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A semigroup whose bi-ideals and quasi-ideals coincide is called a ��-semigroup. The full
transformation semigroup on a set X and the semigroup of all linear transformations of
a vector space V over a field F into itself are denoted, respectively, by T(X) and LF(V). It
is known that every regular semigroup is a ��-semigroup. Then both T(X) and LF(V)
are ��-semigroups. In 1966, Magill introduced and studied the subsemigroup T(X ,Y)
of T(X), where ∅ �= Y ⊆ X and T(X ,Y) = {α ∈ T(X) | Yα ⊆ Y}. If W is a subspace of
V , the subsemigroup LF(V ,W) of LF(V) will be defined analogously. In this paper, it is
shown that T(X ,Y) is a ��-semigroup if and only if Y = X , |Y | = 1, or |X| ≤ 3, and
LF(V ,W) is a ��-semigroup if and only if (i) W = V , (ii) W = {0}, or (iii) F = Z2,
dimF V = 2, and dimFW = 1.
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1. Introduction

The cardinality of a set A is denoted by |A|. The image of a map α at x in the domain of
α will be written by xα.

An element a of a semigroup S is said to be regular if a= aba for some b ∈ S, and S is
called a regular semigroup if every element of S is regular. The set of all regular elements
of S is denoted by Reg(S).

The full transformation semigroup on a nonempty set X is denoted by T(X), that is,
T(X) is the semigroup of all mappings α : X → X under composition. The semigroup
T(X) is known to be regular [4, page 4]. Magill [9] introduced and studied the subsemi-
group

T(X ,Y)= {α∈ T(X) | Yα⊆ Y
}

(1.1)

of T(X), where∅ �= Y ⊆ X . Note that 1X , the identity map on X , belongs to T(X ,Y) and
T(X ,Y) contains T(X ,Y) as a subsemigroup, where T(X ,Y) = {α ∈ T(X) | ranα ⊆ Y}
and ranα denotes the range of α. The semigroup T(X ,Y) was introduced and studied by
Symons [13].
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For a vector space V over a field F, let LF(V) be the semigroup of all linear transfor-
mations α : V → V under composition. It is known that LF(V) is a regular semigroup
[5, page 63]. For a subspace W of V , we define the subsemigroup LF(V ,W) of LF(V)
analogously, that is,

LF(V ,W)= {α∈ LF(V) |Wα⊆W
}
. (1.2)

Clearly, 1V ∈ LF(V ,W) and 0, the zero map on V , also belongs to LF(V ,W). In addition,
LF(V ,W) contains LF(V ,W)= {α∈ LF(V) | ranα⊆W} as a subsemigroup.

A subsemigroup Q of a semigroup S is called a quasi-ideal of S if SQ∩QS ⊆ Q, and
a bi-ideal of S is a subsemigroup B of S such that BSB ⊆ B. The notions of quasi-ideal
and bi-ideal for semigroups were introduced by Steinfeld [11] and Good and Hughes [3],
respectively. Both quasi-ideals and bi-ideals are generalizations of one-sided ideals, and
bi-ideals also generalize quasi-ideals. For a nonempty subset A of S, let (A)q and (A)b be
the quasi-ideal and the bi-ideal of S generated by A, respectively, that is, (A)q[(A)b] is the
intersection of all quasi-ideals (bi-ideals) of S containing A [12, pages 10, 12]. Observe
that (A)b ⊆ (A)q.

Proposition 1.1 [2, pages 84, 85]. For a nonempty subset A of a semigroup S,
(i) (A)q = S1A∩AS1,

(ii) (A)b =AS1A∪A.

Kapp [6] used �� to denote the class of all semigroups whose bi-ideals and quasi-
ideals coincide and Mielke [10] called a semigroup in �� a ��-semigroup. Important
��-semigroups are the following ones.

Proposition 1.2 [8]. Every regular semigroup is a ��-semigroup.

Proposition 1.3 [6]. Every left (right) simple semigroup or every left (right) 0-simple semi-
group is a ��-semigroup.

