

S. NENTHEIN AND Y. KEMPRASIT

Received 23 December 2005; Revised 6 June 2006; Accepted 22 June 2006

A semigroup whose bi-ideals and quasi-ideals coincide is called a $\mathfrak{B2}$ -semigroup. The full transformation semigroup on a set X and the semigroup of all linear transformations of a vector space V over a field F into itself are denoted, respectively, by T(X) and $L_F(V)$. It is known that every regular semigroup is a $\mathfrak{B2}$ -semigroup. Then both T(X) and $L_F(V)$ are $\mathfrak{B2}$ -semigroups. In 1966, Magill introduced and studied the subsemigroup $\overline{T}(X,Y)$ of T(X), where $\emptyset \neq Y \subseteq X$ and $\overline{T}(X,Y) = \{\alpha \in T(X) \mid Y\alpha \subseteq Y\}$. If W is a subspace of V, the subsemigroup $\overline{L}_F(V,W)$ of $L_F(V)$ will be defined analogously. In this paper, it is shown that $\overline{T}(X,Y)$ is a $\mathfrak{B2}$ -semigroup if and only if Y = X, |Y| = 1, or $|X| \leq 3$, and $\overline{L}_F(V,W)$ is a $\mathfrak{B2}$ -semigroup if and only if (i) W = V, (ii) $W = \{0\}$, or (iii) $F = \mathbb{Z}_2$, $\dim_F V = 2$, and $\dim_F W = 1$.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The cardinality of a set *A* is denoted by |A|. The image of a map α at *x* in the domain of α will be written by $x\alpha$.

An element *a* of a semigroup *S* is said to be *regular* if a = aba for some $b \in S$, and *S* is called a *regular semigroup* if every element of *S* is regular. The set of all regular elements of *S* is denoted by Reg(*S*).

The full transformation semigroup on a nonempty set *X* is denoted by T(X), that is, T(X) is the semigroup of all mappings $\alpha : X \to X$ under composition. The semigroup T(X) is known to be regular [4, page 4]. Magill [9] introduced and studied the subsemigroup

$$\overline{T}(X,Y) = \{ \alpha \in T(X) \mid Y\alpha \subseteq Y \}$$
(1.1)

of T(X), where $\emptyset \neq Y \subseteq X$. Note that 1_X , the identity map on X, belongs to $\overline{T}(X, Y)$ and $\overline{T}(X, Y)$ contains T(X, Y) as a subsemigroup, where $T(X, Y) = \{\alpha \in T(X) \mid \operatorname{ran} \alpha \subseteq Y\}$ and $\operatorname{ran} \alpha$ denotes the range of α . The semigroup T(X, Y) was introduced and studied by Symons [13].

Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 12757, Pages 1–10 DOI 10.1155/IJMMS/2006/12757

2 On transformation semigroups which are *B*₂-semigroups

For a vector space V over a field F, let $L_F(V)$ be the semigroup of all linear transformations $\alpha: V \to V$ under composition. It is known that $L_F(V)$ is a regular semigroup [5, page 63]. For a subspace W of V, we define the subsemigroup $\overline{L}_F(V, W)$ of $L_F(V)$ analogously, that is,

$$\overline{L}_F(V,W) = \{ \alpha \in L_F(V) \mid W \alpha \subseteq W \}.$$
(1.2)

Clearly, $1_V \in \overline{L}_F(V, W)$ and 0, the zero map on *V*, also belongs to $\overline{L}_F(V, W)$. In addition, $\overline{L}_F(V, W)$ contains $L_F(V, W) = \{\alpha \in L_F(V) \mid \operatorname{ran} \alpha \subseteq W\}$ as a subsemigroup.

A subsemigroup Q of a semigroup S is called a *quasi-ideal* of S if $SQ \cap QS \subseteq Q$, and a *bi-ideal* of S is a subsemigroup B of S such that $BSB \subseteq B$. The notions of quasi-ideal and bi-ideal for semigroups were introduced by Steinfeld [11] and Good and Hughes [3], respectively. Both quasi-ideals and bi-ideals are generalizations of one-sided ideals, and bi-ideals also generalize quasi-ideals. For a nonempty subset A of S, let $(A)_q$ and $(A)_b$ be the quasi-ideal and the bi-ideal of S generated by A, respectively, that is, $(A)_q[(A)_b]$ is the intersection of all quasi-ideals (bi-ideals) of S containing A [12, pages 10, 12]. Observe that $(A)_b \subseteq (A)_q$.

PROPOSITION 1.1 [2, pages 84, 85]. For a nonempty subset A of a semigroup S,

(i) $(A)_q = S^1 A \cap AS^1$,

(ii) $(A)_b = AS^1A \cup A$.

Kapp [6] used $\Re \mathfrak{D}$ to denote the class of all semigroups whose bi-ideals and quasiideals coincide and Mielke [10] called a semigroup in $\Re \mathfrak{D}$ a $\Re \mathfrak{D}$ -semigroup. Important $\Re \mathfrak{D}$ -semigroups are the following ones.

PROPOSITION 1.2 [8]. Every regular semigroup is a $\Re 2$ -semigroup.

PROPOSITION 1.3 [6]. Every left (right) simple semigroup or every left (right) 0-simple semigroup is a B2-semigroup.

