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A two-species predator-prey system with diffusion term and stage structure is discussed,
local stability of the system is studied using linearization method, and global stability of
the system is investigated by strong upper and lower solutions. The asymptotic behavior
of solutions and the negative effect of stage structure on the permanence of populations
are given.
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1. Introduction

Predator-prey models have been studied by many authors (see [6, 21]), but the stage
structure of species has been ignored in the existing literature. In the natural world, how-
ever, there are many species whose individual members have a life history that take them
through two stages: immature and mature (see [1–3, 7–9, 18–20]). In particular, we have
in mind mammalian populations and some amphibious animals, which exhibit these two
stages. In these models, the age to maturity is represented by a time delay, leading to a sys-
tem of retarded functional differential equations. For general models one can see [11].

Specifically, the standard Lotka-Volterra type models, on which nearly all existing
theories are built, assume that the per capita rate predation depends on the prey num-
bers only. An alternative assumption is that, as the numbers of predators change slowly
(relative to prey change), there is often competition among the predators and the per
capita rate of predation depends on the numbers of both preys and predators, most likely
and simply on their ratio. A ratio-dependent predator-prey model has been investigated
by [10].

Recently, a model of ratio-dependent two species predator-prey with stage structure
was derived in [19]. The model takes the form

dX1(t)
dt

= αX2(t)− γX1(t)−αe−γτX2(t− τ),

dX2(t)
dt

= αe−γτX2(t− τ)−βX2
2(t)− cX2(t)Y(t)

X2(t) +mY(t)
,
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2 A ratio-dependent predator-prey system

dY(t)
dt

= Y(t)
(
−d+

f X2(t)
X2(t) +mY(t)

)
,

x1(0) > 0, y(0) > 0, x2(t)= ϕ(t)≥ 0, −τ ≤ t ≤ 0,

(1.1)

where X1(t), X2(t) represent, respectively, the immature and mature prey populations
densities; Y(t) represents the density of predator population; f > 0 is the transformation
coefficient of mature predator population; αe−γτX2(t− τ) represents the immatures who
were born at time t − τ and survive at time t (with the immature death rate γ), and
τ represents the transformation of immatures to matures; α > 0 is the birth rate of the
immature prey population; γ > 0 is the death rate of the immature prey population; and
β > 0 represents the mature death and overcrowding rate. The model is derived under the
following assumptions.

(H1) The birth rate of the immature prey population is proportional to the existing
mature population with a proportionality constant α > 0; the death rate of the
immature prey population is proportional to the existing immature population
with a proportionality constant γ > 0; we assume for the mature population that
the death rate is of a logistic nature.

(H2) In the absence of prey spaces, the population of the predator decreased, and d > 0,
f > 0, m> 0.

Note that the first equation of system (1.1) can be rewritten to

X1(t)=
∫ t
t−τ

αe−γ(t−s)X2(s)ds, (1.2)

so we have

X1(0)=
∫ 0

−τ
αeγsX2(s)ds. (1.3)

This suggests that if we know the properties of X2(t), then the properties of X1(t) can be
obtained from X2(t) and Y(t). Therefore, in the following we need only to consider the
following model:

dX2(t)
dt

= αe−γτX2(t− τ)−βX2
2(t)− cX2(t)Y(t)

X2(t) +mY(t)
,

dY(t)
dt

= Y(t)
(
−d+

f X2(t)
X2(t) +mY(t)

)
,

x1(0) > 0, y(0) > 0, x2(t)= ϕ(t)≥ 0, −τ ≤ t ≤ 0.

(1.4)

In [19], the effect of delay on the populations and the global asymptotic attractivity
of the system (1.4) were considered, for detailed results we refer to [19]. However, the
diffusion of the species which is in addition to the species’ natural tendency to diffuse to
areas of smaller population concentration is not considered. For the details of diffusion
in different areas, we can see [4, 12–17, 22]. In this paper, we study the system (1.1) with
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diffusion terms, taking into account the diffusion of the species in different areas. The
role of diffusion in the following system of nonlinear pdes with diffusion terms and stage
structure will be studied:

∂u1

∂t
−D1Δu1 = αu2(x, t)− γu1(x, t)−αe−γτu2(x, t− τ),

∂u2

∂t
−D1Δu2 = αe−γτu2(x, t− τ)−βu2

2(x, t)− cu2(x, t)v(x, t)
u2(x, t) +mv(x, t)

,

∂v

∂t
−D2Δv = v(x, t)

(
−d+

f u2(x, t)
u2(x, t) +mv(x, t)

)
, x ∈Ω, t > 0,

∂u1

∂n
= ∂u2

∂n
= ∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u1(x, t)= ϕ1(x, t), u2(x, t)= ϕ2(x, t), v(x,0)= ϕ3(x,0), x ∈ Ω̄, t ∈ [−τ,0],

(1.5)

where ∂/∂n is differentiation in the direction of the outward unit normal to the boundary
∂Ω, we assumeΩ⊂RN is open, bounded and ∂Ω is smooth. The diffusion coefficientsD1,
D2, and D3 are positive. The homogeneous Neumann boundary condition indicates that
the predator-prey system is self-contained with zero population flux across the boundary.
The initial functions ϕ1(x, t), ϕ2(x, t), and ϕ3(x, t) are Hölder continuous, and satisfy the
compatible condition

∂ϕi
∂n

= 0 on ∂Ω, i= 1,2,3. (1.6)

Denote u2(x, t) and v(x, t) as u1(x, t) and u2(x, t), respectively, so we get the following
subsystem of the system (1.5):

∂u1

∂t
−D1Δu1 = αe−γτu1(x, t− τ)−βu1

2(x, t)− cu1(x, t)u2(x, t)
u1(x, t) +mu2(x, t)

,

∂u2

∂t
−D2Δu2 = u2(x, t)

(
−d+

f u1(x, t)
u1(x, t) +mu2(x, t)

)
, x ∈Ω, t > 0,

∂u1

∂n
= 0,

∂u2

∂n
= 0, x ∈ ∂Ω, t > 0,

u1(x, t)= ϕ1(x, t), u2(x, t)= ϕ2(x,0), x ∈ Ω̄, t ∈ [−τ,0].

