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Some properties of minimal closed sets and maximal closed sets are obtained, which
are dual concepts of maximal open sets and minimal open sets, respectively. Common
properties of minimal closed sets and minimal open sets are clarified; similarly, common
properties of maximal closed sets and maximal open sets are obtained. Moreover, inter-
relations of these four concepts are studied.
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1. Introduction

Some properties of minimal open sets and maximal open sets are studied in [1, 2]. In this
paper, we define dual concepts of them, namely, maximal closed set and minimal closed
set. These four types of subsets appear in finite spaces, for example. More generally, min-
imal open sets and maximal closed sets appear in locally finite spaces such as the digital
line. Minimal closed sets and maximal open sets appear in cofinite topology, for example.
We have to study these four concepts to understand the relations among their properties.
Some of the results in [1, 2] can be dualized using standard techniques of general topol-
ogy. But we have to study the “dual results” carefully to understand the duality which we
propose in this paper and in [2]. For example, considering the interrelation of these four
concepts, we see that some results in [1, 2] can be generalized further.

In [1] we called a nonempty open set U of X a minimal open set if any open set which
is contained in U is ∅ or U . But to consider duality, we have to consider only “proper
nonempty open set U of X ,” as in the following definitions: a proper nonempty open
subset U of X is said to be a minimal open set if any open set which is contained in U is
∅ or U . A proper nonempty open subset U of X is said to be a maximal open set if any
open set which contains U is X or U . In this paper, we will use the following definitions.

A proper nonempty closed subset F of X is said to be a minimal closed set if any closed
set which is contained in F is ∅ or F. A proper nonempty closed subset F of X is said to
be a maximal closed set if any closed set which contains F is X or F.
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2 Minimal closed sets and maximal closed sets

Let F be a subset of a topological space X . Then the following duality principle holds:
(1) F is a minimal closed set if and only if X −F is a maximal open set;
(2) F is a maximal closed set if and only if X −F is a minimal open set.

In Sections 2 and 3, we will show some results on minimal closed sets and maximal closed
sets. In Section 4, we will obtain some further results on minimal open sets and maximal
open sets.

The symbol Λ \Γ means difference of index sets, namely, Λ \Γ=Λ−Γ, and the cardi-
nality of a set Λ is denoted by |Λ| in the following arguments. A subset M of a topological
space X is called a pre-open set if M ⊂ Int(Cl(M)) and a subset M is called a pre-closed set
if X −M is a pre-open set.

2. Minimal closed sets

In this section, we prove some results on minimal closed sets.
The following result shows that a fundamental result of [1, Lemma 2.2] also holds for

closed sets; it is the dual result of [2, Lemma 2.2].

Lemma 2.1. (1) Let F be a minimal closed set and N a closed set. Then F ∩N =∅ or F ⊂N .
(2) Let F and S be minimal closed sets. Then F ∩ S=∅ or F = S.

The proof of Lemma 2.1 is omitted, since it is obtained by an argument similar to the
proof of [1, Lemma 2.2]. Now, we generalize the dual result of [2, Theorem 2.4].

Theorem 2.2. Let F and Fλ be minimal closed sets for any element λ of Λ.
(1) If F ⊂⋃λ∈ΛFλ, then there exists an element λ of Λ such that F = Fλ.
(2) If F �= Fλ for any element λ of Λ, then (

⋃
λ∈ΛFλ)∩F =∅.

Proof. (1) Since F ⊂⋃λ∈ΛFλ, we get F = F ∩ (
⋃

λ∈ΛFλ)=⋃λ∈Λ(F ∩Fλ). If F �= Fλ for any
element λ of Λ, then F ∩Fλ =∅ for any element λ of Λ by Lemma 2.1(2), hence we have
∅=⋃λ∈Λ(F ∩ Fλ) = F. This contradicts our assumption that F is a minimal closed set.
Thus there exists an element λ of Λ such that F = Fλ.

(2) If (
⋃

λ∈ΛFλ)∩F �= ∅, then there exists an element λ of Λ such that Fλ∩F �= ∅. By
Lemma 2.1(2), we have Fλ = F, which is a contradiction. �

Corollary 2.3. Let Fλ be a minimal closed set for any element λ of Λ and Fλ �= Fμ for any
elements λ and μ of Λ with λ �= μ. If Γ is a proper nonempty subset of Λ, then (

⋃
λ∈Λ\ΓFλ)∩

(
⋃

γ∈ΓFγ)=∅.