Recall that a semigroup *S* is *left (right) simple* if *S* has no proper left (right) ideal, and a semigroup *S* with 0 is called *left (right)* 0-*simple* if $S^2 \neq \{0\}$ and *S* has no proper nonzero left (right) ideal. Kemprasit showed in [7] that if *X* is an infinite set, then the subsemigroup $\{\alpha \in T(X) \mid X \setminus \operatorname{ran} \alpha \text{ is infinite}\}$ of T(X) is a $\mathfrak{B2}$ -semigroup but it is neither regular nor left (right) simple. In fact, $\mathfrak{B2}$ -semigroups have been characterized by Calais [1] as follows.

PROPOSITION 1.4 [1]. A semigroup S is a $\Re 2$ -semigroup if and only if $(x, y)_b = (x, y)_q$ for all $x, y \in S$.

Every bi-ideal of a regular semigroup is a \mathfrak{RD} -semigroup. The proof is rather simple and is as follows: let T be a bi-ideal of a regular semigroup S and B a bi-ideal of T. Then $TST \subseteq T$ and $BTB \subseteq B$. Let $x \in TB \cap BT$. Since S is regular, x = xsx for some $s \in S$ which implies that $x = xsx \in BTsTB \subseteq BTSTB \subseteq BTB \subseteq B$. Thus $TB \cap BT \subseteq B$. Hence B is a quasi-ideal of T, as desired. Since T(X, Y) and $L_F(V, W)$ are left ideals of T(X) and $L_F(V)$, respectively, it follows that T(X, Y) and $L_F(V, W)$ are always \mathfrak{RD} -semigroups. However, the semigroups $\overline{T}(X, Y)$ and $\overline{L}_F(V, W)$ need not be \mathfrak{RD} -semigroups. Notice that if *X* is infinite, then the semigroup $\{\alpha \in T(X) \mid X \setminus \operatorname{ran} \alpha \text{ is infinite}\}$ is a left ideal of *T*(*X*). Similarly, if *V* has infinite dimension over *F*, then the semigroup $\{\alpha \in L_F(V) \mid \dim_F(V/\operatorname{ran} \alpha) \text{ is infinite}\}$ is a left ideal of $L_F(V)$.

In Section 2, we give a necessary and sufficient condition for $\overline{T}(X, Y)$ to be a $\mathfrak{B}\mathfrak{Q}$ -semigroup in terms of |X| and |Y|. In Section 3, a necessary and sufficient condition for $\overline{L}_F(V, W)$ to be a $\mathfrak{B}\mathfrak{Q}$ -semigroup is given in terms of |F|, dim_{*F*} V, and dim_{*F*} W.

In the remainder, let *X* be a nonempty set, $\emptyset \neq Y \subseteq X$, *V* a vector space over a field *F*, and *W* a subspace of *V*.

2. The semigroup $\overline{T}(X, Y)$

We begin this section by characterizing regular elements of the semigroup $\overline{T}(X, Y)$. Then it is shown that $\overline{T}(X, Y)$ is a regular semigroup if and only if Y = X or Y contains only one element.

PROPOSITION 2.1. The following statements hold for the semigroup $\overline{T}(X, Y)$.

- (i) For $\alpha \in \overline{T}(X, Y)$, $\alpha \in \text{Reg}(\overline{T}(X, Y))$ if and only if $\operatorname{ran} \alpha \cap Y = Y\alpha$.
- (ii) The semigroup $\overline{T}(X, Y)$ is regular if and only if either Y = X or |Y| = 1.

Proof. (i) Since $Y\alpha \subseteq Y$, we have $Y\alpha \subseteq \operatorname{ran} \alpha \cap Y$. Assume that $\alpha = \alpha\beta\alpha$ for some $\beta \in \overline{T}(X, Y)$. If $x \in \operatorname{ran} \alpha \cap Y$, then $x \in Y$ and $x = a\alpha$ for some $a \in X$ which imply that $x = a\alpha = a\alpha\beta\alpha = x\beta\alpha \in Y\beta\alpha \subseteq Y\alpha$. Hence we have $\operatorname{ran} \alpha \cap Y = Y\alpha$.

Conversely, assume that $\operatorname{ran} \alpha \cap Y = Y\alpha$. Then for each $x \in \operatorname{ran} \alpha \cap Y$, we have $x\alpha^{-1} \cap Y \neq \emptyset$. We choose an element $x' \in x\alpha^{-1} \cap Y$ for each $x \in \operatorname{ran} \alpha \cap Y$. Also, for $x \in \operatorname{ran} \alpha \setminus Y$, choose an element $\overline{x} \in x\alpha^{-1}$. Then $x'\alpha = x$ for all $x \in \operatorname{ran} \alpha \cap Y$ and $\overline{x}\alpha = x$ for all $x \in \operatorname{ran} \alpha \setminus Y$. Let *a* be a fixed element in *Y* and define $\beta : X \to X$ by a bracket notation as follows:

$$\beta = \begin{bmatrix} x & t & X \smallsetminus \operatorname{ran} \alpha \\ x' & \overline{t} & a \end{bmatrix}_{\substack{x \in \operatorname{ran} \alpha \cap Y \\ t \in \operatorname{ran} \alpha \smallsetminus Y.}} (2.1)$$

Then $Y\beta \subseteq \{x' \mid x \in \operatorname{ran} \alpha \cap Y\} \cup \{a\} \subseteq Y$, and for $x \in X$,

$$x\alpha\beta\alpha = (x\alpha)\beta\alpha = \begin{cases} (x\alpha)'\alpha = x\alpha & \text{if } x\alpha \in \operatorname{ran} \alpha \cap Y, \\ (\overline{x\alpha})\alpha = x\alpha & \text{if } x\alpha \in \operatorname{ran} \alpha \smallsetminus Y. \end{cases}$$
(2.2)

Hence $\beta \in \overline{T}(X, Y)$ and $\alpha = \alpha \beta \alpha$.