(1.7)

Note that the quantities u2(x, t) and v(x, t) of the system (1.5) are independent of the
quantity u1(x, t), so we may only consider the subsystem (1.7) to be easy to get the prop-
erties of the system (1.5).

Before proceeding further, let us nondimensionalize the system (1.7) with the follow-
ing scaling: U1 = βu1, U2 =mβu2, T = t, by rewriting U1, U2, T to u1, u2, t, respectively.
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We obtain the following nondimensionless system:

∂u1

∂t
−D1Δu1 = au1(x, t− τ)−u1

2(x, t)− bu1(x, t)u2(x, t)
u1(x, t) +u2(x, t)

,

∂u2

∂t
−D2Δu2 = u2(x, t)

(
−d+

f u1(x, t)
u1(x, t) +u2(x, t)

)
, x ∈Ω, t > 0,

∂u1

∂n
= 0,

∂u2

∂n
= 0, x ∈ ∂Ω, t > 0,

u1(x, t)= ϕ1(x, t), u2(x, t)= ϕ2(x,0), x ∈ Ω̄, t ∈ [−τ,0],

(1.8)

where a= αe−γτ , b = c/m.
The remaining part of this paper is organized as follows. The existence and unique-

ness of the solutions of system (1.8) will be proved in Section 2. In Section 3, we obtain
conditions for local asymptotic stability of the nonnegative equilibria of system (1.8).
In Section 4, we analyze the global asymptotic stability and obtain conditions for global
asymptotic stability of the nonnegative equilibria of system (1.8).

2. Existence and uniqueness of the solutions

In order to solve the problem and prove theorems, we devote to some preliminaries. We
rewrite system (1.8) to

∂u1

∂t
−D1Δu1 = F1

(
u1(x, t),u2(x, t),u1(x, t− τ)

)
,

∂u2

∂t
−D2Δu2 = F2

(
u1(x, t),u2(x, t)

)
, x ∈Ω, t > 0,

∂u1

∂n
= 0,

∂u2

∂n
= 0, x ∈ ∂Ω, t > 0,

u1(x, t)= ϕ1(x, t), u2(x,0)= ϕ2(x,0), x ∈ Ω̄, t ∈ [−τ,0],

(2.1)

where F1(u1(x, t),u2(x, t),u1(x, t − τ)) = au1(x, t − τ) − u1
2(x, t) − bu1(x, t)u2(x, t)/

(u1(x, t) +u2(x, t)), and F2(u1(x, t),u2(x, t))= u2(x, t)(−d+ f u1(x, t)/(u1(x, t) +u2(x, t))).

Definition 2.1. Suppose ϕ1(x, t), ϕ2(x, t), ψ(x, t) be Hölder continuous, call (ũ1, ũ2),
(û1, û2) to be a pair of strong upper and lower solutions, if ũ1, û1, ũ2, and û2 ∈ C(Ω̄×
[0,+∞))∩C2,1(Ω× [0,+∞)) such that û1 ≤ ũ1, û2 ≤ ũ2, and

∂ũ1

∂t
−D1Δũ1 ≥ aũ1(x, t− τ)− ũ2

1(x, t)− bũ1(x, t)û2(x, t)
ũ1(x, t) + û2(x, t)

,

∂û1

∂t
−D1Δû1 ≤ aû1(x, t− τ)− û2

1(x, t)− bû1(x, t)ũ2(x, t)
û1(x, t) + ũ2(x, t)

,

∂ũ2

∂t
−D2Δũ2 ≥−dũ2(x, t) +

f ũ1(x, t)ũ2(x, t)
ũ1(x, t) + ũ2(x, t)

,
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∂û2

∂t
−D2Δû2 ≤−dû2(x, t) +

f û1(x, t)û2(x, t)
û1(x, t) + û2(x, t)

, x ∈Ω, t > 0,

∂û1

∂n
≤ 0≤ ∂ũ1

∂n
,

∂û2

∂n
≤ 0≤ ∂ũ2

∂n
, (x, t)∈ ∂Ω× [0,+∞),

û1(x, t)≤ ϕ1(x, t)≤ ũ1(x, t), (x, t)∈ Ω̄× [−τ,0],

û2(x,0)≤ ϕ2(x,0)≤ ũ2(x,0), x ∈ Ω̄.

(2.2)

Similar to Definition 2.1, the definition of a pair of strong upper and lower solutions
of the elliptic system corresponding to system (2.1) is easy to be given.

Lemma 2.2 [14]. Suppose that ui(x, t)∈ C(Ω̄× [0,T])∩C2,1(Ω× [0,T]) satisfy

∂ui
∂t
−DiΔui ≥

2∑
j=1

bi juj(x, t) +
2∑
j=1

ci juj
(
x, t− τi

)
, (x, t)∈Ω× [0,T],

∂ui
∂n

≥ 0, (x, t)∈ ∂Ω× [0,T]; ui(x, t)≥ 0, (x, t)∈Ω× [−τ,0],

(2.3)

where bi j(x, t),ci j(x, t) ∈ C(Ω̄× [0,T]), bi j ≥ 0 for (i �= j), and ci j ≥ 0 for i, j = 1,2, and
τ2 = 0. Then

ui(x, t)≥ 0, (x, t)∈ Ω̄× [0,T]. (2.4)

From Lemma 2.2 we easily get the following lemma.