The following result is a generalization of the dual result of [2, Theorem 2.5].

Theorem 2.4. Let Fλ and Fγ be minimal closed sets for any element λ ofΛ and γ of Γ. If there
exists an element γ of Γ such that Fλ �= Fγ for any element λ of Λ, then

⋃
γ∈ΓFγ �⊂

⋃
λ∈ΛFλ.

Proof. Suppose that an element γ′ of Γ satisfies Fλ �=Fγ′ for any element λ ofΛ. If
⋃

γ∈ΓFγ⊂⋃
λ∈ΛFλ, then we get Fγ′ ⊂

⋃
λ∈ΛFλ. By Theorem 2.2(1), there exists an element λ of Λ

such that Fγ′ = Fλ, which is a contradiction. �

The dual result of [2, Theorem 4.6] is stated as follows.
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Theorem 2.5. Let Fλ be a minimal closed set for any element λ of Λ and Fλ �= Fμ for any
elements λ and μ of Λ with λ �= μ. If Γ is a proper nonempty subset of Λ, then

⋃
γ∈ΓFγ �

⋃
λ∈ΛFλ.

Proof. Let κ be any element of Λ \ Γ. Then Fκ ∩ (
⋃

γ∈ΓFγ) = ⋃γ∈Γ(Fκ ∩ Fγ) = ∅ and
Fκ ∩ (

⋃
λ∈ΛFλ) =⋃λ∈Λ(Fκ ∩ Fλ) = Fκ. If

⋃
γ∈ΓFγ =

⋃
λ∈ΛFλ, then we have ∅= Fκ. This

contradicts our assumption that Fκ is a minimal closed set. �

The following theorem is the dual result of [2, Theorem 4.2] and is the key to the proof
of Theorem 2.7, which is closely connected with [2, Theorem 4.7].

Theorem 2.6. Assume that |Λ| ≥ 2 and let Fλ be a minimal closed set for any element λ of
Λ and Fλ �= Fμ for any elements λ and μ of Λ with λ �= μ. Then Fμ ⊂ X −⋃λ∈Λ\{μ}Fλ and
hence

⋃
λ∈Λ\{μ}Fλ �= X for any element μ of Λ.

Proof. By Corollary 2.3, we have the result. �

Theorem 2.7 (recognition principle for minimal closed sets). Assume that |Λ| ≥ 2 and
let Fλ be a minimal closed set for any element λ of Λ and Fλ �= Fμ for any elements λ and μ of
Λ with λ �= μ. Then for any element μ of Λ,

Fμ =
(
⋃

λ∈Λ
Fλ

)

∩
(

X −
⋃

λ∈Λ\{μ}
Fλ

)

. (2.1)

Proof. Let μ be an element of Λ. By Theorem 2.6, we have

(
⋃

λ∈Λ
Fλ

)

∩
(

X −
⋃

λ∈Λ\{μ}
Fλ

)

=
((

⋃

λ∈Λ\{μ}
Fλ

)

∪Fμ

)

∩
(

X −
⋃

λ∈Λ\{μ}
Fλ

)

=
((

⋃

λ∈Λ\{μ}
Fλ

)

∩
(

X −
⋃

λ∈Λ\{μ}
Fλ

))

∪
(

Fμ∩
(

X −
⋃

λ∈Λ\{μ}
Fλ

))

= Fμ∩
(

X −
⋃

λ∈Λ\{μ}
Fλ

)

= Fμ.

(2.2)

�

As an application of Theorem 2.7, we prove the following result which is the dual result
of [2, Theorem 4.8].

Theorem 2.8. Let Fλ be a minimal closed set for any element λ of a finite set Λ and Fλ �= Fμ
for any elements λ and μ of Λ with λ �= μ. If

⋃
λ∈ΛFλ is an open set, then Fλ is an open set for

any element λ of Λ.

Proof. Let μ be an element of Λ. By Theorem 2.7, we have Fμ = (
⋃

λ∈ΛFλ) ∩ (X −
⋃

λ∈Λ\{μ}Fλ) = (
⋃

λ∈ΛFλ) ∩ (
⋂

λ∈Λ\{μ}(X − Fλ)). By our assumption, it is seen that
⋂

λ∈Λ\{μ}(X −Fλ) is an open set. Hence Fμ is an open set. �



4 Minimal closed sets and maximal closed sets

As an immediate consequence of Theorem 2.6, we have the following result which is
the dual of [2, Theorem 4.9].