(ii) Suppose that $Y \subsetneq X$ and |Y| > 1. Let *a* and *b* be two distinct elements of *Y*. Define $\alpha : X \to X$ by

$$\alpha = \begin{bmatrix} Y & X \smallsetminus Y \\ a & b \end{bmatrix}.$$
 (2.3)

Then ran $\alpha = \{a, b\} \subseteq Y$, so $\alpha \in \overline{T}(X, Y)$ and ran $\alpha \cap Y = \{a, b\} \neq \{a\} = Y\alpha$. It follows from (i) that $\alpha \notin \text{Reg}(\overline{T}(X, Y))$. Hence $\overline{T}(X, Y)$ is not a regular semigroup.

4 On transformation semigroups which are *B*₂-semigroups

If Y = X, then $\overline{T}(X, Y) = T(X)$ which is regular. Next, assume that $Y = \{c\}$. In this case, $\overline{T}(X, Y)$ is isomorphic to the semigroup $P(X \setminus Y)$ consisting of all partial transformations of $X \setminus Y$, via the map $P(X \setminus Y) \to \overline{T}(X, Y)$, $\alpha \mapsto \overline{\alpha}$, where

$$\overline{\alpha} = \begin{bmatrix} x & X \smallsetminus \operatorname{dom} \alpha \\ x\alpha & c \end{bmatrix}_{x \in \operatorname{dom} \alpha.}$$
(2.4)

It is well known that $P(X \setminus Y)$ is regular [4, page 4]. Hence $\overline{T}(X, Y)$ is a regular semigroup, as required.

To characterize when $\overline{T}(X, Y)$ is a $\mathfrak{B}2$ -semigroup, Propositions 1.1, 1.2, 1.4, and 2.1 and the following three lemmas are needed.

LEMMA 2.2. Let S be a semigroup. If $\emptyset \neq A \subseteq \text{Reg}(S)$, then $(A)_b = (A)_q$.

Proof. We know that $(A)_b \subseteq (A)_q$. Let $x \in (A)_q$. By Proposition 1.1(i), x = sa = bt for some $s, t \in S^1$ and $a, b \in A$. Since $a \in \text{Reg}(S)$, a = aa'a for some $a' \in S$. Then

$$x = sa = saa'a = bta'a \in ASA \subseteq (A)_b \tag{2.5}$$

by Proposition 1.1(ii). Hence we have $(A)_b = (A)_q$, as desired.

LEMMA 2.3. Let *S* be a semigroup, let $\emptyset \neq A \subseteq S$, and let $B \subseteq \text{Reg}(S)$. If $(A)_b = (A)_q$, then $(A \cup B)_b = (A \cup B)_q$.

Proof. We first show that $S^1A \cap BS^1$ and $S^1B \cap AS^1$ are subsets of $(A \cup B)_b$. Let $x \in S^1A \cap BS^1$. Then x = sa = bt for some $s, t \in S^1$, $a \in A$, and $b \in B$. Since $b \in \text{Reg}(S)$, b = bb'b for some $b' \in S$. It follows that

$$x = bt = bb'bt = bb'sa \in BSA \subseteq (A \cup B)S(A \cup B) \subseteq (A \cup B)_b.$$
(2.6)

This shows that $S^1A \cap BS^1 \subseteq (A \cup B)_b$. It can be shown similarly that $S^1B \cap AS^1 \subseteq (A \cup B)_b$. Consequently,

$$(A \cup B)_q = S^1(A \cup B) \cap (A \cup B)S^1$$

$$= (S^1A \cup S^1B) \cap (AS^1 \cup BS^1)$$

$$= (S^1A \cap AS^1) \cup (S^1A \cap BS^1) \cup (S^1B \cap AS^1) \cup (S^1B \cap BS^1)$$

$$= (A)_q \cup (S^1A \cap BS^1) \cup (S^1B \cap AS^1) \cup (B)_q$$

$$= (A)_b \cup (S^1A \cap BS^1) \cup (S^1B \cap AS^1) \cup (B)_b,$$

from the assumption and Lemma 2.2,

$$\subseteq (A)_b \cup (A \cup B)_b \cup (A \cup B)_b \cup (B)_b = (A \cup B)_b.$$

But $(A \cup B)_b \subseteq (A \cup B)_q$, so $(A \cup B)_b = (A \cup B)_q$.

 \square

LEMMA 2.4. If |X| = 3 and |Y| = 2, then for all $\alpha, \beta \in \overline{T}(X, Y)$, $(\alpha, \beta)_b = (\alpha, \beta)_q$ in $\overline{T}(X, Y)$.

Proof. For convenience, let X_a denote the constant map whose domain and range are X and $\{a\}$, respectively.

Assume that $X = \{a, b, c\}$ and $Y = \{a, b\}$. Clearly,

$$\overline{T}(X,Y) = \begin{cases} 1_X, X_a, X_b, \begin{bmatrix} a & b & c \\ a & a & b \end{bmatrix}, \begin{bmatrix} a & b & c \\ a & a & c \end{bmatrix}, \begin{bmatrix} a & b & c \\ b & b & a \end{bmatrix}, \begin{bmatrix} a & b & c \\ b & b & c \end{bmatrix}, \begin{bmatrix} a & b & c \\ a & b & a \end{bmatrix}, \begin{bmatrix} a & b & c \\ a & b & b \end{bmatrix}, \begin{bmatrix} a & b & c \\ b & a & a \end{bmatrix}, \begin{bmatrix} a & b & c \\ b & a & b \end{bmatrix}, \begin{bmatrix} a & b & c \\ b & a & a \end{bmatrix}, \begin{bmatrix} a & b & c \\ b & a & c \end{bmatrix} \end{cases}.$$