Lemma 2.3. For any given T > 0, if u(x, t) and v(x, t) belong to C(Ω̄× [0,T])∩C2,1(Ω×
[0,T]) and satisfy the relations

∂u

∂t
−DΔu− (au(x, t− τ)−βu2(x, t)

)

≥ ∂v

∂t
−DΔv− (av(x, t− τ)−βv2(x, t)

)
, x ∈Ω, t ∈ [0,T],

∂u

∂n
≥ ∂v

∂n
, x ∈ ∂Ω, t ∈ [0,T]; u(x, t)= ϕ(x, t)≥ v(x, t), x ∈ Ω̄, t ∈ [−τ,0].

(2.5)

Then u(x, t)≥ v(x, t).

Proof. Let ω(x, t)= u(x, t)− v(x, t), then

∂ω

∂t
−DΔω ≥ (au(x, t− τ)−βu2(x, t)

)− (av(x, t− τ)−βv2(x, t)
)

= aω(x, t− τ)−βω(x, t)
(
u(x, t) + v(x, t)

)
.

(2.6)
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Let c11 = a, b11 = −β(u(x, t) + v(x, t)). Since c11 = a = αe−γτ > 0, by Lemma 2.2 we have
ω(x, t)≥ 0, that is,

u(x, t)≥ v(x, t). (2.7)
�

Theorem 2.4. Let u1(x, t) and u2(x, t) be the solutions of system (2.1) in C(Ω̄× [0,T])∩
C2,1(Ω× [0,T]), and if f > d, then

0≤ u1(x, t)≤max
{∥∥ϕ1

∥∥∞,a
} def= M1,

0≤ u2(x, t)≤max
{∥∥ϕ2

∥∥∞,
M1( f −d)

d

}
def= M2.

(2.8)

Proof. Let 0≤ σ ≤ T . In order to investigate system (2.1), we firstly consider the following
system:

∂ψ1

∂t
−D1Δψ1 = aψ1(x, t− τ) +ψ1(x, t)

(−ψ1(x, t)
)
, x ∈Ω, t ∈ [0,T],

∂ψ2

∂t
−D2Δψ2 = ψ2(x, t)

(
−d+

f ψ1(x, t)
ψ1(x, t) +ψ2(x, t)

)
, x ∈Ω, t ∈ [0,T],

∂ψ1

∂n
≥ 0,

∂ψ2

∂n
≥ 0, x ∈ ∂Ω, t ∈ [0,T],

ψ1(x, t)≥ 0, ψ2(x,0)≥ 0, x ∈ Ω̄, t ∈ [−τ,0].

(2.9)

Since a= αe−γτ �= 0 and b12 ≡ 0, by Lemma 2.2 we have

ui(x, t)≥ 0, (x, t)∈ Ω̄× [0,σ]. (2.10)

Note that ψ1(x, t) is bounded in Ω̄× [0,σ] for any σ(0 < σ ≤ T). If maxΩ×[0,σ]ψ1(x, t) ≥
‖ϕ1‖∞, due to ψ1(x, t) satisfying the homogeneous Neumann boundary condition, there
exists (x0, t0)∈Ω× [0,σ] such that

ψ1(x0, t0)= max
Ω×[0,σ]

ψ1(x, t)≥ ∥∥ϕ1
∥∥∞. (2.11)

Therefore, from the first equation of system (2.9) at the point (x0, t0), we have

(
aψ1(x, t− τ)−ψ1

2(x, t)
)∣∣

(x0,t0) ≥ 0. (2.12)

That is

ψ1
(
x0, t0

)≤ a. (2.13)

Hence, we obtain

0≤ ψ1(x, t)≤max
{∥∥ϕ1

∥∥∞,a
}

, (x, t)∈Ω× [0,σ]. (2.14)
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Taking the same argument in [σ ,2σ], [2σ ,3σ], . . . , [(n− 1)σ , nσ(= T)], we have

0≤ ψ1(x, t)≤M1, (x, t)∈Ω× [0,T]. (2.15)

Similarly, there exists (x′0, t′0)∈Ω× [0,T] such that

(
ψ2(x, t)

(
−d+

f ψ1(x, t)
ψ1(x, t) +ψ2(x, t)

))∣∣∣∣
(x′0,t′0)

≥ 0. (2.16)

Hence, if f > d, then

0≤ ψ2(x, t)≤ M1( f −d)
d

. (2.17)

By Lemma 2.3, we have

ui(x, t)≤ ψi(x, t), i= 1,2. (2.18)

So we have

0≤ u1(x, t)≤max
{∥∥ϕ1

∥∥∞,a
}

,

0≤ u2(x, t)≤max
{∥∥ϕ2

∥∥∞,
M1( f −d)

d

}
.

(2.19)

�

3. Local asymptotic stability of the equilibria

In this section, we discuss local asymptotic stability of the nonnegative equilibria by lin-
earization method and analyzing the so-called characteristic equation of the equilibrium.
It is obvious that system (2.1) only has three nonnegative equilibria: the equilibrium
E1(0,0), the equilibrium E2(a,0), and the positive equilibrium E3(c∗1 ,c∗2 ) when f > d and
a/b > 1−d/ f , where

c∗1 =
(a− b) f + bd

f
, c∗2 =

( f −d)c∗1
d

. (3.1)

We will point out that E1(0,0) cannot be linearized though it is defined for system
(2.1), so the local stability of E1(0,0) will be studied in another paper.