Recall that a semigroup S is left (right) simple if S has no proper left (right) ideal,
and a semigroup S with 0 is called left (right) 0-simple if S2 �= {0} and S has no proper
nonzero left (right) ideal. Kemprasit showed in [7] that if X is an infinite set, then the
subsemigroup {α∈ T(X) | X � ranα is infinite} of T(X) is a ��-semigroup but it is nei-
ther regular nor left (right) simple. In fact, ��-semigroups have been characterized by
Calais [1] as follows.

Proposition 1.4 [1]. A semigroup S is a ��-semigroup if and only if (x, y)b = (x, y)q for
all x, y ∈ S.

Every bi-ideal of a regular semigroup is a ��-semigroup. The proof is rather sim-
ple and is as follows: let T be a bi-ideal of a regular semigroup S and B a bi-ideal of T .
Then TST ⊆ T and BTB ⊆ B. Let x ∈ TB∩BT . Since S is regular, x = xsx for some s∈ S
which implies that x = xsx ∈ BTsTB ⊆ BTSTB ⊆ BTB ⊆ B. Thus TB∩BT ⊆ B. Hence B
is a quasi-ideal of T , as desired. Since T(X ,Y) and LF(V ,W) are left ideals of T(X) and
LF(V), respectively, it follows that T(X ,Y) and LF(V ,W) are always ��-semigroups.
However, the semigroups T(X ,Y) and LF(V ,W) need not be ��-semigroups. Notice
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that if X is infinite, then the semigroup {α ∈ T(X) | X � ranα is infinite} is a left ideal
of T(X). Similarly, if V has infinite dimension over F, then the semigroup {α∈ LF(V) |
dimF(V/ ranα) is infinite} is a left ideal of LF(V).

In Section 2, we give a necessary and sufficient condition for T(X ,Y) to be a ��-
semigroup in terms of |X| and |Y |. In Section 3, a necessary and sufficient condition for
LF(V ,W) to be a ��-semigroup is given in terms of |F|, dimF V , and dimFW .

In the remainder, let X be a nonempty set,∅ �= Y ⊆ X , V a vector space over a field F,
and W a subspace of V .

2. The semigroup T(X ,Y)

We begin this section by characterizing regular elements of the semigroup T(X ,Y). Then
it is shown that T(X ,Y) is a regular semigroup if and only if Y = X or Y contains only
one element.

Proposition 2.1. The following statements hold for the semigroup T(X ,Y).
(i) For α∈ T(X ,Y), α∈ Reg(T(X ,Y)) if and only if ranα∩Y = Yα.

(ii) The semigroup T(X ,Y) is regular if and only if either Y = X or |Y | = 1.

Proof. (i) Since Yα ⊆ Y , we have Yα ⊆ ranα∩ Y . Assume that α = αβα for some β ∈
T(X ,Y). If x ∈ ranα ∩ Y , then x ∈ Y and x = aα for some a ∈ X which imply that
x = aα= aαβα= xβα∈ Yβα⊆ Yα. Hence we have ranα∩Y = Yα.

Conversely, assume that ranα∩Y = Yα. Then for each x ∈ ranα∩Y , we have xα−1∩
Y �= ∅. We choose an element x′ ∈ xα−1∩Y for each x ∈ ranα∩Y . Also, for x ∈ ranα�

Y , choose an element x ∈ xα−1. Then x′α = x for all x ∈ ranα∩ Y and xα = x for all
x ∈ ranα�Y . Let a be a fixed element in Y and define β : X → X by a bracket notation as
follows:

β =
[
x t X � ranα

x′ t a

]

x∈ranα∩Y
t∈ranα�Y.