Theorem 2.9. Assume that |Λ| ≥ 2 and let Fλ be a minimal closed set for any element λ of
Λ and Fλ �= Fμ for any elements λ and μ of Λ with λ �= μ. If

⋃
λ∈ΛFλ = X , then {Fλ | λ∈Λ}

is the set of all minimal closed sets of X .

Let �= {Fλ | λ∈Λ} be a set of minimal closed sets. We call ∪�=⋃λ∈ΛFλ the corad-
ical of �. The following result about coradical is obtained by [2, Theorem 4.13].

Theorem 2.10. Let Fλ be a minimal closed set for any element λ of Λ and Fλ �= Fμ for any
elements λ and μ of Λ with λ �= μ. If

⋃
λ∈ΛFλ is an open set, then

⋃
λ∈Λ\{μ}Fλ is an open set

for any element μ of Λ.

Theorem 2.11. Let F be a minimal closed set. Then, Int(F)= F or Int(F)=∅.

Proof. If we put U = X −F in [2, Theorem 3.5], then we have the result. �

If S is a proper subset of a minimal closed set, then Int(S) =∅ and hence S is a pre-
closed set (cf. [2, Corollary 3.7]).

Theorem 2.12. Let Fλ be a minimal closed set for any element λ of a finite set Λ. If
Int(

⋃
λ∈ΛFλ) �= ∅, then there exists an element λ of Λ such that Int(Fλ)= Fλ.

Proof. Since Int(
⋃

λ∈ΛFλ) �= ∅, there exists an element x of Int(
⋃

λ∈ΛFλ). Then there ex-
ists an open set U such that x ∈ U ⊂ ⋃λ∈ΛFλ and hence there exists an element μ of
Λ such that x ∈ Fμ. By Theorems 2.6 and 2.7, x ∈ U ∩ (X −⋃λ∈Λ\{μ}Fλ) ⊂ (

⋃
λ∈ΛFλ)∩

(X −⋃λ∈Λ\{μ}Fλ) = Fμ. Since U ∩ (X −⋃λ∈Λ\{μ}Fλ) is an open set, we see that x is an
element of Int(Fμ) and hence Int(Fμ) �= ∅. Therefore there exists an element μ of Λ such
that Int(Fμ)= Fμ by Theorem 2.11. �

Remark 2.13. If Λ is an infinite set, then Theorem 2.12 does not hold. For example, see
[2, Example 5.3].

Theorem 2.14 (the law of interior of coradical). Let Fλ be a minimal closed set for any
element λ of a finite set Λ and Fλ �= Fμ for any elements λ and μ of Λ with λ �= μ. Let Γ be a
subset of Λ such that

Int
(
Fλ
)= Fλ for any λ∈ Γ,

Int
(
Fλ
)=∅ for any λ∈Λ \Γ. (2.3)

Then Int(
⋃

λ∈ΛFλ)=⋃λ∈ΓFλ(=∅ if Γ=∅).

Proof. By [2, Theorem 5.4], we have the result. �

3. Maximal closed sets

The following lemma is the dual of Lemma 2.1.

Lemma 3.1. (1) Let F be a maximal closed set and N a closed set. Then F ∪N = X or N ⊂ F.
(2) Let F and S be maximal closed sets. Then F ∪ S= X or F = S.
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Let Fλ be a maximal closed set for any element λ of Λ. Let � = {Fλ | λ ∈ Λ}. We call
⋂

�=⋂λ∈ΛFλ the radical of �.

Corollary 3.2. Let F and Fλ be maximal closed sets for any element λ of Λ. If F �= Fλ for
any element λ of Λ, then (

⋂
λ∈ΛFλ)∪F = X .

Proof. By Lemma 3.1(2), we have the result. �

Theorem 3.3. Let F and Fλ be maximal closed sets for any element λ of Λ. If
⋂

λ∈ΛFλ ⊂ F,
then there exists an element λ of Λ such that F = Fλ.

