \bar{T}(X, Y)$ by

$$
\alpha=\left[\begin{array}{cccc}
a & b & c & X \backslash\{a, b, c\} \tag{2.11}\\
b & b & a & c
\end{array}\right], \quad \beta=\left[\begin{array}{cc}
c & x \\
a & x
\end{array}\right]_{x \in X \backslash\{c\}}, \quad \gamma=\left[\begin{array}{ccc}
a & b & X \backslash\{a, b\} \\
b & b & c
\end{array}\right] .
$$

Then $a \alpha \beta=b=a \gamma \alpha, b \alpha \beta=b=b \gamma \alpha, c \alpha \beta=a=c \gamma \alpha$, and $(X \backslash\{a, b, c\}) \alpha \beta=\{a\}=(X \backslash$ $\{a, b, c\}) \gamma \alpha \neq(X \backslash\{a, b, c\}) \alpha$, so $\alpha \neq \alpha \beta=\gamma \alpha \in(\alpha)_{q}$ by Proposition 1.1(i). If $\alpha \beta \in(\alpha)_{b}$, then by Proposition 1.1(ii), $\alpha \beta=\alpha \eta \alpha$ for some $\eta \in \bar{T}(X, Y)$. Hence we have $a=c \alpha \beta=$ $c \alpha \eta \alpha=(a \eta) \alpha$. This implies that $a \eta=c$ which is contrary to $a \in Y$ and $c \in X \backslash Y$. Thus $(\alpha)_{b} \neq(\alpha)_{q}$, so by Proposition 1.4, $\bar{T}(X, Y)$ is not a $\mathscr{B 2}$-semigroup.
Case $2((|Y|>2))$. Let a, b, c be distinct elements of Y. Let $\alpha, \beta, \gamma \in \bar{T}(X, Y)$ be defined by

$$
\begin{gather*}
\alpha=\left[\begin{array}{ccc}
a & Y \backslash\{a\} & X \backslash Y \\
b & a & c
\end{array}\right], \quad \beta=\left[\begin{array}{lll}
a & b & x \\
b & a & x
\end{array}\right]_{x \in X \backslash\{a, b\},} \\
\gamma=\left[\begin{array}{ccc}
a & Y \backslash\{a\} & x \\
c & a & x
\end{array}\right]_{x \in X \backslash Y .} \tag{2.12}
\end{gather*}
$$

Then $a \alpha \beta=a=a \gamma \alpha \neq a \alpha,(Y \backslash\{a\}) \alpha \beta=\{b\}=(Y \backslash\{a\}) \gamma \alpha$, and $(X \backslash Y) \alpha \beta=\{c\}=$ $(X \backslash Y) \gamma \alpha$. Thus $\alpha \neq \alpha \beta=\gamma \alpha \in(\alpha)_{q}$. If $\alpha \beta \in(\alpha)_{b}$, then $\alpha \beta=\alpha \eta \alpha$ for some $\eta \in \bar{T}(X, Y)$. Therefore we have for every $x \in X \backslash Y, c=x \alpha \beta=x \alpha \eta \alpha=(c \eta) \alpha$ which implies that $c \eta \in$ $X \backslash Y$. This is a contradiction since $c \in Y$. Hence $(\alpha)_{b} \neq(\alpha)_{q}$, and so by Proposition 1.4, $\bar{T}(X, Y)$ is not a $\mathscr{B 2}$-semigroup.

If $Y=X$ or $|Y|=1$, then $\bar{T}(X, Y)$ is regular by Proposition 2.1 (ii) which implies by Proposition 1.2 that $\bar{T}(X, Y)$ is a $\mathscr{B 2}$-semigroup. If $|X|=3$ and $|Y|=2$, then by Lemma 2.4 and Proposition 1.4, $\bar{T}(X, Y)$ is a $\mathscr{B 2}$-semigroup.

Hence the theorem is completely proved.
Two direct consequences of Propositions 1.2, 2.1(ii), Theorem 2.5, and the proof of Lemma 2.4 are as follows.

Corollary 2.6. If $|X| \neq 3$, then the following statements are equivalent.
(i) $\bar{T}(X, Y)$ is a $\mathscr{B 2}$-semigroup.
(ii) $Y=X$ or $|Y|=1$.
(iii) $\bar{T}(X, Y)$ is a regular semigroup.