Let μ1 < μ2 < μ3 < ··· < μn < ··· be the eigenvalues of the operator −Δ on Ω with
the homogeneous Neumann boundary condition, and let E(μi) be the eigenfunction
space corresponding to μi in C1(Ω). It is well known that μ1 = 0 and the correspond-
ing eigenfunction φ1(x) > 0. Let {φij | j = 1,2, . . . , dimE(μi)} be an orthogonal basis of
E(μi),X = {u= (u1,u2) | u∈ [C1(Ω)]2} andXij={cφij | c∈R2}, thusX =⊕∞

i=1Xi, Xi=⊕dimE(μi)
j=1 Xij .
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Let u1(x, t)= u∗1 (x, t) + c∗1 , u2(x, t)= u∗2 (x, t) + c∗2 , where c∗1 and c∗2 are both not zero.
We still make u1(x, t), u2(x, t) corresponding to u∗1 (x, t), u∗2 (x, t), so the linearized equa-
tion of the system (2.1) at (c∗1 ,c∗2 ) is

∂u1

∂t
−D1Δu1 = au1(x, t− τ)− 2c∗1 u1(x, t)− b

(
c∗2
)2

(
c∗1 + c∗2

)2 u1(x, t)− b
(
c∗1
)2

(
c∗1 + c∗2

)2 u2(x, t),

∂u2

∂t
−D2Δu2 = f

(
c∗2
)2

(
c∗1 + c∗2

)2 u1(x, t)−du2(x, t) +
f
(
c∗1
)2

(
c∗1 + c∗2

)2 u2(x, t), x ∈Ω, t > 0,

∂u1

∂n
= ∂u2

∂n
= 0, x ∈ ∂Ω, t > 0,

u1(x, t)= ϕ1(x, t)− c∗1 , u2(x, t)= ϕ2(x,0)− c∗2 , x ∈Ω, t ∈ [−τ,0].
(3.2)

From [5], we know that the characteristic equation for the system (3.2) is equivalent
to

∣∣∣∣∣∣∣∣∣∣∣

λ+μkD1− ae−λτ + 2c∗1 +
b
(
c∗2
)2

(
c∗1 + c∗2

)2

b
(
c∗1
)2

(
c∗1 + c∗2

)2

− f
(
c∗2
)2

(
c∗1 + c∗2

)2 λ+μkD2 +d− f
(
c∗1
)2

(
c∗1 + c∗2

)2

∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.3)

That is
⎛
⎝λ+μkD1− ae−λτ + 2c∗1 +

b
(
c∗2
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝λ+μkD2 +d− f

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠

+

⎛
⎝ b

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝ f

(
c∗2
)2

(
c∗1 + c∗2

)2

⎞
⎠= 0.

(3.4)

3.1. Local asymptotic stability of the equilibrium E2(a,0). From (3.4), it follows that at
the equilibrium E2(a,0),

(
λ+μkD1− ae−λτ + 2a

)(
λ+μkD2 +d− f

)= 0. (3.5)

From the first factor of (3.5), we see

λ+μkD1 + 2a= ae−λτ . (3.6)

Therefore,

∣∣ λ+μkD1 + 2a
∣∣= ∣∣ ae−λτ∣∣. (3.7)

Now we will determine that all roots of (3.7) satisfy Reλ < 0. Suppose that there exists λ0

such that Reλ0 ≥ 0. From (3.7), we deduce that

∣∣λ0 +μkD1 + 2a
∣∣≤ |a|∣∣ e−τReλ0

∣∣≤ |a|. (3.8)
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This implies that λ0 is in the circle in the complex plane centered at (−(μkD1 + 2a),0)
and of radius a. However, as for given μk and D1, it follows for ever that μkD1 + 2a > a,
therefore,

Reλ < 0. (3.9)

By the second factor of (3.5), we have

λ=−μkD2−d+ f ≤ f −d. (3.10)

If f > d, by taking k = 1(μ1 = 0), from (3.10), we obtain that there at least exists a root λ0

of (3.5) such that Reλ0 > 0. Therefore, E2(a,0) is unstable if the condition f > d holds.
If f < d, then f − d < 0, by (3.10), we have Reλ < 0. Therefore, if f < d, then E2(a,0)

is locally asymptotically stable.

3.2. Local asymptotic stability of the equilibrium E3(c∗1 ,c∗2 ). Let λ= x+ iy, using (3.4),
a direct calculation yields

⎛
⎝x+ iy +μkD1− ae−xτ

(
cos(−yτ) + isin(−yτ)

)

+2c∗1 +
b
(
c∗2
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝x+ iy +μkD2 +d− f

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠

+

⎛
⎝ b

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝ f

(
c∗2
)2

(
c∗1 + c∗2

)2

⎞
⎠= 0,

(3.11)

where c∗1 = ((a− b) f + bd)/ f , c∗2 = (( f −d)c∗1 )/d.
Throughout the section we assume f ≥ 2d and a f ≥ 2b( f −d) and let

M1 = x+μkD1− ae−xτ cos(−yτ) + 2c∗1 +
b
(
c∗2
)2

(
c∗1 + c∗2

)2 ,

M2 = y + ae−xτ sin(yτ),

N1 = x+μkD2 +d− f
(
c∗1
)2

(
c∗1 + c∗2

)2 ,

N2 = y.

