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Let C be a closed convex subset of a uniformly smooth Banach space E, and T : C → E
a nonexpansive nonself-mapping satisfying the weakly inwardness condition such that
F(T) �= ∅, and f : C→ C a fixed contractive mapping. For t ∈ (0,1), the implicit itera-
tive sequence {xt} is defined by xt = P(t f (xt) + (1− t)Txt), the explicit iterative sequence
{xn} is given by xn+1 = P(αn f (xn) + (1−αn)Txn), where αn ∈ (0,1) and P is a sunny non-
expansive retraction of E onto C. We prove that {xt} strongly converges to a fixed point
of T as t → 0, and {xn} strongly converges to a fixed point of T as αn satisfying appro-
priate conditions. The results presented extend and improve the corresponding results of
Hong-Kun Xu (2004) and Yisheng Song and Rudong Chen (2006).

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E, and Let T : C → C be
a nonexpansive mapping (i.e., ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C). We use Fix(T) to
denote the set of fixed points of T ; that is , Fix(T)= {x ∈ C : x = Tx}. Recall that a self-
mapping f : C→ C is a contraction on C if there exists a constant β ∈ (0,1) such that

∥
∥ f (x)− f (y)

∥
∥≤ β‖x− y‖, x, y ∈ C. (1.1)

Xu (see [6]) defined the following two viscosity iterations for nonexpansive mappings:

xt = t f
(

xt
)

+ (1− t)Txt, x ∈ C, (1.2)

xn+1 = αn f
(

xn
)

+
(

1−αn
)

Txn, (1.3)

where αn is a sequence in (0,1). Xu proved the strong convergence of {xt} defined by (1.2)
as t→ 0 and {xn} defined by (1.3) in both Hilbert space and uniformly smooth Banach
space.
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Recently, Song and Chen [2] proved if C is a closed subset of a real reflexive Banach
space E which admits a weakly sequentially continuous duality mapping from E to E∗,
and if T : C→ E is a nonexpansive nonself-mapping satisfying the weakly inward condi-
tion, F(T) �= φ, f : C→ C is a fixed contractive mapping, and P is a sunny nonexpansive
retraction of E onto C, then the sequences {xt} and {xn} defined by

xt = P
(

t f
(

xt
)

+ (1− t)Txt
)

, (1.4)

xn+1 = P
(

αn f
(

xn
)

+
(

1−αn
)

Txn
)

(1.5)

strongly converge to a fixed point of T .
In this paper, we establish the strong convergence of both {xt} defined by (1.4) and

{xn} defined by (1.5) for a nonexpansive nonself-mapping T in a uniformly smooth Ba-
nach space. Our results extend and improve the results in [2, 6].

2. Preliminaries

Let E be a real Banach space and let J denote the normalized duality mapping from E into
2E

∗
given by

J(x)= { f ∈ E∗ : 〈x, f 〉 = ‖x‖‖ f ‖,‖x‖ = ‖ f ‖} ∀x ∈ E, (2.1)

where E∗ denotes the dual space of E and 〈·,·〉 denotes the generalized duality pairing.
In the sequence, we will denote the single-valued duality mapping by j, and xn → x will
denote strong convergence of the sequence {xn} to x. In Banach space E, the following
result is well known [1, 3] for all x, y ∈ E, for all j(x+ y)∈ J(x+ y), for all j(x)∈ J(x),

‖x‖2 + 2
〈

y, j(x)
〉≤ ‖x+ y‖2 ≤ ‖x‖2 + 2

〈

y, j(x+ y)
〉

. (2.2)

Recall that the norm of E is said to be Gâteaux differentiable (and E is said to be smooth)
if

lim
t→0

‖x+ ty‖−‖x‖
t

(2.3)

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said to be uniformly
Gâteaux differentiable if, for each y ∈ U , this limit is attained uniformly for x ∈ U . Fi-
nally, the norm is said to be uniformly Fréchet differentiable (and E is said to be uniformly
smooth) if the limit in (2.3) is attained uniformly for (x, y)∈ U ×U . A Banach space E
is said to be smooth if and only if J is single valued. It is also well known that if E is uni-
formly smooth, J is uniformly norm-to-norm continuous. These concepts may be found
in [3].