Corollary 2.7. The semigroup $\bar{T}(X, Y)$ is a nonregular $\mathscr{B} 2$-semigroup if and only if $|X|=$ 3 and $|Y|=2$. Hence for each set X with $|X|=3$, there are exactly 3 semigroups $\bar{T}(X, Y)$ which are nonregular $\mathscr{B 2}$-semigroups, and each of such $\bar{T}(X, Y)$ contains 12 elements.

Remark 2.8. We have mentioned that $T(X, Y)$ is a left ideal of $T(X)$. But for $\alpha \in T(X, Y)$ and $\beta \in \bar{T}(X, Y), X \alpha \beta \subseteq Y \beta \subseteq Y$, so $T(X, Y)$ is an ideal of $\bar{T}(X, Y)$. We have $1_{X} \in \bar{T}(X$, $Y) \backslash T(X, Y)$ if $Y \neq X$. Hence if $Y \neq X$, then $\bar{T}(X, Y)$ is neither left nor right simple.

Therefore we deduce from Corollary 2.7 that if $|X|=3$ and $|Y|=2$, then $\bar{T}(X, Y)$ is an example of $\mathscr{B} 2$-semigroup which is neither regular nor left (right) simple (see Propositions 1.2 and 1.3).

3. The semigroup $\bar{L}_{F}(V, W)$

In this section, we give a necessary and sufficient condition for $\bar{L}_{F}(V, W)$ to be a $\mathscr{B 2}$ semigroup. We first provide the conditions of the regularity of elements of $\bar{L}_{F}(V, W)$ and of the semigroup $\bar{L}_{F}(V, W)$. The following facts about vector spaces and linear transformations will be used. If U_{1} and U_{2} are subspaces of V, B_{1} is a basis of the subspace $U_{1} \cap U_{2}, B_{2} \subseteq U_{1}$ and $B_{3} \subseteq U_{2}$ are such that $B_{1} \cup B_{2}$ and $B_{1} \cup B_{3}$ are bases of U_{1} and U_{2}, respectively, then $B_{1} \cup B_{2} \cup B_{3}$ is a basis of the subspace $U_{1}+U_{2}$ of V. If $\alpha \in L_{F}(V), B_{1}$ is a basis of $\operatorname{ker} \alpha, B_{2}$ is a basis of $\operatorname{ran} \alpha$, and choose an element $u^{\prime} \in u \alpha^{-1}$ for every $u \in B_{2}$, then $B_{1} \cup\left\{u^{\prime} \mid u \in B_{2}\right\}$ is a basis of V.

Proposition 3.1. The following statements hold for the semigroup $\bar{L}_{F}(V, W)$.
(i) For $\alpha \in \bar{L}_{F}(V, W), \alpha \in \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$ if and only if $\operatorname{ran} \alpha \cap W=W \alpha$.
(ii) The semigroup $\bar{L}_{F}(V, W)$ is regular if and only if either $W=V$ or $W=\{0\}$.

Proof. (i) The proof that $\alpha \in \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)$ implies $\operatorname{ran} \alpha \cap W=W \alpha$ is analogous to the proof of the "only if" part of Proposition 2.1(i).

Conversely, assume that ran $\alpha \cap W=W \alpha$. Let B_{1} be a basis of $\operatorname{ran} \alpha \cap W, B_{2} \subseteq \operatorname{ran} \alpha \backslash$ B_{1}, and $B_{3} \subseteq W \backslash B_{1}$ such that $B_{1} \cup B_{2}$ and $B_{1} \cup B_{3}$ are bases of ran α and W, respectively. Then $B_{1} \cup B_{2} \cup B_{3}$ is a basis of $\operatorname{ran} \alpha+W$. Let $B_{4} \subseteq V \backslash\left(B_{1} \cup B_{2} \cup B_{3}\right)$ be such that $B_{1} \cup$ $B_{2} \cup B_{3} \cup B_{4}$ is a basis of V. Since $B_{1} \subseteq \operatorname{ran} \alpha \cap W=W \alpha$, we have $u \alpha^{-1} \cap W \neq \varnothing$ for every $u \in B_{1}$. For each $u \in B_{1}$, choose an element $u^{\prime} \in u \alpha^{-1} \cap W$. Since $B_{2} \subseteq \operatorname{ran} \alpha$, for each $v \in B_{2}, v \alpha^{-1} \neq \varnothing$, so choose an element $\bar{v} \in v \alpha^{-1}$. Define $\beta \in L_{F}(V)$ on the basis $B_{1} \cup B_{2} \cup B_{3} \cup B_{4}$ by