(3.12)

Separating real and imaginary parts and applying (3.12) to (3.11), we obtain the equa-
tions

M1N1−M2N2 +

⎛
⎝ b

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝ f

(
c∗2
)2

(
c∗1 + c∗2

)2

⎞
⎠= 0, (3.13)

M1N2 +M2N1 = 0. (3.14)
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Assume, for contradiction, that there exists a root λ such that Reλ= x ≥ 0. By (3.12), we
have

M1 = x+μkD1− ae−xτ cos(−yτ) + 2c∗1 +
b
(
c∗2
)2

(
c∗1 + c∗2

)2

≥ x+ 0− ae−xτ cos(−yτ) + 2c∗1 +
b
(
c∗2
)2

(
c∗1 + c∗2

)2

≥ x− a+ 2c∗1 +
b
(
c∗2
)2

(
c∗1 + c∗2

)2

≥
(
− a+ c∗1 +

bc∗2
c∗1 + c∗2

)
+

b
(
c∗2
)2

(
c∗1 + c∗2

)2 + c∗1 −
bc∗2

c∗1 + c∗2

≥ b
(
c∗2
)2

(
c∗1 + c∗2

)2 + b( f −d) f − bc∗2
c∗1 + c∗2

= b
(
c∗2
)2

(
c∗1 + c∗2

)2 > 0,

(3.15)

N1 = x+μkD2 +d− f
(
c∗1
)2

(
c∗1 + c∗2

)2

= d− f c∗1
c∗1 + c∗2

+
f c∗1

c∗1 + c∗2
− f

(
c∗1
)2

(c∗1 + c∗2 )2
≥ f

(
c∗1
)2

(
c∗1 + c∗2

)2 > 0.

(3.16)

Applying (3.15) and (3.16), one can obtain

⎛
⎝ b

(
c∗2
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝ f

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠≤M1N1. (3.17)

Using (3.13) and (3.14), we have

⎛
⎝
⎛
⎝ b

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝ f

(
c∗2
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎞
⎠

2

= (M2N2
)2

+
(
M1N1

)2
+
(
M1N2

)2
+
(
M2N1

)2
.

(3.18)

If N2 �= 0, by (3.15) and (3.18), we get

⎛
⎝
⎛
⎝ b

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝ f

(
c∗2
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎞
⎠

2

= (M2N2
)2

+
(
M1N1

)2
+
(
M1N2

)2
+
(
M2N1

)2
>
(
M1N1

)2
,

(3.19)
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it is a contradiction to (3.17). If N2 = 0, from (3.12), we deduce M2 = 0, again using
(3.13), we have

⎛
⎝x+μkD1− ae−xτ + 2c∗1 +

b
(
c∗2

)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝x+μkD2 +d− f

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠

+

⎛
⎝ b

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝ f

(
c∗2
)2

(
c∗1 + c∗2

)2

⎞
⎠= 0,

(3.20)

that is,
⎛
⎝x+μkD2 +

f c∗1 c
∗
2(

c∗1 + c∗2
)2

⎞
⎠
⎛
⎝x+μkD1 + a− ae−xτ + c∗1 −

bc∗1 c
∗
2(

c∗1 + c∗2
)2

⎞
⎠

+

⎛
⎝ b

(
c∗1
)2

(
c∗1 + c∗2

)2

⎞
⎠
⎛
⎝ f

(
c∗2
)2

(
c∗1 + c∗2

)2

⎞
⎠= 0.

(3.21)

It is obvious that x =−μkD2− f c∗1 c
∗
2 /(c

∗
1 + c∗2 )2 does not satisfy (3.21), so we have

⎛
⎝x+μkD2 +

f c∗1 c
∗
2(

c∗1 + c∗2
)2

⎞
⎠

×
⎛
⎝x+μkD1 + a− ae−xτ + c∗1 −

bc∗1 c
∗
2(

c∗1 + c∗2
)2

+

(
b
(
c∗1
)2
/
(
c∗1 + c∗2

)2
)(
f
(
c∗2
)2
/
(
c∗1 + c∗2

)2
)

x+μkD2 + f c∗1 c
∗
2 /
(
c∗1 + c∗2

)2

⎞
⎟⎠= 0.

(3.22)

So all roots of (3.22) are given by (3.23), that is,

x =−μkD1− a− c∗1 + ae−xτ +
bc∗1 c

∗
2(

c∗1 + c∗2
)2 −

(
b
(
c∗1
)2
/
(
c∗1 + c∗2

)2
)(
f
(
c∗2
)2
/
(
c∗1 + c∗2

)2
)

x+μkD2 + f c∗1 c
∗
2 /
(
c∗1 + c∗2

)2

≤−c∗1 +
bc∗1 c

∗
2(

c∗1 + c∗2
)2 −

(
b
(
c∗1
)2
/
(
c∗1 + c∗2

)2
)(
f
(
c∗2
)2
/
(
c∗1 + c∗2

)2
)

x+μkD2 + f c∗1 c
∗
2 /
(
c∗1 + c∗2

)2

≤−c∗1 +
bc∗1 c

∗
2(

c∗1 + c∗2
)2

(
x+μkD2

x+μkD2 + f c∗1 c
∗
2 /
(
c∗1 + c∗2

)2

)

<−c∗1 +
bc∗1 c

∗
2(

c∗1 + c∗2
)2 < c

∗
1

(
− 1 +

b

c∗1 + c∗2

)
≤ c∗1

(
− 1 +

b

2c∗1

)
≤ 0,

(3.23)

it is a contradiction to Reλ= x ≥ 0. So we have that Reλ < 0 if f ≥ 2d and a f ≥ 2b( f −d),
that is, the positive equilibrium E3(c∗1 ,c∗2 ) is locally asymptotically stable.
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From the above discussion, we can conclude the following.