If C and D are nonempty subsets of a Banach space E such that C is nonempty closed
convex and D ⊂ C, then a mapping P : C→D is called a retraction from C to D if P2 = P.
It is easily known that a mapping P : C → D is retraction, then Px = x, for all x ∈ D. A
mapping P : C→D is called sunny if

P
(

Px+ t(x−Px)
)= Px ∀x ∈ C, (2.4)
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whenever Px+ t(x−Px)∈ C and t > 0. A subset D of C is said to be a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction of C onto D. For more detail,
see [1, 3–5].

The following lemma is well known [3].

Lemma 2.1. Let C be a nonempty convex subset of a smooth Banach space E, D ∈ C, J : E→
E∗ the (normalized) duality mapping of E, and P : C→D a retraction. Then the following
are equivalent:

(i) 〈x−Px, j(y−Px)〉 ≤ 0 for all x ∈ C and y ∈D;
(ii) P is both sunny and nonexpansive.

Let C be a nonempty convex subset of a Banach space E, then for x ∈ C, we define the
inward set [4, 5]:

IC(x)= {y ∈ E : y = x+ λ(z− x), z ∈ C and λ≥ 0
}

. (2.5)

A mapping T : C → E is said to be satisfying the inward condition if Tx ∈ IC(x) for all
x ∈ C. T is also said to be satisfying the weakly inward condition if for each x ∈ C, Tx ∈
IC(x) (IC(x) is the closure of IC(x)). Clearly C ⊂ IC(x) and it is not hard to show that IC(x)
is a convex set as C is. Using above these results and definitions, we can easily show the
following lemma.

Lemma 2.2 ([2], Lemma 1.2). Let C be a nonempty closed subset of a smooth Banach space
E, let T : C → E be nonexpansive nonself-mapping satisfying the weakly inward condition,
and let P be a sunny nonexpansive retraction of E onto C. Then F(T)= F(PT).

Lemma 2.3 ([2], Lemma 2.1). Let E be a Banach space and let C be a nonempty closed
convex subset of E. Suppose that T : C → E is a nonexpansive mapping such that for each
fixed contractive mapping f : C→ C, and P is a sunny nonexpansive retraction of E onto C.
For each t ∈ (0,1), {xt} is defined by (1.4). Suppose u∈ C is a fixed point of T , then

(i) 〈xt − f (xt), j(xt −u)〉 ≤ 0;
(ii) {xt} is bounded.

Definition 2.4. μ is called a Banach limit if μ is a continuous linear functional on l∞

satisfying
(i) ‖μ(e)‖ = 1= μ(1), e = (1,1,1, . . .);

(ii) μn(an)= μn(an+1), for all an ∈ (a0,a1, . . .)∈ l∞;
(iii) liminfn→∞ an ≤ μ(an)≤ limsupn→∞ an, for all an ∈ (a0,a1, . . .)∈ l∞.

According to time and circumstances, we use μn(an) instead of μ(a0,a1, . . .).

Further, we know the following result.

Lemma 2.5 ([3], Lemma 4.5.4). Let C be a nonempty closed convex subset of a Banach space
E with a uniformly Gâteaux differentiable norm and let {xn} be a bounded sequence in E.
Let μ be a Banach limit and u∈ C. Then

μn‖xn−u‖2 =min
y∈C

μn
∥
∥xn− y

∥
∥

2
(2.6)
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if and only if

μn
〈

x−u, J
(

xn−u
)〉≤ 0 (2.7)

for all x ∈ C.