$$
\beta=\left[\begin{array}{ccc}
u & v & B_{3} \cup B_{4} \tag{3.1}\\
u^{\prime} & \bar{v} & 0
\end{array}\right]_{\substack{u \in B_{1} \\
v \in B_{2} .}}
$$

It follows that $W \beta=\left\langle B_{1} \cup B_{3}\right\rangle \beta=\left\langle\left\{u^{\prime} \mid u \in B_{1}\right\}\right\rangle \subseteq W$, so $\beta \in \bar{L}_{F}(V, W)$. Let B_{0} be a basis of $\operatorname{ker} \alpha$. Then $B_{0} \cup\left\{u^{\prime} \mid u \in B_{1}\right\} \cup\left\{\bar{v} \mid v \in B_{2}\right\}$ is a basis of V. Since

$$
\begin{gather*}
B_{0} \alpha \beta \alpha=\{0\}=B_{0} \alpha, \quad u^{\prime} \alpha \beta \alpha=u \beta \alpha=u^{\prime} \alpha \quad \forall u \in B_{1}, \\
\bar{v} \alpha \beta \alpha=v \beta \alpha=\bar{v} \alpha \quad \forall v \in B_{2}, \tag{3.2}
\end{gather*}
$$

we have $\alpha=\alpha \beta \alpha$, so α is a regular element of $\bar{L}_{F}(V, W)$.
(ii) Assume that $\{0\} \neq W \subsetneq V$. Let B_{1} be a basis of W and B a basis of V containing B_{1}. Then $B_{1} \neq \varnothing \neq B \backslash B_{1}$. Let $w \in B_{1}$ and $u \in B \backslash B_{1}$. Define $\alpha \in L_{F}(V)$ by

$$
\alpha=\left[\begin{array}{cc}
u & B \backslash\{u\} \tag{3.3}\\
w & 0
\end{array}\right] .
$$

8 On transformation semigroups which are $\mathscr{B 2}$-semigroups

Then $W \alpha=\left\langle B_{1}\right\rangle \alpha \subseteq\langle B \backslash\{u\}\rangle \alpha=\{0\}$, so $\alpha \in \bar{L}_{F}(V, W)$. Since $\operatorname{ran} \alpha \cap W=\langle w\rangle \neq\{0\}$ $=W \alpha$, by (i), we deduce that α is not a regular element of $\bar{L}_{F}(V, W)$. Hence $\bar{L}_{F}(V, W)$ is not a regular semigroup.

Since $\bar{L}_{F}(V, V)=L_{F}(V)=\bar{L}_{F}(V,\{0\})$, the converse holds.
To prove the main theorem, the following lemma is also needed. Lemma 2.3 and Proposition 3.1(i) are useful to obtain this result.

Lemma 3.2. If $F=\mathbb{Z}_{2}, \operatorname{dim}_{F} V=2$, and $\operatorname{dim}_{F} W=1$, then for all $\alpha, \beta \in \bar{L}_{F}(V, W),(\alpha, \beta)_{b}=$ $(\alpha, \beta)_{q}$ in $\bar{L}_{F}(V, W)$.

Proof. Let $\{w\}$ be a basis of W and $\{w, u\}$ a basis of V. Since $F=\mathbb{Z}_{2}$, it follows that $W=\{0, w\}$ and $V=\{0, w, u, u+w\}$. Clearly, both $\{u, u+w\}$ and $\{w, u+w\}$ are also bases of V. Thus $\langle w\rangle \cap\langle u\rangle=\langle w\rangle \cap\langle u+w\rangle=\langle u\rangle \cap\langle u+w\rangle=\{0\}$. All elements of $\bar{L}_{F}(V, W)$ defined on the basis $\{w, u\}$ of V can be given as follows:

$$
\begin{align*}
\bar{L}_{F}(V, W)= & \left\{0,1_{V},\left[\begin{array}{ll}
w & u \\
0 & w
\end{array}\right],\left[\begin{array}{ll}
w & u \\
0 & u
\end{array}\right],\left[\begin{array}{cc}
w & u \\
0 & w+u
\end{array}\right],\right. \\
& {\left.\left[\begin{array}{ll}
w & u \\
w & 0
\end{array}\right],\left[\begin{array}{ll}
w & u \\
w & w
\end{array}\right],\left[\begin{array}{cc}
w & u \\
w & w+u
\end{array}\right]\right\} . } \tag{3.4}
\end{align*}
$$