Theorem 3.1. If f ≥ 2d and a f ≥ 2b( f − d), then the positive equilibrium E3(c∗1 ,c∗2 ) is
locally asymptotically stable.

Theorem 3.2. If f > d, then the equilibrium E2(a,0) is unstable.

Theorem 3.3. If f < d, then the equilibrium E2(a,0) is locally asymptotically stable.

4. Global asymptotic stability of the equilibria

Note that F1(u1(x, t),u2(x, t),u1(x, t− τ)) and F2(u1(x, t),u2(x, t)), with respect to u1, u2,
are continuous and mixed quasimonotone in Σ×Σ∗, where Σ, Σ∗ are fixed and bounded
subsets of R2. Thus there exist Ki ≥ 0 (i= 1,2) such that

∣∣Fi(u1,u2,u1(x, t− τ)
)−Fi(u′1,u′2,u′1(x, t− τ)

)∣∣
≤ Ki

(∣∣u1(x, t)−u′1(x, t)
∣∣+u2(x, t)−u′2(x, t)

∣∣), (4.1)

when i= 2, τ = 0, where (u1,u′1),(u2,u′2)∈ Σ×Σ∗.
In order to investigate the dynamics of the system (2.1) we define two sequences of

constant vectors {c̄(m)} = {c̄1
(m), c̄2

(m)}∞m=1, {c(m)} = {c1
(m),c2

(m)}∞m=1 satisfying the fol-
lowing relation:

c̄1
(m) = c̄1

(m−1) +
1
K1
c̄1

(m−1)

(
a− c̄1

(m−1)− bc2
(m−1)

c̄1
(m) + c2

(m−1)

)
,

c1
(m) = c1

(m−1) +
1
K1
c1

(m−1)

(
a− c1

(m−1)− bc̄2
(m−1)

c1
(m−1) + c̄2

(m−1)

)
,

c̄2
(m) = c̄2

(m−1) +
1
K2
c̄2

(m−1)

(
−d+

f c̄1
(m)

c̄1
(m) + c̄2

(m)

)
,

c2
(m) = c2

(m−1) +
1
K2
c2

(m−1)

(
−d+

f c2
(m−1)

c2
(m−1) + c2

(m−1)

)
,

c̄(0) = c̃, c(0) = ĉ, m= 1,2, . . . ,

(4.2)

where (c̃, ĉ) is a pair of coupled upper and lower solutions of system (2.1). It is easy to
prove the following lemma.

Lemma 4.1. The sequences {c̄(m)}, {c(m)} given by (4.2) with c̄(0) = c̃ and c(0) = ĉ possess
the monotone property

ĉ≤ c(m) ≤ c(m+1) ≤ c̄(m+1) ≤ c̄(m) ≤ c̃, m= 1,2, . . . . (4.3)
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Proof. Since (c̃, ĉ) is a pair of coupled upper and lower solutions of the system (2.1), so it
follows from (2.2) that

c̄1
(0)− c̄1

(1) = c̄1
(0)−

(
c̄1

(0) +
1
K1
c̄1

(0)

(
a− c̄1

(0)− bc2
(0)

c̄1
(0) + c2

(0)

))

=− 1
K1
c̄1

(0)

(
a− c̄1

(0)− bc2
(0)

c̄1
(0) + c2

(0)

)
≥ 0,

(4.4)

c1
(1)− c1

(0) =
(
c1

(0) +
1
K1
c1

(0)

(
a− c1

(0)− bc̄2
(0)

c1
(0) + c̄2

(0)

))
− c1

(0)

= 1
K1
c1

(0)

(
a− c1

(0)− bc̄2
(0)

c1
(0) + c̄2

(0)

)
≥ 0.

(4.5)

This gives c̄1
(0) ≥ c̄1

(1) and c1
(1) ≥ c1

(0). Similarly by (2.2) and the quasimonotone prop-
erty, we have

K1

(
c̄1

(1)− c1
(1)
)
= K1

(
c̄1

(0)− c1
(0)
)

+ c̄1
(0)

(
a− c̄1

(0)− bc2
(0)

c̄1
(0) + c2

(0)

)

− c1
(0)

(
a− c1

(0)− bc̄2
(0)

c1
(0) + c̄2

(0)

)
≥ 0.

(4.6)

This yields c̄1
(1) ≥ c1

(1). The above conclusions show that

c(0) ≤ c(1) ≤ c̄(1) ≤ c̄(0). (4.7)

Assume, by induction, that c(m−1) ≤ c(m) ≤ c̄(m) ≤ c̄(m−1) for some m > 1, Then by (4.6)
and (2.2), we have

K1

(
c̄1

(m)− c1
(m+1)

)

= K1

(
c̄1

(m−1)− c1
(m)
)

+ c̄1
(m−1)

(
a− c̄1

(m−1)− bc2
(m−1)

c̄1
(m−1) + c2

(m−1)

)

− c1
(m)

(
a− c1

(m)− bc̄2
(m)

c1
(m) + c̄2

(m)

)
≥ 0.

(4.8)

This yields c̄1
(m) ≥ c1

(m+1). A similar argument gives c(m) ≤ c(m+1) ≤ c̄(m+1) ≤ c̄(m). A simi-
lar argument gives c̄2

(m) and c2
(m). Therefore, the monotone property (4.3) follows by the

principle of induction. �

By monotone bounds principle, we get

lim
m→∞c(m) = c, lim

m→∞ c̄(m) = c̄, (4.9)
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with

ĉ≤ c(m) ≤ c(m+1) ≤ c≤ c̄≤ c̄(m+1) ≤ c̄(m) ≤ c̃. (4.10)

In (4.2), letting m→∞, we have

c̄1

(
a− c̄1− bc2

c̄1 + c2

)
= 0, c1

(
a− c1−

bc̄2

c1 + c̄2

)
= 0,

c̄2

(
−d+

f c̄1

c̄1 + c̄2

)
= 0, c2

(
−d+

f c1

c1 + c2

)
= 0.