$$(2.8)$$

By Proposition 2.1(i), $\overline{T}(X, Y) \setminus \text{Reg}(\overline{T}(X, Y)) = \{ \begin{bmatrix} a & b & c \\ a & a & b \end{bmatrix} \}$. Let $\lambda = \begin{bmatrix} a & b & c \\ a & a & b \end{bmatrix} \}$ and $\eta = \begin{bmatrix} a & b & c \\ b & b & a \end{bmatrix} \}$. Note that $\lambda^2 = X_a = \eta \lambda$ and $\eta^2 = X_b = \lambda \eta$. To show that $(\alpha, \beta)_b = (\alpha, \beta)_q$ for all $\alpha, \beta \in \overline{T}(X, Y)$, by Lemma 2.3, it suffices to show that $(\lambda)_b = (\lambda)_q$, $(\eta)_b = (\eta)_q$, and $(\lambda, \eta)_b = (\lambda, \eta)_q$. By direct multiplication, we have

$$\overline{T}(X,Y)\lambda = \{\lambda, X_a\}, \qquad \lambda \overline{T}(X,Y) = \{\lambda, X_a, X_b, \eta\}, \qquad \lambda \overline{T}(X,Y)\lambda = \{X_a\},$$

$$\overline{T}(X,Y)\eta = \{\eta, X_b\}, \qquad \eta \overline{T}(X,Y) = \{\eta, X_a, X_b, \lambda\}, \qquad \eta \overline{T}(X,Y)\eta = \{X_b\}, \qquad (2.9)$$

$$\lambda \overline{T}(X,Y)\eta = \{X_b\}, \qquad \eta \overline{T}(X,Y)\lambda = \{X_a\}.$$

Hence

$$\begin{split} &(\lambda)_{b} = \lambda \overline{T}(X,Y)\lambda \cup \{\lambda\} = \{X_{a},\lambda\} = \overline{T}(X,Y)\lambda \cap \lambda \overline{T}(X,Y) = (\lambda)_{q}, \\ &(\eta)_{b} = \eta \overline{T}(X,Y)\eta \cup \{\eta\} = \{X_{b},\eta\} = \overline{T}(X,Y)\eta \cap \eta \overline{T}(X,Y) = (\eta)_{q}, \\ &(\lambda,\eta)_{b} = \{\lambda,\eta\}\overline{T}(X,Y)\{\lambda,\eta\} \cup \{\lambda,\eta\} \\ &= \lambda \overline{T}(X,Y)\lambda \cup \lambda \overline{T}(X,Y)\eta \cup \eta \overline{T}(X,Y)\lambda \cup \eta \overline{T}(X,Y)\eta \cup \{\lambda,\eta\} \\ &= \{X_{a},X_{b},\lambda,\eta\}, \\ &(\lambda,\eta)_{q} = \overline{T}(X,Y)\{\lambda,\eta\} \cap \{\lambda,\eta\}\overline{T}(X,Y) \\ &= (\overline{T}(X,Y)\lambda \cup \overline{T}(X,Y)\eta) \cap (\lambda \overline{T}(X,Y) \cup \eta \overline{T}(X,Y)) \\ &= \{\lambda,X_{a},\eta,X_{b}\} = (\lambda,\eta)_{b}. \end{split}$$

THEOREM 2.5. The semigroup $\overline{T}(X, Y)$ is a $\Re \mathfrak{D}$ -semigroup if and only if one of the following statements holds.

(i) Y = X. (ii) |Y| = 1. (iii) $|X| \le 3$. *Proof.* Assume that (i), (ii), and (iii) are false. Then $X \setminus Y \neq \emptyset$, |Y| > 1, and |X| > 3. *Case 1* ((|Y| = 2)). Let $Y = \{a, b\}$. Since |X| > 3, $|X \setminus Y| > 1$. Let $c \in X \setminus Y$. Then $X \setminus \{a, b, c\} \neq \emptyset$. Define $\alpha, \beta, \gamma \in \overline{T}(X, Y)$ by

$$\alpha = \begin{bmatrix} a & b & c & X \smallsetminus \{a, b, c\} \\ b & b & a & c \end{bmatrix}, \qquad \beta = \begin{bmatrix} c & x \\ a & x \end{bmatrix}_{x \in X \smallsetminus \{c\}}, \qquad \gamma = \begin{bmatrix} a & b & X \smallsetminus \{a, b\} \\ b & b & c \end{bmatrix}.$$
(2.11)

Then $a\alpha\beta = b = a\gamma\alpha$, $b\alpha\beta = b = b\gamma\alpha$, $c\alpha\beta = a = c\gamma\alpha$, and $(X \setminus \{a, b, c\})\alpha\beta = \{a\} = (X \setminus \{a, b, c\})\gamma\alpha \neq (X \setminus \{a, b, c\})\alpha$, so $\alpha \neq \alpha\beta = \gamma\alpha \in (\alpha)_q$ by Proposition 1.1(i). If $\alpha\beta \in (\alpha)_b$, then by Proposition 1.1(ii), $\alpha\beta = \alpha\eta\alpha$ for some $\eta \in \overline{T}(X, Y)$. Hence we have $a = c\alpha\beta = c\alpha\eta\alpha = (a\eta)\alpha$. This implies that $a\eta = c$ which is contrary to $a \in Y$ and $c \in X \setminus Y$. Thus $(\alpha)_b \neq (\alpha)_q$, so by Proposition 1.4, $\overline{T}(X, Y)$ is not a $\Re 2$ -semigroup.