Proof. Since
⋂

λ∈ΛFλ ⊂ F, we get F = F ∪ (
⋂

λ∈ΛFλ) = ⋂λ∈Λ(F ∪ Fλ). If F ∪ Fλ = X for
any element λ of Λ, then we haveX =⋂λ∈Λ(F ∪Fλ)= F. This contradicts our assumption
that F is a maximal closed set. Then there exists an element λ of Λ such that F ∪Fλ �= X .
By Lemma 3.1(2), we have the result. �

Corollary 3.4. Let Fλ and Fγ be maximal closed sets for any elements λ ∈ Λ and γ ∈ Γ.
If
⋂

γ∈ΓFγ ⊂
⋂

λ∈ΛFλ, then for any element λ of Λ, there exists an element γ ∈ Γ such that
Fλ = Fγ.

Corollary 3.5. Let Fα, Fβ, and Fγ be maximal closed sets which are different from each
other. Then

Fα∩Fβ �⊂ Fα∩Fγ. (3.1)

Theorem 3.6. Let Fλ be a maximal closed set for any element λ of Λ and Fλ �= Fμ for any
elements λ and μ of Λ with λ �= μ. If Γ is a proper nonempty subset of Λ, then

⋂
λ∈Λ\ΓFλ �⊂⋂

γ∈ΓFγ �⊂
⋂

λ∈Λ\ΓFλ.

Proof. Let γ be any element of Γ. If
⋂

λ∈Λ\ΓFλ ⊂ Fγ, then we get Fλ = Fγ for some λ ∈
Λ \ Γ by Theorem 3.3. This contradicts our assumption. Therefore we have

⋂
λ∈Λ\ΓFλ �⊂⋂

γ∈ΓFγ. On the other hand, since
⋂

γ∈ΓFγ =
⋂

γ∈Λ\(Λ\Γ)Fγ �⊂
⋂

λ∈Λ\ΓFλ, we have
⋂

γ∈ΓFγ �⊂⋂
λ∈Λ\ΓFλ. �

Theorem 3.7. Let Fλ be a maximal closed set for any element λ of Λ and Fλ �= Fμ for any
elements λ and μ of Λ with λ �= μ. If Γ is a proper nonempty subset of Λ, then

⋂
λ∈ΛFλ �

⋂
γ∈ΓFγ.

Proof. Let κ be any element of Λ \ Γ. Then Fκ∪ (
⋂

γ∈ΓFγ)=⋂γ∈Γ(Fκ∪Fγ)= X and Fκ∪
(
⋂

λ∈ΛFλ)=⋂λ∈Λ(Fκ∪Fλ)= Fκ. If
⋂

γ∈ΓFγ =
⋂

λ∈ΛFλ, then we have X = Fκ. This contra-
dicts our assumption that Fκ is a maximal closed set. �

Theorem 3.8. Assume that |Λ| ≥ 2 and let Fλ be a maximal closed set for any element λ of
Λ and Fλ �= Fμ for any elements λ and μ of Λ with λ �= μ. Then X −⋂λ∈Λ\{μ}Fλ ⊂ Fμ and
hence

⋂
λ∈Λ\{μ}Fλ �= ∅ for any element μ of Λ.

Proof. Let μ be any element of Λ. By Lemma 3.1(2), we have X −Fμ ⊂ Fλ for any element
λ of Λ with λ �= μ. Then X −Fμ ⊂

⋂
λ∈Λ\{μ}Fλ. Therefore we have X −⋂λ∈Λ\{μ}Fλ ⊂ Fμ.

If
⋂

λ∈Λ\{μ}Fλ =∅, we have X = Fμ. This contradicts our assumption that Fμ is a max-
imal closed set. Therefore we have

⋂
λ∈Λ\{μ}Fλ �= ∅. �



6 Minimal closed sets and maximal closed sets

Theorem 3.9 (decomposition theorem for maximal closed sets). Assume that |Λ| ≥ 2
and let Fλ be a maximal closed set for any element λ of Λ and Fλ �= Fμ for any elements λ and
μ of Λ with λ �= μ. Then for any element μ of Λ,

Fμ =
(
⋂

λ∈Λ
Fλ

)

∪
(

X −
⋂

λ∈Λ\{μ}
Fλ

)

. (3.2)

Proof. Let μ be an element of Λ. By Theorem 3.8, we have

(
⋂

λ∈Λ
Fλ

)

∪
(

X −
⋂

λ∈Λ\{μ}
Fλ

)

=
((

⋂

λ∈Λ\{μ}
Fλ

)

∩Fμ

)

∪
(

X −
⋂

λ∈Λ\{μ}
Fλ

)

=
((

⋂

λ∈Λ\{μ}
Fλ

)

∪
(

X −
⋂

λ∈Λ\{μ}
Fλ

))

∩
(

Fμ∪
(

X −
⋂

λ∈Λ\{μ}
Fλ

))

= Fμ∪
(

X −
⋂

λ∈Λ\{μ}
Fλ

)

= Fμ.