(4.11)

Considering [16, Theorem 2.2] as a corollary, we obtain the following.

Theorem 4.2. Let c, c̄ be the limits in (4.2), then for any initial function ϕ = (ϕ1,ϕ2) in
〈c, c̄〉 the solution of system (2.1) satisfies the relation

c≤ u(x, t)≤ c̄ as t→∞. (4.12)

Moreover, if, in addition, c = c̄(≡ c∗), then c∗ is the unique global solution of the system
(2.1) in 〈c, c̄〉, and

lim
t→∞u(x, t)= c∗, x ∈Ω. (4.13)

Theorem 4.3. Let (u1(x, t),u2(x, t)) be the solution of the system (2.1), if ϕ1(x,0) �= 0 and
ϕ2(x,0)≡ 0, then u1(x, t) > 0, u2(x, t)≡ 0, and

(
u1(x, t),u2(x, t)

)−→ (a,0), t −→ +∞. (4.14)

Proof. By the standard maximum principle for parabolic boundary-value problems with
homogeneous Neumann boundary condition, we see that

(
u1(x, t),u2(x, t)

)≥ (0,0). (4.15)

It is obvious that if ϕ1(x,0) �= 0, ϕ2(x,0)≡ 0, then

u1(x, t) > 0, u2(x, t)≡ 0. (4.16)

Now, the system (2.1) becomes the scalar boundary-value problem

∂u1

∂t
−D1Δu1 = au1(x, t− τ)−u1

2(x, t), x ∈Ω, t > 0,

∂u1

∂n
= 0, x ∈ ∂Ω, t > 0; u1(x, t)= ϕ1(x, t)≥ 0, x ∈Ω, t ∈ [−τ,0].

(4.17)

By continuity and Lemma 2.3, it follows that there exist δ > 0 and t∗ > 0 satisfying

u1(x, t)≥ δ, (x, t)∈ [t∗, t∗ + τ]. (4.18)
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Let c̃=M, ĉ= ε ≥ 0, where

M =max
{

max
Ω×[t∗,t∗+τ]

u1(x, t),a
}

, ε=min{a,δ}. (4.19)

Then

ε ≤ a=⇒ ε2 ≤ aε =⇒ aε− ε2 ≥ 0,

a≤M =⇒ aM ≤M2 =⇒ aM−M2 ≤ 0.
(4.20)

Therefore, (c̃, ĉ) is a pair of strong upper and lower solutions of the system (4.17). Apply-
ing Theorem 4.2 and (4.3), we obtain that there exist c, c̄ such that

ε ≤ ĉ≤ c≤ c̄≤ c̃≤M,

c(a− c)= 0, c̄(a− c̄)= 0,
(4.21)

while the equation c(a− c)= 0 has a unique positive solution c∗ = a.
Therefore

c̄ = c = c∗ = a, lim
t→∞u1(x, t)= c∗ = a. (4.22)

�

Theorem 4.4. If f ≥ 2d and a f ≥ 2b( f − d), then for any nonnegative initial function
ϕ= (ϕ1,ϕ2) the system (2.1) has a unique global solution with

(
u1(x, t),u2(x, t)

)−→ (
c1
∗,c2

∗) as t −→ +∞. (4.23)

Proof. Let ω1(x, t) be the solution of the scalar boundary-value problem

∂ω1

∂t
−D1Δω1 = aω1(x, t− τ)−ω1

2(x, t), x ∈Ω, t > 0,

∂ω1

∂n
= 0, x ∈ ∂Ω, t > 0,

ω1(x, t)= ϕ1(x, t)≥ 0, x ∈Ω, t ∈ [−τ,0].

(4.24)

Applying Lemma 2.3, we have

u1(x, t)≤ ω1(x, t), (x, t)∈Ω× [0,+∞]. (4.25)

By Theorem 4.3, it follows that

ω1(x, t)−→ a, t −→∞. (4.26)

Hence, for any ε > 0, there always exists t∗∗ > 0 as t > t∗∗ such that

u1(x, t)≤ ω1(x, t)≤ a+ ε. (4.27)
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Let ω2(x, t) be the solution of the scalar boundary-value problem

∂ω2

∂t
−D2Δω2 =−dω2(x, t) +

f (a+ ε)ω2(x, t)
(a+ ε) +ω2(x, t)

≤−dω2(x, t) + f (a+ ε), (x, t)∈Ω× [t∗∗,+∞],
∂ω2

∂n
= 0, (x, t)∈ ∂Ω× [t∗∗,+∞],

ω2(x, t)= ϕ1
(
x, t∗∗

)≥ 0, x ∈Ω.

(4.28)

By the quasimonotone property of F2(u1,u2), we obtain

u2(x, t)≤ ω2(x, t), (x, t)∈Ω× [t∗∗,+∞]. (4.29)

Now we consider the scalar boundary-value problem

∂ω2

∂t
−D2Δω2 =−dω2(x, t) + f (a+ ε), (x, t)∈Ω× [t∗∗,+∞],

∂ω2

∂n
= 0, (x, t)∈ ∂Ω× [t∗∗,+∞],

ω2(x, t)= ϕ1(x, t∗∗)≥ 0, x ∈Ω.