Case 2 ((|Y| > 2)). Let *a*, *b*, *c* be distinct elements of *Y*. Let $\alpha, \beta, \gamma \in \overline{T}(X, Y)$ be defined by

$$\alpha = \begin{bmatrix} a & Y \smallsetminus \{a\} & X \smallsetminus Y \\ b & a & c \end{bmatrix}, \qquad \beta = \begin{bmatrix} a & b & x \\ b & a & x \end{bmatrix}_{x \in X \smallsetminus \{a, b\},}$$

$$\gamma = \begin{bmatrix} a & Y \smallsetminus \{a\} & x \\ c & a & x \end{bmatrix}_{x \in X \smallsetminus Y.}$$
(2.12)

Then $a\alpha\beta = a = a\gamma\alpha \neq a\alpha$, $(Y \setminus \{a\})\alpha\beta = \{b\} = (Y \setminus \{a\})\gamma\alpha$, and $(X \setminus Y)\alpha\beta = \{c\} = (X \setminus Y)\gamma\alpha$. Thus $\alpha \neq \alpha\beta = \gamma\alpha \in (\alpha)_q$. If $\alpha\beta \in (\alpha)_b$, then $\alpha\beta = \alpha\eta\alpha$ for some $\eta \in \overline{T}(X, Y)$. Therefore we have for every $x \in X \setminus Y$, $c = x\alpha\beta = x\alpha\eta\alpha = (c\eta)\alpha$ which implies that $c\eta \in X \setminus Y$. This is a contradiction since $c \in Y$. Hence $(\alpha)_b \neq (\alpha)_q$, and so by Proposition 1.4, $\overline{T}(X, Y)$ is not a $\Re 2$ -semigroup.

If Y = X or |Y| = 1, then $\overline{T}(X, Y)$ is regular by Proposition 2.1(ii) which implies by Proposition 1.2 that $\overline{T}(X, Y)$ is a $\mathfrak{B}\mathfrak{D}$ -semigroup. If |X| = 3 and |Y| = 2, then by Lemma 2.4 and Proposition 1.4, $\overline{T}(X, Y)$ is a $\mathfrak{B}\mathfrak{D}$ -semigroup.

 \square

Hence the theorem is completely proved.

Two direct consequences of Propositions 1.2, 2.1(ii), Theorem 2.5, and the proof of Lemma 2.4 are as follows.

COROLLARY 2.6. If $|X| \neq 3$, then the following statements are equivalent.

- (i) $\overline{T}(X, Y)$ is a $\mathfrak{B}\mathfrak{Q}$ -semigroup.
- (ii) Y = X or |Y| = 1.
- (iii) $\overline{T}(X, Y)$ is a regular semigroup.

COROLLARY 2.7. The semigroup $\overline{T}(X, Y)$ is a nonregular $\mathfrak{B2}$ -semigroup if and only if |X| = 3 and |Y| = 2. Hence for each set X with |X| = 3, there are exactly 3 semigroups $\overline{T}(X, Y)$ which are nonregular $\mathfrak{B2}$ -semigroups, and each of such $\overline{T}(X, Y)$ contains 12 elements.

Remark 2.8. We have mentioned that T(X, Y) is a left ideal of T(X). But for $\alpha \in T(X, Y)$ and $\beta \in \overline{T}(X, Y)$, $X\alpha\beta \subseteq Y\beta \subseteq Y$, so T(X, Y) is an ideal of $\overline{T}(X, Y)$. We have $1_X \in \overline{T}(X, Y) \setminus T(X, Y)$ if $Y \neq X$. Hence if $Y \neq X$, then $\overline{T}(X, Y)$ is neither left nor right simple.

Therefore we deduce from Corollary 2.7 that if |X| = 3 and |Y| = 2, then $\overline{T}(X, Y)$ is an example of $\Re \mathfrak{D}$ -semigroup which is neither regular nor left (right) simple (see Propositions 1.2 and 1.3).

3. The semigroup $\overline{L}_F(V, W)$

In this section, we give a necessary and sufficient condition for $\overline{L}_F(V, W)$ to be a $\mathfrak{B2}$ semigroup. We first provide the conditions of the regularity of elements of $\overline{L}_F(V, W)$ and of the semigroup $\overline{L}_F(V, W)$. The following facts about vector spaces and linear transformations will be used. If U_1 and U_2 are subspaces of V, B_1 is a basis of the subspace $U_1 \cap U_2, B_2 \subseteq U_1$ and $B_3 \subseteq U_2$ are such that $B_1 \cup B_2$ and $B_1 \cup B_3$ are bases of U_1 and U_2 , respectively, then $B_1 \cup B_2 \cup B_3$ is a basis of the subspace $U_1 + U_2$ of V. If $\alpha \in L_F(V)$, B_1 is a basis of ker α , B_2 is a basis of ran α , and choose an element $u' \in u\alpha^{-1}$ for every $u \in B_2$, then $B_1 \cup \{u' \mid u \in B_2\}$ is a basis of V.

PROPOSITION 3.1. The following statements hold for the semigroup $\overline{L}_F(V, W)$.

- (i) For $\alpha \in \overline{L}_F(V, W)$, $\alpha \in \operatorname{Reg}(\overline{L}_F(V, W))$ if and only if $\operatorname{ran} \alpha \cap W = W\alpha$.
- (ii) The semigroup $\overline{L}_F(V, W)$ is regular if and only if either W = V or $W = \{0\}$.