(2.1)

Then Yβ ⊆ {x′ | x ∈ ranα∩Y}∪{a} ⊆ Y , and for x ∈ X ,

xαβα= (xα)βα=
⎧
⎨

⎩

(xα)′α= xα if xα∈ ranα∩Y ,

(xα)α= xα if xα∈ ranα�Y.
(2.2)

Hence β ∈ T(X ,Y) and α= αβα.
(ii) Suppose that Y � X and |Y | > 1. Let a and b be two distinct elements of Y . Define

α : X → X by

α=
[
Y X �Y

a b

]

. (2.3)

Then ranα = {a,b} ⊆ Y , so α ∈ T(X ,Y) and ranα∩ Y = {a,b} �= {a} = Yα. It follows
from (i) that α /∈ Reg(T(X ,Y)). Hence T(X ,Y) is not a regular semigroup.
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If Y = X , then T(X ,Y) = T(X) which is regular. Next, assume that Y = {c}. In this
case, T(X ,Y) is isomorphic to the semigroup P(X �Y) consisting of all partial transfor-
mations of X �Y , via the map P(X �Y)→ T(X ,Y), α �→ α, where

α=
[
x X � domα

xα c

]

x∈domα.

(2.4)

It is well known that P(X �Y) is regular [4, page 4]. Hence T(X ,Y) is a regular semi-
group, as required. �

To characterize when T(X ,Y) is a ��-semigroup, Propositions 1.1, 1.2, 1.4, and 2.1
and the following three lemmas are needed.

Lemma 2.2. Let S be a semigroup. If∅ �= A⊆ Reg(S), then (A)b = (A)q.

Proof. We know that (A)b ⊆ (A)q. Let x ∈ (A)q. By Proposition 1.1(i), x = sa = bt for
some s, t ∈ S1 and a,b ∈A. Since a∈ Reg(S), a= aa′a for some a′ ∈ S. Then

x = sa= saa′a= bta′a∈ ASA⊆ (A)b (2.5)

by Proposition 1.1(ii). Hence we have (A)b = (A)q, as desired. �

Lemma 2.3. Let S be a semigroup, let ∅ �= A⊆ S, and let B ⊆ Reg(S). If (A)b = (A)q, then
(A∪B)b = (A∪B)q.

Proof. We first show that S1A∩BS1 and S1B∩AS1 are subsets of (A∪B)b. Let x ∈ S1A∩
BS1. Then x = sa= bt for some s, t ∈ S1, a∈ A, and b ∈ B. Since b ∈ Reg(S), b = bb′b for
some b′ ∈ S. It follows that

x = bt = bb′bt = bb′sa∈ BSA⊆ (A∪B)S(A∪B)⊆ (A∪B)b. (2.6)

This shows that S1A∩BS1 ⊆ (A∪B)b. It can be shown similarly that S1B∩AS1 ⊆ (A∪
B)b. Consequently,

(A∪B)q = S1(A∪B)∩ (A∪B)S1

= (S1A∪ S1B
)∩ (AS1∪BS1)

= (S1A∩AS1)∪ (S1A∩BS1)∪ (S1B∩AS1)∪ (S1B∩BS1)

= (A)q∪
(
S1A∩BS1)∪ (S1B∩AS1)∪ (B)q

= (A)b∪
(
S1A∩BS1)∪ (S1B∩AS1)∪ (B)b,

from the assumption and Lemma 2.2,

⊆ (A)b∪ (A∪B)b∪ (A∪B)b∪ (B)b = (A∪B)b.

(2.7)

But (A∪B)b ⊆ (A∪B)q, so (A∪B)b = (A∪B)q. �
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Lemma 2.4. If |X| = 3 and |Y | = 2, then for all α,β ∈ T(X ,Y), (α,β)b = (α,β)q in T(X ,Y).

Proof. For convenience, let Xa denote the constant map whose domain and range are X
and {a}, respectively.

Assume that X = {a,b,c} and Y = {a,b}. Clearly,

T(X ,Y)=
{

1X ,Xa,Xb,

[
a b c

a a b

]

,

[
a b c

a a c

]

,

[
a b c

b b a

]

,

[
a b c

b b c

]

,

[
a b c

a b a

]

,

[
a b c

a b b

]

,

[
a b c

b a a

]

,

[
a b c

b a b

]

,

[
a b c

b a c

]}

.