By Proposition 3.1(i), $\bar{L}_{F}(V, W) \backslash \operatorname{Reg}\left(\bar{L}_{F}(V, W)\right)=\left\{\left[\begin{array}{cc}w & u \\ 0 & w\end{array}\right]\right\}$. Let $\lambda=\left[\begin{array}{cc}w & u \\ 0 & w\end{array}\right]$. Note that $\lambda^{2}=0$. To prove the lemma, by Lemma 2.3, it suffices to show that $(\lambda)_{b}=(\lambda)_{q}$. By direct multiplication, we have

$$
\begin{equation*}
\bar{L}_{F}(V, W) \lambda=\{0, \lambda\}, \quad \lambda \bar{L}_{F}(V, W)=\{0, \lambda\}, \quad \lambda \bar{L}_{F}(V, W) \lambda=\{0\} . \tag{3.5}
\end{equation*}
$$

Consequently, $(\lambda)_{b}=\lambda \bar{L}_{F}(V, W) \lambda \cup\{\lambda\}=\{0, \lambda\}=\bar{L}_{F}(V, W) \lambda \cap \lambda \bar{L}_{F}(V, W)=(\lambda)_{q}$.
Theorem 3.3. The semigroup $\bar{L}_{F}(V, W)$ is a $\mathscr{B 2}$-semigroup if and only if one of the following statements holds.
(i) $W=V$.
(ii) $W=\{0\}$.
(iii) $F=\mathbb{Z}_{2}, \operatorname{dim}_{F} V=2$, and $\operatorname{dim}_{F} W=1$.

Proof. Assume that (i), (ii), and (iii) are false. Then (1) $\{0\} \neq W \subsetneq V$ and (2) $F \neq \mathbb{Z}_{2}$, $\operatorname{dim}_{F} V>2$, or $\operatorname{dim}_{F} W>1$. Let B_{1} be a basis of W and B a basis of V containing B_{1}. Then $B_{1} \neq \varnothing$ and $B \backslash B_{1} \neq \varnothing$.
Case $1\left(\left(F \neq \mathbb{Z}_{2}\right)\right)$. Let $a \in F \backslash\{0,1\}, w \in B_{1}$, and $u \in B \backslash B_{1}$. Define $\alpha, \beta, \gamma \in \bar{L}_{F}(V, W)$ by

$$
\alpha=\left[\begin{array}{cc}
u & B \backslash\{u\} \tag{3.6}\\
w & 0
\end{array}\right], \quad \beta=\left[\begin{array}{cc}
w & B \backslash\{w\} \\
a w & 0
\end{array}\right], \quad \gamma=\left[\begin{array}{cc}
u & B \backslash\{u\} \\
a u & 0
\end{array}\right] .
$$

Then we have $\alpha \beta=\left[\begin{array}{cc}u & B \backslash\{u\} \\ a w & 0\end{array}\right]=\gamma \alpha$. Since $a \neq 1$, we have $\alpha \beta \neq \alpha$. By Proposition 1.1(i), $\alpha \beta \in \bar{L}_{F}(V, W)(\alpha)_{q}$. Suppose that $\alpha \beta \in \bar{L}_{F}(V, W)(\alpha)_{b}$. By Proposition 1.1(ii), $\alpha \beta=\alpha \eta \alpha$
for some $\eta \in \bar{L}_{F}(V, W)$. Then $a w=u \alpha \beta=u \alpha \eta \alpha=(w \eta) \alpha$. But $w \eta \in W$ and $W \alpha=\left\langle B_{1}\right\rangle \alpha \subseteq$ $\langle B \backslash\{u\}\rangle \alpha=\{0\}$, so $a w=0$ which is contrary to $a \neq 0$. Thus $(\alpha)_{q} \neq(\alpha)_{b}$, so $\bar{L}_{F}(V, W)$ is not a $\mathscr{B} 2$-semigroup by Proposition 1.4.
Case $2\left(\left(\operatorname{dim}_{F} W>1\right)\right)$. Then $\left|B_{1}\right|>1$. Let $w_{1}, w_{2} \in B_{1}$ be such that $w_{1} \neq w_{2}$ and $u \in$ $B \backslash B_{1}$. Define $\alpha, \beta, \gamma \in \bar{L}_{F}(V, W)$ by