Proof. (i) The proof that $\alpha \in \text{Reg}(\overline{L}_F(V, W))$ implies ran $\alpha \cap W = W\alpha$ is analogous to the proof of the "only if" part of Proposition 2.1(i).

Conversely, assume that $\operatorname{ran} \alpha \cap W = W\alpha$. Let B_1 be a basis of $\operatorname{ran} \alpha \cap W$, $B_2 \subseteq \operatorname{ran} \alpha \setminus B_1$, and $B_3 \subseteq W \setminus B_1$ such that $B_1 \cup B_2$ and $B_1 \cup B_3$ are bases of $\operatorname{ran} \alpha$ and W, respectively. Then $B_1 \cup B_2 \cup B_3$ is a basis of $\operatorname{ran} \alpha + W$. Let $B_4 \subseteq V \setminus (B_1 \cup B_2 \cup B_3)$ be such that $B_1 \cup B_2 \cup B_3 \cup B_4$ is a basis of V. Since $B_1 \subseteq \operatorname{ran} \alpha \cap W = W\alpha$, we have $u\alpha^{-1} \cap W \neq \emptyset$ for every $u \in B_1$. For each $u \in B_1$, choose an element $u' \in u\alpha^{-1} \cap W$. Since $B_2 \subseteq \operatorname{ran} \alpha$, for each $v \in B_2$, $v\alpha^{-1} \neq \emptyset$, so choose an element $\overline{v} \in v\alpha^{-1}$. Define $\beta \in L_F(V)$ on the basis $B_1 \cup B_2 \cup B_3 \cup B_4$ by

$$\beta = \begin{bmatrix} u & v & B_3 \cup B_4 \\ u' & \overline{v} & 0 \end{bmatrix}_{\substack{u \in B_1 \\ v \in B_2.}}$$
(3.1)

It follows that $W\beta = \langle B_1 \cup B_3 \rangle \beta = \langle \{u' \mid u \in B_1\} \rangle \subseteq W$, so $\beta \in \overline{L}_F(V, W)$. Let B_0 be a basis of ker α . Then $B_0 \cup \{u' \mid u \in B_1\} \cup \{\overline{v} \mid v \in B_2\}$ is a basis of V. Since

$$B_0 \alpha \beta \alpha = \{0\} = B_0 \alpha, \quad u' \alpha \beta \alpha = u \beta \alpha = u' \alpha \quad \forall u \in B_1,$$

$$\overline{\nu} \alpha \beta \alpha = \nu \beta \alpha = \overline{\nu} \alpha \quad \forall v \in B_2,$$
(3.2)

we have $\alpha = \alpha \beta \alpha$, so α is a regular element of $\overline{L}_F(V, W)$.

(ii) Assume that $\{0\} \neq W \subsetneq V$. Let B_1 be a basis of W and B a basis of V containing B_1 . Then $B_1 \neq \emptyset \neq B \setminus B_1$. Let $w \in B_1$ and $u \in B \setminus B_1$. Define $\alpha \in L_F(V)$ by

$$\alpha = \begin{bmatrix} u & B \smallsetminus \{u\} \\ w & 0 \end{bmatrix}.$$
 (3.3)

8 On transformation semigroups which are $\Re 2$ -semigroups

Then $W\alpha = \langle B_1 \rangle \alpha \subseteq \langle B \setminus \{u\} \rangle \alpha = \{0\}$, so $\alpha \in \overline{L}_F(V, W)$. Since ran $\alpha \cap W = \langle w \rangle \neq \{0\}$ = $W\alpha$, by (i), we deduce that α is not a regular element of $\overline{L}_F(V, W)$. Hence $\overline{L}_F(V, W)$ is not a regular semigroup.

Since $\overline{L}_F(V, V) = L_F(V) = \overline{L}_F(V, \{0\})$, the converse holds.

To prove the main theorem, the following lemma is also needed. Lemma 2.3 and Proposition 3.1(i) are useful to obtain this result.

LEMMA 3.2. If $F = \mathbb{Z}_2$, dim_F V = 2, and dim_F W = 1, then for all $\alpha, \beta \in \overline{L}_F(V, W)$, $(\alpha, \beta)_b = (\alpha, \beta)_q$ in $\overline{L}_F(V, W)$.

Proof. Let $\{w\}$ be a basis of W and $\{w,u\}$ a basis of V. Since $F = \mathbb{Z}_2$, it follows that $W = \{0, w\}$ and $V = \{0, w, u, u + w\}$. Clearly, both $\{u, u + w\}$ and $\{w, u + w\}$ are also bases of V. Thus $\langle w \rangle \cap \langle u \rangle = \langle w \rangle \cap \langle u + w \rangle = \langle u \rangle \cap \langle u + w \rangle = \{0\}$. All elements of $\overline{L}_F(V, W)$ defined on the basis $\{w, u\}$ of V can be given as follows:

$$\overline{L}_{F}(V,W) = \left\{ 0, 1_{V}, \begin{bmatrix} w & u \\ 0 & w \end{bmatrix}, \begin{bmatrix} w & u \\ 0 & u \end{bmatrix}, \begin{bmatrix} w & u \\ 0 & w+u \end{bmatrix}, \begin{bmatrix} w & u \\ w & 0 \end{bmatrix}, \begin{bmatrix} w & u \\ w & w \end{bmatrix}, \begin{bmatrix} w & u \\ w & w+u \end{bmatrix} \right\}.$$
(3.4)