3. Main results

Theorem 3.1. Let E be a uniformly smooth Banach, suppose that C is a nonempty closed
convex subset of E and T : C→ E is a nonexpansive nonself-mapping satisfying the weakly
inward condition and F(T) �= ∅. Let f : C→ C be a fixed contractive mapping, and let {xt}
be defined by (1.4), where P is a sunny nonexpansive retraction of E onto C. Then as t→ 0
{xt} converges strongly to some fixed point q of T that q is the unique solution in F(T) to the
following variational inequality:

〈

(I − f )q, j(q−u)
〉≤ 0 ∀u∈ F(T). (3.1)

Proof. For all u ∈ F(T) by Lemma 2.3(ii), {xt} is bounded, therefore the sets {Txt : t ∈
(0,1)} and { f (xt) : t ∈ (0,1)} are also bounded. From xt = P(t f (xt) + (1− t)Txt), we
have

∥
∥xt −PTxt

∥
∥= ∥∥P(t f (xt

)

+ (1− t)Txt
)−PTxt

∥
∥

≤ ∥∥t f (xt
)

+ (1− t)Txt −Txt
∥
∥

= t
∥
∥Txt − f

(

xt
)∥
∥−→ 0 as t −→ 0.

(3.2)

This implies that

lim
t→0

∥
∥xt −PTxt

∥
∥= 0. (3.3)

Assume tn→ 0, set xn := xtn , and define g : C→R by g(x)= μn‖xn− x‖2, x ∈ C, where μn
is a Banach limit on �∞. Let

K =
{

x ∈ C : g(x)=min
y∈C

μn
∥
∥xn− y

∥
∥

2
}

. (3.4)

It is easily seen that K is a nonempty closed convex bounded subset of E, since (note
‖xn−Txn‖→ 0)

g(Tx)= μn
∥
∥xn−Tx

∥
∥

2 = μn
∥
∥Txn−Tx

∥
∥

2 ≤ μn
∥
∥xn− x

∥
∥

2 = g(x). (3.5)

It follows that T(K) ⊂ K , that is, K is invariant under T . Since a uniformly smooth Ba-
nach space has the fixed point property for nonexpansive mappings, T has a fixed point,
say q, in K . From Lemma 2.5 we get

μn
〈

x− q, j
(

xn− q
)〉≤ 0, x ∈ C. (3.6)
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For all q ∈ F(T), we have t f (xt) + (1− t)q = P[t f (xt) + (1− t)q], then

∥
∥xt −

[

t f
(

xt
)

+ (1− t)q
]∥
∥

= ∥∥P[t f (xt
)

+ (1− t)Txt
]−P

[

t f
(

xt
)

+ (1− t)q
]∥
∥

≤ ∥∥(1− t)
(

Txt − q
)∥
∥≤ (1− t)

∥
∥xt − q

∥
∥.

(3.7)

Hence from (2.2) and the above inequality we get

∥
∥xt −

[

t f
(

xt
)

+ (1− t)q
]∥
∥

2

= ∥∥(1− t)
(

xt − q
)

+ t
(

xt − f
(

xt
))∥
∥

2

≥ (1− t)2
∥
∥xt − q

∥
∥

2
+ 2t(1− t)

〈

xt − f
(

xt
)

, j
(

xt − q
)〉

.

(3.8)

Therefore

〈

xt − f
(

xt
)

, j
(

xt − q
)〉≤ 0. (3.9)

Then

0≥ 〈xt − f
(

xt
)

, j
(

xt − q
)〉

= ∥∥xt − q
∥
∥

2
+
〈

q− f (q), j
(

xt − q
)〉

+
〈

f (q)− f
(

xt
)

, j
(

xt − q
)〉

≥ (1−β)
∥
∥xt − q

∥
∥

2
+
〈

q− f (q), j
(

xt − q
)〉

.

(3.10)

We get

∥
∥xt − q

∥
∥

2 ≤ 1
1−β

〈

f (q)− q, j
(

xt − q
)〉

. (3.11)

Now applying Banach limit to the above inequality, we get

μn
∥
∥xt − q

∥
∥

2 ≤ μn

(
1

1−β

〈

f (q)− q, j
(

xt − q
)〉
)

. (3.12)

Let x = f (q) in (3.6), and noting (3.12), we have

μn
∥
∥xt − q

∥
∥

2 ≤ 0, (3.13)

that is,

μn
∥
∥xn− q

∥
∥

2 = 0 (3.14)

and then exists a subsequence which is still denoted by {xn} such that

xn −→ q, n−→∞. (3.15)