$$
\alpha=\left[\begin{array}{ccc}
w_{1} & u & B \backslash\left\{w_{1}, u\right\} \tag{3.7}\\
w_{2} & w_{1} & 0
\end{array}\right], \quad \beta=\left[\begin{array}{cc}
w_{1} & B \backslash\left\{w_{1}\right\} \\
w_{1} & 0
\end{array}\right], \quad \gamma=\left[\begin{array}{cc}
u & B \backslash\{u\} \\
u & 0
\end{array}\right] .
$$

Then $\alpha \beta=\left[\begin{array}{cc}u & B \backslash\{u\} \\ w_{1} & 0\end{array}\right]=\gamma \alpha \neq \alpha$, so $\alpha \beta \in(\alpha)_{q}$. If $\alpha \beta \in(\alpha)_{b}$, then $\alpha \beta=\alpha \eta \alpha$ for some $\eta \in \bar{L}_{F}(V, W)$. Thus $w_{1}=u \alpha \beta=u \alpha \eta \alpha=\left(w_{1} \eta\right) \alpha$. Since $w_{1} \eta \in W=\left\langle B_{1}\right\rangle$, we have $w_{1} \eta=$ $a w_{1}+v$ for some $a \in F$ and $v \in\left\langle B_{1} \backslash\left\{w_{1}\right\}\right\rangle$. But $B_{1} \backslash\left\{w_{1}\right\} \subseteq B \backslash\left\{w_{1}, u\right\}$, so $v \alpha=0$. Consequently, $w_{1}=\left(a w_{1}+v\right) \alpha=a w_{2}$ which is contrary to the independence of w_{1} and w_{2}. By Proposition 1.4, $\bar{L}_{F}(V, W)$ is not a $\mathscr{B 2} 2$-semigroup.
Case $3\left(\left(\operatorname{dim}_{F} V>2\right.\right.$ and $\left.\left.\operatorname{dim}_{F} W=1\right)\right)$. Then $\left|B_{1}\right|=1$ and $\left|B \backslash B_{1}\right|>1$. Let $B_{1}=\{w\}$ and $u_{1}, u_{2} \in B \backslash B_{1}$ be such that $u_{1} \neq u_{2}$. Let $\alpha, \beta, \gamma \in \bar{L}_{F}(V, W)$ be defined by

$$
\alpha=\left[\begin{array}{ccc}
u_{1} & u_{2} & B \backslash\left\{u_{1}, u_{2}\right\} \tag{3.8}\\
w & u_{1} & 0
\end{array}\right], \quad \beta=\left[\begin{array}{cc}
w & B \backslash\{w\} \\
w & 0
\end{array}\right], \quad \gamma=\left[\begin{array}{cc}
u_{1} & B \backslash\left\{u_{1}\right\} \\
u_{1} & 0
\end{array}\right] .
$$

Then we have $\alpha \beta=\left[\begin{array}{c}u_{1} \\ w\end{array} \underset{0}{B \backslash\left\{u_{1}\right\}}\right]=\gamma \alpha \neq \alpha$, so $\alpha \beta \in(\alpha)_{q}$. Suppose that $\alpha \beta \in(\alpha)_{b}$. It follows that $\alpha \beta=\alpha \eta \alpha$ for some $\eta \in \bar{L}_{F}(V, W)$. Thus $w=u_{1} \alpha \beta=u_{1} \alpha \eta \alpha=(w \eta) \alpha$. But $w \eta \in W=$ $\langle w\rangle$ and $w \alpha=0$, so $w=(w \eta) \alpha=0$, a contradiction. Hence $(\alpha)_{q} \neq(\alpha)_{b}$, so $\bar{L}_{F}(V, W)$ is not a $\mathscr{B 2}$-semigroup, as before.