(2.8)

By Proposition 2.1(i), T(X ,Y) � Reg(T(X ,Y))= {[a b c
a a b],[ a b c

b b a]}. Let λ= [a b c
a a b] and η =

[ a b c
b b a]. Note that λ2 = Xa = ηλ and η2 = Xb = λη. To show that (α,β)b = (α,β)q for all
α,β ∈ T(X ,Y), by Lemma 2.3, it suffices to show that (λ)b = (λ)q, (η)b = (η)q, and (λ,
η)b = (λ,η)q. By direct multiplication, we have

T(X ,Y)λ= {λ,Xa
}

, λT(X ,Y)= {λ,Xa,Xb,η
}

, λT(X ,Y)λ= {Xa
}

,

T(X ,Y)η = {η,Xb
}

, ηT(X ,Y)= {η,Xa,Xb,λ
}

, ηT(X ,Y)η = {Xb
}

,

λT(X ,Y)η = {Xb
}

, ηT(X ,Y)λ= {Xa
}
.

(2.9)

Hence

(λ)b = λT(X ,Y)λ∪{λ} = {Xa,λ
}= T(X ,Y)λ∩ λT(X ,Y)= (λ)q,

(η)b = ηT(X ,Y)η∪{η} = {Xb,η
}= T(X ,Y)η∩ηT(X ,Y)= (η)q,

(λ,η)b = {λ,η}T(X ,Y){λ,η}∪{λ,η}
= λT(X ,Y)λ∪ λT(X ,Y)η∪ηT(X ,Y)λ∪ηT(X ,Y)η∪{λ,η}
= {Xa,Xb,λ,η

}
,

(λ,η)q = T(X ,Y){λ,η}∩{λ,η}T(X ,Y)

= (T(X ,Y)λ∪T(X ,Y)η
)∩ (λT(X ,Y)∪ηT(X ,Y)

)

= {λ,Xa,η,Xb
}= (λ,η)b.

(2.10)

�

Theorem 2.5. The semigroup T(X ,Y) is a ��-semigroup if and only if one of the following
statements holds.

(i) Y = X .
(ii) |Y | = 1.

(iii) |X| ≤ 3.
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Proof. Assume that (i), (ii), and (iii) are false. Then X �Y �= ∅, |Y | > 1, and |X| > 3.
Case 1 ((|Y | = 2)). Let Y = {a,b}. Since |X| > 3, |X �Y | > 1. Let c ∈ X �Y . Then X �

{a,b,c} �=∅. Define α,β,γ ∈ T(X ,Y) by

α=
[
a b c X � {a,b,c}
b b a c

]

, β =
[
c x

a x

]

x∈X�{c}
, γ =

[
a b X � {a,b}
b b c

]

.

(2.11)

Then aαβ = b = aγα, bαβ = b = bγα, cαβ = a= cγα, and (X � {a,b,c})αβ = {a} = (X �

{a,b,c})γα �= (X � {a,b,c})α, so α �= αβ = γα ∈ (α)q by Proposition 1.1(i). If αβ ∈ (α)b,
then by Proposition 1.1(ii), αβ = αηα for some η ∈ T(X ,Y). Hence we have a = cαβ =
cαηα = (aη)α. This implies that aη = c which is contrary to a ∈ Y and c ∈ X �Y . Thus
(α)b �= (α)q, so by Proposition 1.4, T(X ,Y) is not a ��-semigroup.
Case 2 ((|Y | > 2)). Let a, b, c be distinct elements of Y . Let α,β,γ ∈ T(X ,Y) be defined
by

α=
[
a Y � {a} X �Y

b a c

]

, β =
[
a b x

b a x

]

x∈X�{a,b},

γ =
[
a Y � {a} x

c a x

]

x∈X�Y.

(2.12)

Then aαβ = a = aγα �= aα, (Y � {a})αβ = {b} = (Y � {a})γα, and (X � Y)αβ = {c} =
(X �Y)γα. Thus α �= αβ = γα∈ (α)q. If αβ ∈ (α)b, then αβ = αηα for some η ∈ T(X ,Y).
Therefore we have for every x ∈ X �Y , c = xαβ = xαηα= (cη)α which implies that cη ∈
X �Y . This is a contradiction since c ∈ Y . Hence (α)b �= (α)q, and so by Proposition 1.4,
T(X ,Y) is not a ��-semigroup.