We have proved that for any sequence {xtn} in {xt : t ∈ (0,1)}, there exists a subse-
quence which is still denoted by {xtn} that converges to some point q of T . To prove that
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the entire net {xt} converges to q, suppose that there exists another sequence {xsk} ⊂ {xt}
such that xsk → p, as sk → 0, then we also have p ∈ F(T) (using limt→0‖xt −PTxt‖ = 0).
Next we show p = q and q is the unique solution in F(T) to the following variational
inequality:

〈

(I − f )q, j(q−u)
〉 ∀u∈ F(T). (3.16)

Since the sets {xt − u} and {xt − f (xt)} are bounded and the uniform smoothness of E
implies that the duality map J is norm-to-norm uniformly continuous on bounded sets
of E, for any u∈ F(T), by xsk → p (sk → 0), we have

∥
∥(I − f )xsk − (I − f )p

∥
∥−→ 0, sk −→ 0,

∣
∣
〈

xsk − f
(

xsk
)

, j
(

xsk −u
)〉− 〈(I − f )p, j(p−u)

〉∣
∣

= ∣∣〈xsk − f
(

xsk
)− (I − f )p, j

(

xsk −u
)〉− 〈(I − f )p, j

(

xsk −u
)− j(p−u)

〉∣
∣

≤ ∥∥(I − f )xsk − (I − f )p
∥
∥
∥
∥xsk −u

∥
∥

+
∣
∣
〈

(I − f )p, j
(

xsk −u
)− j(p−u)

〉∣
∣−→ 0 as sk −→ 0.

(3.17)

Therefore, noting Lemma 2.3(i), for any u∈ F(T), we get

〈

(I − f )p, j(p−u)
〉= lim

sk→0

〈

xsk − f
(

xsk
)

, j
(

xsk −u
)〉≤ 0. (3.18)

Similarly, we also can show

〈

(I − f )q, j(q−u)
〉= 〈xtn − f

(

xtn
)

, j
(

xtn −u
)〉≤ 0. (3.19)

Interchange q and u to obtain

〈

(I − f )p, j(p− q)
〉≤ 0. (3.20)

Interchange p and u to obtain

〈

(I − f )q, j(q− p)
〉≤ 0. (3.21)

This implies that

〈

(p− q)− ( f (p)− f (q)
)

, j(p− q)
〉≤ 0, (3.22)

that is,

‖p− q‖2 ≤ β‖p− q‖2. (3.23)

This is a contradiction, so we must have q = p.
The proof is complete. �
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From Theorem 3.1 we can get the following corollary directly.

Corollary 3.2. Let E be a uniformly smooth space, suppose C is a nonempty closed convex
subset of E, T : C → E is a nonexpansive mapping satisfying the weakly inward condition,
and F(T) �= ∅. Let f : C→ C be a fixed contractive mapping from C to C. {xt} is defined by

xt = t f
(

xt
)

+ (1− t)PTxt, (3.24)

where P is a sunny nonexpansive retraction of E onto C, then xt converges strongly to some
fixed point q of T as t→ 0 and q is the unique solution in F(T) to the following variational
inequality:

〈

(I − f )q, j(q−u)
〉 ∀u∈ F(T). (3.25)

Lemma 3.3 ([6], Lemma 2.1). Let {αn} be a sequence of nonnegative real numbers satisfying
the property

αn+1 ≤
(

1− γn
)

αn + δn ∀n≥ 0, (3.26)

where {γn} ∈ (0,1) and δn is a sequence in R such that:
(i) limn→∞ γn = 0 and

∑∞
n=0 γn =∞;

(ii) either
∑∞

n=0 δn < +∞ or limsupn→∞(δn/γn)≤ 0,
then limn→∞αn = 0.

Theorem 3.4. Let E be a uniformly smooth Banach space, suppose that C is a nonempty
closed convex subset of E, T : C→ E is a nonexpansive nonself-mapping satisfying the weakly
inward condition, and F(T) �= ∅. Let f : C→ C be a fixed contractive mapping, and {xn}
is defined by (1.5), where P is a sunny nonexpansive retraction of E onto C, and αn ∈ (0,1)
satisfies the following conditions:

(i) αn→ 0, as n→∞;
(ii)

∑∞
n=0αn =∞;