By Proposition 3.1(i), $\overline{L}_F(V, W) \setminus \text{Reg}(\overline{L}_F(V, W)) = \{ \begin{bmatrix} w & u \\ 0 & w \end{bmatrix} \}$. Let $\lambda = \begin{bmatrix} w & u \\ 0 & w \end{bmatrix} \}$. Note that $\lambda^2 = 0$. To prove the lemma, by Lemma 2.3, it suffices to show that $(\lambda)_b = (\lambda)_q$. By direct multiplication, we have

$$\overline{L}_F(V,W)\lambda = \{0,\lambda\}, \qquad \lambda \overline{L}_F(V,W) = \{0,\lambda\}, \qquad \lambda \overline{L}_F(V,W)\lambda = \{0\}.$$
(3.5)

Consequently, $(\lambda)_b = \lambda \overline{L}_F(V, W) \lambda \cup \{\lambda\} = \{0, \lambda\} = \overline{L}_F(V, W) \lambda \cap \lambda \overline{L}_F(V, W) = (\lambda)_q.$

THEOREM 3.3. The semigroup $\overline{L}_F(V, W)$ is a $\mathfrak{B}\mathfrak{Q}$ -semigroup if and only if one of the following statements holds.

- (i) W = V.
- (ii) $W = \{0\}.$
- (iii) $F = \mathbb{Z}_2$, dim_{*F*} V = 2, and dim_{*F*} W = 1.

Proof. Assume that (i), (ii), and (iii) are false. Then (1) $\{0\} \neq W \subsetneq V$ and (2) $F \neq \mathbb{Z}_2$, dim_{*F*} V > 2, or dim_{*F*} W > 1. Let B_1 be a basis of W and B a basis of V containing B_1 . Then $B_1 \neq \emptyset$ and $B \smallsetminus B_1 \neq \emptyset$.

Case 1 (($F \neq \mathbb{Z}_2$)). Let $a \in F \setminus \{0,1\}$, $w \in B_1$, and $u \in B \setminus B_1$. Define $\alpha, \beta, \gamma \in \overline{L}_F(V, W)$ by

$$\alpha = \begin{bmatrix} u & B \smallsetminus \{u\} \\ w & 0 \end{bmatrix}, \qquad \beta = \begin{bmatrix} w & B \smallsetminus \{w\} \\ aw & 0 \end{bmatrix}, \qquad \gamma = \begin{bmatrix} u & B \smallsetminus \{u\} \\ au & 0 \end{bmatrix}.$$
(3.6)

Then we have $\alpha\beta = \begin{bmatrix} u & B \setminus \{u\} \\ aw & 0 \end{bmatrix} = \gamma\alpha$. Since $a \neq 1$, we have $\alpha\beta \neq \alpha$. By Proposition 1.1(i), $\alpha\beta \in \overline{L}_F(V, W)(\alpha)_q$. Suppose that $\alpha\beta \in \overline{L}_F(V, W)(\alpha)_b$. By Proposition 1.1(ii), $\alpha\beta = \alpha\eta\alpha$

for some $\eta \in \overline{L}_F(V,W)$. Then $aw = u\alpha\beta = u\alpha\eta\alpha = (w\eta)\alpha$. But $w\eta \in W$ and $W\alpha = \langle B_1 \rangle \alpha \subseteq \langle B \setminus \{u\} \rangle \alpha = \{0\}$, so aw = 0 which is contrary to $a \neq 0$. Thus $(\alpha)_q \neq (\alpha)_b$, so $\overline{L}_F(V,W)$ is not a $\Re 2$ -semigroup by Proposition 1.4.

Case 2 ((dim_{*F*} *W* > 1)). Then $|B_1| > 1$. Let $w_1, w_2 \in B_1$ be such that $w_1 \neq w_2$ and $u \in B \setminus B_1$. Define $\alpha, \beta, \gamma \in \overline{L}_F(V, W)$ by

$$\alpha = \begin{bmatrix} w_1 & u & B \smallsetminus \{w_1, u\} \\ w_2 & w_1 & 0 \end{bmatrix}, \qquad \beta = \begin{bmatrix} w_1 & B \smallsetminus \{w_1\} \\ w_1 & 0 \end{bmatrix}, \qquad \gamma = \begin{bmatrix} u & B \smallsetminus \{u\} \\ u & 0 \end{bmatrix}.$$
(3.7)

Then $\alpha\beta = \begin{bmatrix} u & B \setminus \{u\} \\ w_1 & 0 \end{bmatrix} = \gamma\alpha \neq \alpha$, so $\alpha\beta \in (\alpha)_q$. If $\alpha\beta \in (\alpha)_b$, then $\alpha\beta = \alpha\eta\alpha$ for some $\eta \in \overline{L}_F(V, W)$. Thus $w_1 = u\alpha\beta = u\alpha\eta\alpha = (w_1\eta)\alpha$. Since $w_1\eta \in W = \langle B_1 \rangle$, we have $w_1\eta = aw_1 + v$ for some $a \in F$ and $v \in \langle B_1 \setminus \{w_1\} \rangle$. But $B_1 \setminus \{w_1\} \subseteq B \setminus \{w_1, u\}$, so $v\alpha = 0$. Consequently, $w_1 = (aw_1 + v)\alpha = aw_2$ which is contrary to the independence of w_1 and w_2 . By Proposition 1.4, $\overline{L}_F(V, W)$ is not a $\Re \mathfrak{D}$ -semigroup.