If Y = X or |Y | = 1, then T(X ,Y) is regular by Proposition 2.1(ii) which implies
by Proposition 1.2 that T(X ,Y) is a ��-semigroup. If |X| = 3 and |Y | = 2, then by
Lemma 2.4 and Proposition 1.4, T(X ,Y) is a ��-semigroup.

Hence the theorem is completely proved. �

Two direct consequences of Propositions 1.2, 2.1(ii), Theorem 2.5, and the proof of
Lemma 2.4 are as follows.

Corollary 2.6. If |X| �= 3, then the following statements are equivalent.
(i) T(X ,Y) is a ��-semigroup.

(ii) Y = X or |Y | = 1.
(iii) T(X ,Y) is a regular semigroup.

Corollary 2.7. The semigroup T(X ,Y) is a nonregular ��-semigroup if and only if |X| =
3 and |Y | = 2. Hence for each set X with |X| = 3, there are exactly 3 semigroups T(X ,Y)
which are nonregular ��-semigroups, and each of such T(X ,Y) contains 12 elements.

Remark 2.8. We have mentioned that T(X ,Y) is a left ideal of T(X). But for α∈ T(X ,Y)
and β ∈ T(X ,Y), Xαβ ⊆ Yβ ⊆ Y , so T(X ,Y) is an ideal of T(X ,Y). We have 1X ∈ T(X ,
Y) � T(X ,Y) if Y �= X . Hence if Y �= X , then T(X ,Y) is neither left nor right simple.
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Therefore we deduce from Corollary 2.7 that if |X| = 3 and |Y | = 2, then T(X ,Y) is an
example of ��-semigroup which is neither regular nor left (right) simple (see Proposi-
tions 1.2 and 1.3).

3. The semigroup LF(V ,W)

In this section, we give a necessary and sufficient condition for LF(V ,W) to be a ��-
semigroup. We first provide the conditions of the regularity of elements of LF(V ,W) and
of the semigroup LF(V ,W). The following facts about vector spaces and linear trans-
formations will be used. If U1 and U2 are subspaces of V , B1 is a basis of the subspace
U1∩U2, B2 ⊆U1 and B3 ⊆U2 are such that B1∪B2 and B1∪B3 are bases of U1 and U2,
respectively, then B1∪B2∪B3 is a basis of the subspace U1 +U2 of V . If α∈ LF(V), B1 is
a basis of kerα, B2 is a basis of ranα, and choose an element u′ ∈ uα−1 for every u∈ B2,
then B1∪{u′ | u∈ B2} is a basis of V .

Proposition 3.1. The following statements hold for the semigroup LF(V ,W).
(i) For α∈ LF(V ,W), α∈ Reg(LF(V ,W)) if and only if ranα∩W =Wα.

(ii) The semigroup LF(V ,W) is regular if and only if either W =V or W = {0}.
Proof. (i) The proof that α∈ Reg(LF(V ,W)) implies ranα∩W =Wα is analogous to the
proof of the “only if” part of Proposition 2.1(i).

Conversely, assume that ranα∩W =Wα. Let B1 be a basis of ranα∩W , B2 ⊆ ranα�

B1, and B3 ⊆W �B1 such that B1∪B2 and B1∪B3 are bases of ranα and W , respectively.
Then B1∪B2∪B3 is a basis of ranα+W . Let B4 ⊆ V � (B1∪B2∪B3) be such that B1∪
B2 ∪ B3 ∪ B4 is a basis of V . Since B1 ⊆ ranα∩W =Wα, we have uα−1 ∩W �= ∅ for
every u ∈ B1. For each u ∈ B1, choose an element u′ ∈ uα−1 ∩W . Since B2 ⊆ ranα, for
each v ∈ B2, vα−1 �= ∅, so choose an element v ∈ vα−1. Define β ∈ LF(V) on the basis
B1∪B2∪B3∪B4 by

β =
[
u v B3∪B4

u′ v 0

]

u∈B1
v∈B2.