(iii) either
∑∞

n=0 |αn+1−αn| <∞ or limn→∞(αn+1/αn)= 1.
Then xn converges strongly to a fixed point q of T such that q is the unique solution in F(T)
to the following variational inequality:

〈

(I − f )q, j(q−u)
〉≤ 0 ∀u∈ F(T). (3.27)

Proof. First we show {xn} is bounded. Take u∈ F(T), it follows that
∥
∥xn+1−u

∥
∥= ∥∥P((1−αn

)

Txn +αn f
(

xn
))−Pu‖

≤ ∥∥(1−αn
)

Txn +αn f
(

xn
)−u

∥
∥

≤ (1−αn
)∥
∥Txn−u

∥
∥+αn

(∥
∥ f
(

xn
)− f (u)

∥
∥+

∥
∥ f (u)−u

∥
∥
)

≤ (1−αn
)∥
∥xn−u

∥
∥+αn

(

β
∥
∥xn−u

∥
∥+

∥
∥ f (u)−u

∥
∥
)

= (1− (1−β)αn
)∥
∥xn−u

∥
∥+αn

∥
∥ f (u)−u

∥
∥

≤max
{
∥
∥xn−u

∥
∥,

1
1−β

∥
∥ f (u)−u

∥
∥

}

.

(3.28)
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By induction,

∥
∥xn−u

∥
∥≤max

{
∥
∥x0−u

∥
∥,

1
1−β

∥
∥ f (u)−u

∥
∥

}

, n≥ 0, (3.29)

and {xn} is bounded, so are {Txn} and { f (xn)}. We claim that

xn+1− xn −→ 0 as n−→∞. (3.30)

Indeed we have (for some appropriate constant M > 0)

∥
∥xn+1− xn

∥
∥= ∥∥P(αn f

(

xn
)

+
(

1−αn
)

Txn
)−P

(

αn−1 f
(

xn−1
)

+
(

1−αn−1
)

Txn−1
)∥
∥

≤ ∥∥αn f
(

xn
)

+
(

1−αn
)

Txn−αn−1 f
(

xn−1
)− (1−αn−1

)

Txn−1
∥
∥

≤ ∥∥(1−αn
)(

Txn−Txn−1
)

+
(

αn−αn−1
)(

f
(

xn−1
)−Txn−1

)∥
∥

+αn
∥
∥ f
(

xn
)− f

(

xn−1
)∥
∥

≤ (1−αn
)∥
∥xn− xn−1

∥
∥[3pt] +M

∣
∣αn−αn−1

∣
∣+βαn

∥
∥xn− xn−1

∥
∥

= (1− (1−β)αn
)∥
∥xn− xn−1

∥
∥[3pt] +M

∣
∣αn−αn−1

∣
∣.

(3.31)

By Lemma 3.3 we have ‖xn+1− xn‖→ 0, as n→∞. We now show that

∥
∥xn−PTxn

∥
∥−→ 0. (3.32)

In fact,

∥
∥xn+1−PTxn

∥
∥= ∥∥P(αn f

(

xn
)

+
(

1−αn
)

Txn
)−PTxn

∥
∥

≤ αn
∥
∥ f
(

xn
)−Txn

∥
∥.

(3.33)

This follows from (3.30) that

∥
∥xn−PTxn

∥
∥≤ ∥∥xn− xn+1

∥
∥+

∥
∥xn+1−PTxn

∥
∥

≤ ∥∥xn− xn+1
∥
∥+αn

∥
∥ f
(

xn
)−Txn

∥
∥−→ 0 as n−→∞.

(3.34)

Let q = limt→0 xt, where {xt} is defined in Corollary 3.2, we get that q is the unique solu-
tion in F(T) to the following variational inequality:

〈

(I − f )q, j(q−u)
〉≤ 0 ∀u∈ F(T). (3.35)

We next show that

limsup
n→∞

〈

f (q)− q, j
(

xn− q
)〉≤ 0. (3.36)
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Form Corollary 3.2, let xt = t f (xt) + (1− t)PTxt, indeed we can write

xt − xn = t
(

f
(

xt
)− xn

)

+ (1− t)
(

PTxt − xn
)

. (3.37)