Case 3 ((dim_{*F*} V > 2 and dim_{*F*} W = 1)). Then $|B_1| = 1$ and $|B \setminus B_1| > 1$. Let $B_1 = \{w\}$ and $u_1, u_2 \in B \setminus B_1$ be such that $u_1 \neq u_2$. Let $\alpha, \beta, \gamma \in \overline{L}_F(V, W)$ be defined by

$$\alpha = \begin{bmatrix} u_1 & u_2 & B \setminus \{u_1, u_2\} \\ w & u_1 & 0 \end{bmatrix}, \qquad \beta = \begin{bmatrix} w & B \setminus \{w\} \\ w & 0 \end{bmatrix}, \qquad \gamma = \begin{bmatrix} u_1 & B \setminus \{u_1\} \\ u_1 & 0 \end{bmatrix}.$$
(3.8)

Then we have $\alpha\beta = \begin{bmatrix} u_1 & B \setminus \{u_1\} \\ w & 0 \end{bmatrix} = \gamma\alpha \neq \alpha$, so $\alpha\beta \in (\alpha)_q$. Suppose that $\alpha\beta \in (\alpha)_b$. It follows that $\alpha\beta = \alpha\eta\alpha$ for some $\eta \in \overline{L}_F(V, W)$. Thus $w = u_1\alpha\beta = u_1\alpha\eta\alpha = (w\eta)\alpha$. But $w\eta \in W = \langle w \rangle$ and $w\alpha = 0$, so $w = (w\eta)\alpha = 0$, a contradiction. Hence $(\alpha)_q \neq (\alpha)_b$, so $\overline{L}_F(V, W)$ is not a $\Re 2$ -semigroup, as before.

For the converse, if (i) or (ii) holds, then $\overline{L}_F(V, W) = L_F(V)$ which is a $\mathfrak{B}\mathfrak{Q}$ -semigroup by Proposition 1.2. If (iii) holds, then $\overline{L}_F(V, W)$ is a $\mathfrak{B}\mathfrak{Q}$ -semigroup by Proposition 1.4 and Lemma 3.2.

The following corollaries follow directly from Propositions 1.2, 3.1(ii), Theorem 3.3, and the proof of Lemma 3.2.

COROLLARY 3.4. If $F \neq \mathbb{Z}_2$ or dim_{*F*} $V \neq 2$, then the following statements are equivalent.

- (i) $\overline{L}_F(V, W)$ is a $\mathfrak{B}\mathfrak{Q}$ -semigroup.
- (ii) W = V or $W = \{0\}$.
- (iii) $\overline{L}_F(V, W)$ is a regular semigroup.

COROLLARY 3.5. The semigroup $\overline{L}_F(V, W)$ is a nonregular \mathfrak{BD} -semigroup if and only if $F = \mathbb{Z}_2$, dim_F V = 2, and dim_F W = 1. Hence if $F = \mathbb{Z}_2$ and dim_F V = 2, there are exactly 3 semigroups $\overline{L}_F(V, W)$ which are nonregular \mathfrak{BD} -semigroups, and each of such $\overline{L}_F(V, W)$ contains 8 elements.

Remark 3.6. We also have that $L_F(V, W)$ is an ideal of $\overline{L}_F(V, W)$ (see Remark 2.8). Consequently, if $\{0\} \neq W \subsetneq V$, then $\overline{L}_F(V, W)$ is neither left nor right 0-simple. Hence if $F = \mathbb{Z}_2$, dim_F V = 2, and dim_F W = 1, then $\overline{L}_F(V, W)$ is a $\mathfrak{B2}$ -semigroup which is neither regular nor left (right) 0-simple.

10 On transformation semigroups which are B2-semigroups

Acknowledgments

We wish to express our appreciation to the referees for helpful comments and suggestions on the original manuscript.

References

- [1] J. Calais, *Demi-groupes dans lesquels tout bi-idéal est un quasi-idéal*, Proceedings of a Symposium on Semigroups, Smolenice, 1968.
- [2] A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups. Vol. I*, Mathematical Surveys, no. 7, American Mathematical Society, Rhode Island, 1961.
- [3] R. A. Good and D. R. Hughes, *Associated groups for semigroups*, Bulletin of the American Mathematical Society **58** (1952), 624–625.
- [4] P. M. Higgins, *Techniques of Semigroup Theory*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992.
- [5] J. M. Howie, *Fundamentals of Semigroup Theory*, London Mathematical Society Monographs. New Series, vol. 12, The Clarendon Press, Oxford University Press, New York, 1995.
- [6] K. M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publicationes Mathematicae Debrecen 16 (1969), 179–185.
- [7] Y. Kemprasit, *Some transformation semigroups whose sets of bi-ideals and quasi-ideals coincide*, Communications in Algebra **30** (2002), no. 9, 4499–4506.
- [8] S. Lajos, *Generalized ideals in semigroups*, Acta Scientiarum Mathematicarum **20** (1961), 217–222.
- [9] K. D. Magill Jr., Subsemigroups of S(X), Mathematica Japonica 11 (1966), 109–115.
- [10] B. W. Mielke, A note on Green's relations in B2-semigroups, Czechoslovak Mathematical Journal 22 (1972), no. 97, 224–229.
- [11] O. Steinfeld, *Über die Quasiideale von Halbgruppen*, Publicationes Mathematicae Debrecen 4 (1956), 262–275.
- [12] _____, *Quasi-Ideals in Rings and Semigroups*, Hungarian Mathematics Investigations, vol. 10, Akadémiai Kiadó, Budapest, 1978.
- [13] J. S. V. Symons, *Some results concerning a transformation semigroup*, Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics **19** (1975), no. 4, 413–425.

S. Nenthein: Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

E-mail address: sansanee.n@student.chula.ac.th

Y. Kemprasit: Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

E-mail address: yupaporn.k@chula.ac.th