(3.1)

It follows that Wβ = 〈B1 ∪ B3〉β = 〈{u′ | u ∈ B1}〉 ⊆W , so β ∈ LF(V ,W). Let B0 be a
basis of kerα. Then B0∪{u′ | u∈ B1}∪{v | v ∈ B2} is a basis of V . Since

B0αβα= {0} = B0α, u′αβα= uβα= u′α ∀u∈ B1,

vαβα= vβα= vα ∀v ∈ B2,
(3.2)

we have α= αβα, so α is a regular element of LF(V ,W).
(ii) Assume that {0} �=W � V . Let B1 be a basis of W and B a basis of V containing

B1. Then B1 �= ∅ �= B�B1. Let w ∈ B1 and u∈ B�B1. Define α∈ LF(V) by

α=
[
u B� {u}
w 0

]

. (3.3)
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Then Wα = 〈B1〉α ⊆ 〈B � {u}〉α = {0}, so α ∈ LF(V ,W). Since ranα∩W = 〈w〉 �= {0}
=Wα, by (i), we deduce that α is not a regular element of LF(V ,W). Hence LF(V ,W) is
not a regular semigroup.

Since LF(V ,V)= LF(V)= LF(V ,{0}), the converse holds. �

To prove the main theorem, the following lemma is also needed. Lemma 2.3 and
Proposition 3.1(i) are useful to obtain this result.

Lemma 3.2. If F=Z2, dimF V=2, and dimFW=1, then for all α,β ∈ LF(V ,W), (α,β)b =
(α,β)q in LF(V ,W).

Proof. Let {w} be a basis of W and {w,u} a basis of V . Since F = Z2, it follows that
W = {0,w} and V = {0,w,u,u+w}. Clearly, both {u,u+w} and {w,u+w} are also bases
of V . Thus 〈w〉∩ 〈u〉 = 〈w〉∩ 〈u+w〉 = 〈u〉∩ 〈u+w〉 = {0}. All elements of LF(V ,W)
defined on the basis {w,u} of V can be given as follows:

LF(V ,W)=
{

0,1V ,

[
w u

0 w

]

,

[
w u

0 u

]

,

[
w u

0 w+u

]

,

[
w u

w 0

]

,

[
w u

w w

]

,

[
w u

w w+u

]}

.

(3.4)

By Proposition 3.1(i), LF(V ,W) � Reg(LF(V ,W)) = {[w u
0 w ]}. Let λ = [w u

0 w ]. Note that
λ2 = 0. To prove the lemma, by Lemma 2.3, it suffices to show that (λ)b = (λ)q. By direct
multiplication, we have

LF(V ,W)λ= {0,λ}, λLF(V ,W)= {0,λ}, λLF(V ,W)λ= {0}. (3.5)

Consequently, (λ)b = λLF(V ,W)λ∪{λ} = {0,λ} = LF(V ,W)λ∩ λLF(V ,W)= (λ)q. �

Theorem 3.3. The semigroup LF(V ,W) is a ��-semigroup if and only if one of the follow-
ing statements holds.

(i) W =V .
(ii) W = {0}.

(iii) F = Z2, dimF V = 2, and dimFW = 1.

Proof. Assume that (i), (ii), and (iii) are false. Then (1) {0} �=W � V and (2) F �= Z2,
dimF V > 2, or dimFW > 1. Let B1 be a basis of W and B a basis of V containing B1. Then
B1 �= ∅ and B�B1 �= ∅.
Case 1 ((F �= Z2)). Let a∈ F � {0,1}, w ∈ B1, and u∈ B�B1. Define α,β,γ ∈ LF(V ,W)
by

α=
[
u B� {u}
w 0

]

, β =
[
w B� {w}
aw 0

]

, γ =
[
u B� {u}
au 0

]

. (3.6)