Noting (3.32), putting

an(t)= ∥∥xn−PTxn
∥
∥
(∥
∥xn−PTxn

∥
∥+ 2

∥
∥xn− xt

∥
∥
)−→ 0 as n−→∞, (3.38)

and using (2.2), we obtain

∥
∥xt − xn

∥
∥

2

≤ (1− t)2
∥
∥PTxt − xn

∥
∥

2
+ 2t

〈

f
(

xt
)− xn, j

(

xt − xn
)〉

≤ (1− t)2
∥
∥PTxt −PTxn +PTxn− xn

∥
∥

2
+ 2t

〈

f
(

xt
)− xt, j

(

xt − xn
)〉

+ 2t
∥
∥xt − xn

∥
∥

2 ≤ (1− t)2
∥
∥xt − xn

∥
∥

2
+ (1− t)2

∥
∥xn−PTxn

∥
∥

2

+ 2(1− t)2
∥
∥PTxn− xn

∥
∥
∥
∥xt − xn

∥
∥+ 2t

〈

f
(

xt
)− xt, j

(

xt − xn
)〉

+ 2t
∥
∥xt − xn

∥
∥

2

≤ (1 + t2)
∥
∥xt − xn

∥
∥

2
+ an(t) + 2t

〈

f
(

xt
)− xt, j

(

xt − xn
)〉

.
(3.39)

The last inequality implies

〈

f
(

xt
)− xt, j

(

xn− xt
)〉≤ t

2

∥
∥xt − xn

∥
∥

2
+

1
2t
an(t). (3.40)

From an(t)→ 0 as n→∞ we get

limsup
n→∞

〈

f
(

xt
)− xt, j

(

xn− xt
)〉≤M · t

2
, (3.41)

where M > 0 is a constant such that M ≥ ‖xt − xn‖2 for all n≥ 0 and t ∈ (0,1). By letting
t→ 0 in (3.41) we have

lim
t→0

limsup
n→∞

〈

f
(

xt
)− xt, j

(

xn− xt
)〉≤ 0. (3.42)

On the one hand, for all ε > 0, ∃δ1 such that t ∈ (0,δ1),

limsup
n→∞

〈

f
(

xt
)− xt, j

(

xn− xt
)〉≤ ε

2
. (**)
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On the other hand, {xt} strongly converges to q, as t→ 0, the set {xt − xn} is bounded, and
the duality map J is norm-to-norm uniformly continuous on bounded sets of uniformly
smooth space E; from xt → q (t→ 0), we get

∥
∥ f (q)− q− ( f (xt

)− xt
)∥
∥−→ 0, t −→ 0,

∥
∥
〈

f (q)− q, j
(

xn− q
)〉− 〈 f (xt

)− xt, j
(

xn− xt
)〉∥
∥

= ∥∥〈 f (q)− q, j
(

xn− q
)− j

(

xn− xt
)〉

+
〈

f (q)− q− ( f (xt
)− xt

)

, j
(

xn− xt
)〉∥
∥

≤ ∥∥ f (q)− q
∥
∥
∥
∥ j
(

xn− q
)− j

(

xn− xt
)∥
∥

+
∥
∥ f (q)− q− ( f (xt

)− xt
)∥
∥
∥
∥xn− xt

∥
∥−→ 0, t −→ 0.

(3.43)

Hence for the above ε > 0, ∃δ2, such that for all t ∈ (0,δ2), for all n, we have

∥
∥
〈

f (q)− q, j
(

xn− q
)〉− 〈 f (xt

)− xt, j
(

xn− xt
)〉∥
∥≤ ε

2
. (3.44)

Therefore, we have

〈

f (q)− q, j
(

xn− q
)〉≤ 〈 f (xt

)− xt, j
(

xn− xt
)〉

+
ε

2
. (3.45)

Noting (**) and taking δ =min{δ1,δ2}, for all t ∈ (0,δ), we have

limsup
n→∞

〈

f (q)− q, j
(

xn− q
)〉

≤ limsup
n→∞

(
〈

f
(

xt
)− xt, j

(

xn− xt
)〉

+
ε

2

)

≤ ε

2
+
ε

2
= ε.