For the converse, if (i) or (ii) holds, then $\bar{L}_{F}(V, W)=L_{F}(V)$ which is a $\mathscr{B 2}$-semigroup by Proposition 1.2. If (iii) holds, then $\bar{L}_{F}(V, W)$ is a $\mathscr{B 2}$-semigroup by Proposition 1.4 and Lemma 3.2.

The following corollaries follow directly from Propositions 1.2, 3.1(ii), Theorem 3.3, and the proof of Lemma 3.2.

Corollary 3.4. If $F \neq \mathbb{Z}_{2}$ or $\operatorname{dim}_{F} V \neq 2$, then the following statements are equivalent.
(i) $\bar{L}_{F}(V, W)$ is a $\mathscr{B 2}$-semigroup.
(ii) $W=V$ or $W=\{0\}$.
(iii) $\bar{L}_{F}(V, W)$ is a regular semigroup.

Corollary 3.5. The semigroup $\bar{L}_{F}(V, W)$ is a nonregular $\mathscr{B} 2$-semigroup if and only if $F=\mathbb{Z}_{2}, \operatorname{dim}_{F} V=2$, and $\operatorname{dim}_{F} W=1$. Hence if $F=\mathbb{Z}_{2}$ and $\operatorname{dim}_{F} V=2$, there are exactly 3 semigroups $\bar{L}_{F}(V, W)$ which are nonregular $\mathscr{B 2}$-semigroups, and each of such $\bar{L}_{F}(V, W)$ contains 8 elements.

Remark 3.6. We also have that $L_{F}(V, W)$ is an ideal of $\bar{L}_{F}(V, W)$ (see Remark 2.8). Consequently, if $\{0\} \neq W \subsetneq V$, then $\bar{L}_{F}(V, W)$ is neither left nor right 0 -simple. Hence if $F=\mathbb{Z}_{2}, \operatorname{dim}_{F} V=2$, and $\operatorname{dim}_{F} W=1$, then $\bar{L}_{F}(V, W)$ is a $\mathscr{B 2}$-semigroup which is neither regular nor left (right) 0 -simple.

Acknowledgments

We wish to express our appreciation to the referees for helpful comments and suggestions on the original manuscript.

References

[1] J. Calais, Demi-groupes dans lesquels tout bi-idéal est un quasi-idéal, Proceedings of a Symposium on Semigroups, Smolenice, 1968.
[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. I, Mathematical Surveys, no. 7, American Mathematical Society, Rhode Island, 1961.
[3] R. A. Good and D. R. Hughes, Associated groups for semigroups, Bulletin of the American Mathematical Society 58 (1952), 624-625.
[4] P. M. Higgins, Techniques of Semigroup Theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992.
[5] J. M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monographs. New Series, vol. 12, The Clarendon Press, Oxford University Press, New York, 1995.
[6] K. M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publicationes Mathematicae Debrecen 16 (1969), 179-185.
[7] Y. Kemprasit, Some transformation semigroups whose sets of bi-ideals and quasi-ideals coincide, Communications in Algebra 30 (2002), no. 9, 4499-4506.
[8] S. Lajos, Generalized ideals in semigroups, Acta Scientiarum Mathematicarum 20 (1961), 217222.
[9] K. D. Magill Jr., Subsemigroups of S(X), Mathematica Japonica 11 (1966), 109-115.
[10] B. W. Mielke, A note on Green's relations in $\mathscr{B 2} 2$-semigroups, Czechoslovak Mathematical Journal 22 (1972), no. 97, 224-229.
[11] O. Steinfeld, Über die Quasiideale von Halbgruppen, Publicationes Mathematicae Debrecen 4 (1956), 262-275.
[12] , Quasi-Ideals in Rings and Semigroups, Hungarian Mathematics Investigations, vol. 10, Akadémiai Kiadó, Budapest, 1978.
[13] J. S. V. Symons, Some results concerning a transformation semigroup, Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics 19 (1975), no. 4, 413-425.
S. Nenthein: Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
E-mail address: sansanee.n@student.chula.ac.th
Y. Kemprasit: Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
E-mail address: yupaporn.k@chula.ac.th