(3.3)

�

Theorem 3.10. Let Fλ be a maximal closed set for any element λ of Λ and Fλ �= Fμ for any
elements λ and μ of Λ with λ �= μ. If

⋂
λ∈ΛFλ is an open set, then Fλ is an open set for any

element λ of Λ.

Proof. By Theorem 3.9, we have Fμ = (
⋂

λ∈ΛFλ) ∪ (X − ⋂λ∈Λ\{μ}Fλ) = (
⋂

λ∈ΛFλ) ∪
(
⋃

λ∈Λ\{μ}(X − Fλ)). Then
⋃

λ∈Λ\{μ}(X − Fλ) is an open set. Hence Fμ is an open set by
our assumption. �

Theorem 3.11. Assume that |Λ| ≥ 2 and let Fλ be a maximal closed set for any element λ of
Λ and Fλ �= Fμ for any elements λ and μ of Λ with λ �= μ. If

⋂
λ∈ΛFλ =∅, then {Fλ | λ∈Λ}

is the set of all maximal closed sets of X .

Proof. If there exists another maximal closed set Fν of X which is not equal to Fλ
for any element λ of Λ, then ∅= ⋂λ∈ΛFλ =

⋂
λ∈(Λ∪{ν})\{ν}Fλ. By Theorem 3.8, we get

⋂
λ∈(Λ∪{ν})\{ν}Fλ �= ∅. This contradicts our assumption. �

Theorem 3.12. Assume that |Λ| ≥ 2 and let Fλ be a maximal closed set for any element
λ of Λ and Fλ �= Fμ for any elements λ and μ of Λ with λ �= μ. If Int(

⋂
λ∈ΛFλ) =∅, then

{Fλ | λ∈Λ} is the set of all maximal closed sets of X .

Proof. If there exists another maximal closed set F of X which is not equal to Fλ for any
element λ of Λ, then X − F ⊂ ⋂λ∈ΛFλ by Theorem 3.8. It follows that Int(

⋂
λ∈ΛFλ) ⊃

Int(X −F)= X −F �= ∅. This contradicts our assumption. �

The proof of the following lemma is immediate and is omitted.

Lemma 3.13. Let A and B be subsets of X . If A∪B = X , and A∩B is an open set and A is
a closed set, then B is an open set.
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Proposition 3.14. Let Fλ be a closed set for any element λ of Λ and Fλ ∪ Fμ = X for any
elements λ and μ of Λ with λ �= μ. If

⋂
λ∈ΛFλ is an open set, then

⋂
λ∈Λ\{μ}Fλ is an open set

for any element μ of Λ.

Proof. Let μ be any element of Λ. Since Fλ ∪ Fμ = X for any element λ of Λ with λ �= μ,
we have Fμ ∪ (

⋂
λ∈Λ\{μ}Fλ) =⋂λ∈Λ\{μ}(Fμ ∪ Fλ) = X . Since Fμ ∩ (

⋂
λ∈Λ\{μ}Fλ) =⋂λ∈ΛFλ

is an open set by our assumption,
⋂

λ∈Λ\{μ}Fλ is an open set by Lemma 3.13. �

Theorem 3.15. Let Fλ be a maximal closed set for any element λ of Λ and Fλ �= Fμ for any
elements λ and μ of Λ with λ �= μ. If

⋂
λ∈ΛFλ is an open set, then

⋂
λ∈Λ\{μ}Fλ is an open set

for any element μ of Λ.

Proof. By Lemma 3.1(2), we have Fλ∪ Fμ = X for any elements λ and μ of Λ with λ �= μ.
By Proposition 3.14, we have

⋂
λ∈Λ\{μ}Fλ is an open set. �

4. Minimal open sets and maximal open sets

In this section, we record some results on minimal open sets and maximal open sets,
which are not proved in [1, 2]. The proofs are omitted since they are obtained by dual
arguments.

Let �= {Uλ | λ∈Λ} be a set of minimal open sets. We call
⋃

�=⋃λ∈ΛUλ the corad-
ical of �. By an argument similar to Theorem 2.2, we have the following result.