(3.46)

Since ε is arbitrary, we get

limsup
n→∞

〈

f (q)− q, j
(

xn− q
)〉≤ 0. (3.47)

Finally we show xn→ q. Indeed

xn+1−
(

αn f
(

xn
)

+
(

1−αn
)

q
)= (xn+1− q

)−αn
(

f
(

xn
)− q

)

. (3.48)
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By (2.2) we have

∥
∥xn+1− q

∥
∥

2 = ∥∥xn+1−
(

αn f
(

xn
)

+
(

1−αn
)

q
)

+αn
(

f
(

xn
)− q

)∥
∥

2

≤ ∥∥xn+1−P
(

αn f
(

xn
)

+
(

1−αn
)

q
)∥
∥

2
+ 2αn

〈

f
(

xn
)− q, j

(

xn+1− q
)〉

≤ ∥∥P[αn f
(

xn
)

+
(

1−αn
)

Txn
]−P

(

αn f
(

xn
)

+
(

1−αn
)

q
)∥
∥

2

+ 2αn
〈

f
(

xn
)− q, j

(

xn+1− q
)〉

≤ (1−αn
)2∥
∥Txn− q

∥
∥

2
+ 2αn

〈

f
(

xn
)− f (q), j

(

xn+1− q
)〉

+ 2αn
〈

f (q)− q, j
(

xn+1− q
)〉

≤ (1−αn
)2∥
∥xn− q

∥
∥

2
+ 2αn

∥
∥ f (q)− f

(

xn
)∥
∥
∥
∥xn+1− q

∥
∥

+ 2αn
〈

f (q)− q, j
(

xn+1− q
)〉

≤ (1−αn
)2∥
∥xn− q

∥
∥

2
+αn

(∥
∥ f (q)− f

(

xn
)∥
∥

2
+
∥
∥xn+1− q

∥
∥

2)

+ 2αn
〈

f (q)− q, j
(

xn+1− q
)〉

.

(3.49)

Therefore, we have

(

1−αn
)∥
∥xn+1− q

∥
∥

2

≤ (1−αn
)2∥
∥xn− q

∥
∥

2
+αnβ

2
∥
∥xn− q

∥
∥

2
+ 2αn

〈

f (q)− q, j
(

xn+1− q
)〉

.
(3.50)

That is,

∥
∥xn+1− q

∥
∥

2 ≤
(

1− 1−β2

1−αn
αn

)
∥
∥xn− q

∥
∥+

α2
n

1−αn

∥
∥xn− q

∥
∥

2

+
2αn

1−αn

〈

f (q)− q, j
(

xn+1− q
)〉

≤ (1− γn
)∥
∥xn− q

∥
∥

2
+ λγnαn +

2
1−β2

γn
〈

f (q)− q, j
(

xn+1− q
)〉

,

(3.51)

where γn = ((1−β2)/(1−αn))αn and λ is a constant such that λ > (1/(1−β2))‖xn− q‖2.
Hence,

∥
∥xn+1− q

∥
∥

2 ≤ (1− γn
)∥
∥xn− q

∥
∥

2
+ γn

(

λαn +
2

1−β2

〈

f (q)− q, j
(

xn+1− q
)〉
)

. (3.52)

It is easily seen that γn→ 0,
∑∞

n=1 γn =∞, and (noting (3.36))

limsup
n→∞

(

λαn +
2

1−β2

〈

f (q)− q, j
(

xn+1− q
)〉
)

≤ 0. (3.53)

Applying Lemma 3.3 onto (3.52), we have xn→ q.
The proof is complete. �
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[6] , Viscosity approximation methods for nonexpansive mappings, Journal of Mathematical
Analysis and Applications 298 (2004), no. 1, 279–291.

Rudong Chen: Department of Mathematics, Tianjin Polytechnic University,
Tianjin 300160, China
E-mail address: chenrd@tjpu.edu.cn

Zhichuan Zhu: Department of Mathematics, Tianjin Polytechnic University,
Tianjin 300160, China
E-mail address: zhuzcnh@yahoo.com.cn

mailto:chenrd@tjpu.edu.cn
mailto:zhuzcnh@yahoo.com.cn

	1. Introduction
	2. Preliminaries
	3. Main results
	Acknowledgment
	References