(4.30)

By [22], we haveω2(x, t)→ f (a+ ε)/d as t sufficiently large. Therefore, for the above given
ε, there exists t0 > 0 satisfying

u2(x, t)≤ f (a+ ε)
d

, (x, t)∈Ω× [t0,+∞]. (4.31)

Let

c̃1 = a+ ε, ĉ1 = δ,

c̃2 = f (a+ ε)
d

, ĉ2 = δ,
(4.32)

where ε and δ are sufficiently small positive constants.
By f ≥ 2d and a f ≥ 2b( f − d), applying Lemmas 2.2 and 2.3, for t sufficiently large,

we obtain that

ĉ1 ≤ u1(x, t)≤ c̃1, ĉ2 ≤ u2(x, t)≤ c̃2,

c̃2 = f (a+ ε)
d

=⇒ dc̃2 = f (a+ ε)=⇒ dc̃2 ≥ f (a+ ε)c̃2

c̃1 + c̃2
=⇒−dc̃2 +

f (a+ ε)c̃2

c̃1 + c̃2
≤ 0,

c̃1 = a+ ε≥ a=⇒ c̃1
2 ≥ ac̃1 =⇒ 0≥ ac̃1− c̃1

2 =⇒ ac̃1− c̃1
2− bδc̃1

δ + c̃1
≤ 0.

(4.33)

Let ε and δ be sufficiently small positive constants. Applying f ≥ 2d and a f ≥ 2b( f −d),
it is not difficult to prove that ĉ1 = δ1 and ĉ2 = δ2 satisfy (2.2).
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Hence, (c̃1, c̃2), (ĉ1, ĉ2) are a pair of coupled upper and lower solutions of the system
(2.1).

By Theorem 4.2, we obtain that c and c̄ satisfy

0 < ĉ≤ c≤ c̄≤ c̃,

c̄1

(
a− c̄1− bc2

c̄1 + c2

)
= 0,

c1

(
a− c1−

bc̄2

c1 + c̄2

)
= 0,

c̄2

(
−d+

f c̄1

c̄1 + c̄2

)
= 0,

c2

(
−d+

f c1

c1 + c2

)
= 0.

(4.34)

Since f ≥ 2d and a f ≥ 2b( f −d) and the following equations have unique positive solu-
tions:

c1

(
a− c1− bc2

c1 + c2

)
= 0, c2

(
−d+

f c1

c1 + c2

)
= 0, (4.35)

therefore

c̄1 = c1 = c1
∗, c̄2 = c2 = c2

∗, (4.36)

where

c∗1 = (a− b) f + bd
f

, c∗2 = ( f −d)c∗1

d
. (4.37)

Therefore

lim
t→+∞u1(x, t)= c∗1 , lim

t→+∞u2(x, t)= c∗2 . (4.38)
�

Theorem 4.5. If f < d, then for any nonnegative initial function ϕi(x, t) (i = 1,2), the
system (2.1) has a unique global nonnegative solution (u1(x, t),u2(x, t)) satisfying

(
u1(x, t),u2(x, t)

)−→ (a,0), t −→ +∞. (4.39)

Proof. Let c1
∗ and c2

∗ be the solutions of the following system:

c1
∗
(
a− c1

∗ − bc2
∗

c1
∗ + c2

∗

)
= 0,

c2
∗
(
−d+

f c1
∗

c1
∗ + c2

∗

)
= 0.

(4.40)
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If f < d, then (4.40) has only one nonzero solution and one nonnegative solution:

c1
∗ = a, c2

∗ = 0. (4.41)

Let c̃2 be sufficiently large and let 0 < δ(≤ a) be sufficiently small, and c̃1, ĉ1, ĉ2 satisfy

c̃1 ≥ a, ĉ1 = δ, ĉ2 = 0. (4.42)

Applying Lemmas 2.2 and 2.3, if the condition f < d holds, it is easy to prove

ĉ1 ≤ u1(x, t)≤ c̃1, ĉ2 ≤ u2(x, t)≤ c̃2, (4.43)

and (c̃1, c̃2), (ĉ1, ĉ2) satisfying (2.2). Hence, (c̃1, c̃2), (ĉ1, ĉ2) are a pair of coupled upper and
lower solutions of the system (2.1). By Theorem 4.2, we obtain c and c̄ satisfying

0 < ĉ≤ c≤ c̄≤ c̃,

c̄1

(
a− c̄1− bc2

c̄1 + c2

)
= 0,

c1

(
a− c1−

bc̄2

c1 + c̄2

)
= 0,

c̄2

(
−d+

f c̄1

c̄1 + c̄2

)
= 0,

c2

(
−d+

f c2

c1 + c2

)
= 0.

(4.44)

We see from c2
(0) = 0 that c2

(m) = 0 for every m= 1,2, . . . . This implies c2 = 0.
Using 0 < δ ≤ c1 ≤ c̄1, we have c1 = a. Since f < d, and

c̄1

(
a− c̄1− bc2

c̄1 + c2

)
= 0,

c1

(
a− c1−

bc̄2

c1 + c̄2

)
= 0,

c̄2

(
−d+

f c̄2

c̄1 + c̄2

)
= 0,

(4.45)

so we have

c̄1 = c1 = a, c̄2 = c2 = 0. (4.46)

By Theorem 4.2, for any nonnegative initial function ϕi(x, t), i= 1,2, the system (2.1) has
a unique global nonnegative solution (u1(x, t),u2(x, t)) in ϕi(x, t)∈ 〈ĉ, c̃〉 satisfying

(u1(x, t),u2(x, t))−→ (a,0), t −→ +∞. (4.47)

�
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