Theorem 4.1. Let U and Uλ be minimal open sets for any element λ of Λ.
(1) If U ⊂⋃λ∈ΛUλ, then there exists an element λ of Λ such that U =Uλ.
(2) If U �=Uλ for any element λ of Λ, then (

⋃
λ∈ΛUλ)∩U =∅.

Corollary 4.2. Let Uλ be a minimal open set for any element λ of Λ and Uλ �=Uμ for any
elements λ and μ of Λ with λ �= μ. If Γ is a proper nonempty subset of Λ, then (

⋃
λ∈Λ\ΓUλ)∩

(
⋃

γ∈ΓUγ)=∅.

The following results are shown by the arguments similar to the proofs of Theorems
2.4, 2.5, and 2.6, respectively.

Theorem 4.3. Let Uλ and Uγ be minimal open sets for any elements λ ∈ Λ and γ ∈ Γ. If
there exists an element γ of Γ such that Uλ �= Uγ for any element λ of Λ, then

⋃
γ∈ΓUγ �⊂⋃

λ∈ΛUλ.

Theorem 4.4. Let Uλ be a minimal open set for any element λ of Λ and Uλ �= Uμ for any
elements λ and μ of Λ with λ �= μ. If Γ is a proper nonempty subset of Λ, then

⋃
γ∈ΓUγ �

⋃
λ∈ΛUλ.

Theorem 4.5. Assume that |Λ| ≥ 2 and let Uλ be a minimal open set for any element λ of
Λ and Uλ �=Uμ for any elements λ and μ of Λ with λ �= μ. Then Uμ ⊂ X −⋃λ∈Λ\{μ}Uλ and
hence

⋃
λ∈Λ\{μ}Uλ �= X for any element μ of Λ.

We obtain the following result for minimal open sets (cf. Theorems 2.7 and 3.9).

Theorem 4.6 (recognition principle for minimal open sets). Assume that |Λ| ≥ 2 and let
Uλ be a minimal open set for any element λ of Λ and Uλ �=Uμ for any elements λ and μ of Λ
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with λ �= μ. Then for any element μ of Λ,

Uμ =
(
⋃

λ∈Λ
Uλ

)

∩
(

X −
⋃

λ∈Λ\{μ}
Uλ

)

. (4.1)

Theorem 4.7. Let Uλ be a minimal open set for any element λ of any set Λ and Uλ �=Uμ for
any elements λ and μ of Λ with λ �= μ. If

⋃
λ∈ΛUλ is a closed set, then Uλ is a closed set for

any element λ of Λ (cf. Theorems 2.8 and 3.10).

Theorem 4.8. Assume that |Λ| ≥ 2 and let Uλ be a minimal open set for any element λ of Λ
and Uλ �=Uμ for any elements λ and μ of Λ with λ �= μ. If

⋃
λ∈ΛUλ = X , then {Uλ | λ∈ Λ}

is the set of all minimal open sets of X (cf. Theorems 2.9 and 3.11).

Theorem 4.9. Assume that |Λ| ≥ 2 and let Uλ be a minimal open set for any element λ
of Λ and Uλ �= Uμ for any elements λ and μ of Λ with λ �= μ. If Cl(

⋃
λ∈ΛUλ) = X , then

{Uλ | λ∈Λ} is the set of all minimal open sets of X (cf. Theorem 3.12).

Example 4.10 (the digital line). The digital line is the set Z of the intergers equipped with
the topology τ having a family of subsets S = {{2k− 1,2k,2k + 1} | k ∈ Z} as a subbase.
We consider a set of minimal open sets {Uk ={2k + 1} | k ∈ Z}. Then Cl(

⋃
k∈ZUk) =

Cl({2k+ 1 | k ∈ Z})= Z and hence {Uk = {2k+ 1} | k ∈ Z} is the set of all minimal open
sets in (Z,τ).

Finally we consider maximal open sets. The following results are the duals of Theorems
2.2(1) and 2.4.

Theorem 4.11. Let U and Uλ be maximal open sets for any element λ of Λ. If U ⊃⋂λ∈ΛUλ,
then there exists an element λ of Λ such that U =Uλ.

Theorem 4.12. Let Uλ and Uγ be maximal open sets for any elements λ of Λ and γ of Γ.
If there exists an element γ of Γ such that Uλ �= Uγ for any element λ of Λ, then

⋂
γ∈ΓUγ �⊃⋂

λ∈ΛUλ.
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