Then we have αβ = [ u B�{u}
aw 0 ] = γα. Since a �= 1, we have αβ �= α. By Proposition 1.1(i),

αβ∈LF(V ,W)(α)q. Suppose that αβ∈LF(V ,W)(α)b. By Proposition 1.1(ii), αβ = αηα
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for some η∈LF(V,W). Then aw = uαβ = uαηα= (wη)α. Butwη∈W andWα= 〈B1〉α⊆
〈B� {u}〉α= {0}, so aw = 0 which is contrary to a �= 0. Thus (α)q �= (α)b, so LF(V ,W) is
not a ��-semigroup by Proposition 1.4.
Case 2 ((dimFW > 1)). Then |B1| > 1. Let w1,w2 ∈ B1 be such that w1 �= w2 and u ∈
B�B1. Define α,β,γ ∈ LF(V ,W) by

α=
[
w1 u B�

{
w1,u

}

w2 w1 0

]

, β =
[
w1 B�

{
w1
}

w1 0

]

, γ =
[
u B� {u}
u 0

]

.

(3.7)

Then αβ = [ u B�{u}
w1 0 ] = γα �= α, so αβ ∈ (α)q. If αβ ∈ (α)b, then αβ = αηα for some

η ∈ LF(V ,W). Thus w1 = uαβ = uαηα= (w1η)α. Since w1η ∈W = 〈B1〉, we have w1η =
aw1 + v for some a ∈ F and v ∈ 〈B1 � {w1}〉. But B1 � {w1} ⊆ B � {w1,u}, so vα = 0.
Consequently, w1 = (aw1 + v)α = aw2 which is contrary to the independence of w1 and
w2. By Proposition 1.4, LF(V ,W) is not a ��-semigroup.
Case 3 ((dimF V > 2 and dimFW = 1)). Then |B1| = 1 and |B � B1| > 1. Let B1 = {w}
and u1,u2 ∈ B�B1 be such that u1 �= u2. Let α,β,γ ∈ LF(V ,W) be defined by

α=
[
u1 u2 B�

{
u1,u2

}

w u1 0

]

, β =
[
w B� {w}
w 0

]

, γ =
[
u1 B�

{
u1
}

u1 0

]

.

(3.8)

Then we have αβ = [u1 B�{u1}
w 0 ]= γα �= α, so αβ ∈ (α)q. Suppose that αβ ∈ (α)b. It follows

that αβ = αηα for some η ∈ LF(V ,W). Thus w = u1αβ = u1αηα= (wη)α. But wη ∈W =
〈w〉 and wα = 0, so w = (wη)α = 0, a contradiction. Hence (α)q �= (α)b, so LF(V ,W) is
not a ��-semigroup, as before.

For the converse, if (i) or (ii) holds, then LF(V ,W)= LF(V) which is a ��-semigroup
by Proposition 1.2. If (iii) holds, then LF(V ,W) is a ��-semigroup by Proposition 1.4
and Lemma 3.2. �

The following corollaries follow directly from Propositions 1.2, 3.1(ii), Theorem 3.3,
and the proof of Lemma 3.2.

Corollary 3.4. If F �= Z2 or dimF V �= 2, then the following statements are equivalent.
(i) LF(V ,W) is a ��-semigroup.

(ii) W =V or W = {0}.
(iii) LF(V ,W) is a regular semigroup.

Corollary 3.5. The semigroup LF(V ,W) is a nonregular ��-semigroup if and only if
F = Z2, dimF V = 2, and dimFW = 1. Hence if F = Z2 and dimF V = 2, there are exactly
3 semigroups LF(V ,W) which are nonregular ��-semigroups, and each of such LF(V ,W)
contains 8 elements.

Remark 3.6. We also have that LF(V ,W) is an ideal of LF(V ,W) (see Remark 2.8). Con-
sequently, if {0} �=W � V , then LF(V ,W) is neither left nor right 0-simple. Hence if
F = Z2, dimF V = 2, and dimFW = 1, then LF(V ,W) is a ��-semigroup which is nei-
ther regular nor left (right) 0-simple.
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