SPACELIKE HYPERSURFACES IN DE SITTER SPACE WITH CONSTANT HIGHER-ORDER MEAN CURVATURE

KAIREN CAI AND HUIQUN XU

Received 26 March 2006; Accepted 26 March 2006

The authors apply the generalized Minkowski formula to set up a spherical theorem. It is shown that a compact connected hypersurface with positive constant higher-order mean curvature H_r for some fixed r, $1 \le r \le n$, immersed in the de Sitter space S_1^{n+1} must be a sphere.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The classical Liebmann theorem states that a connected compact surface with constant Gauss curvature or constant mean curvature in \mathbb{R}^3 is a sphere. The natural generalizations of the Gauss curvature and mean curvature are the *r*th mean curvature H_r , r = 1,...,n, which are defined as the *r*th elementary symmetric polynomial in the principal curvatures of *M*. Later many authors [1, 4, 5, 7, 8] have generalized Liebmann theorem to the cases of hypersurfaces with constant higher-order mean curvature in the Euclidian space, hyperbolic space, the sphere, and so on. A significant result due to Ros [8] is that a compact hypersurface with the *r*th constant mean curvature H_r , for some r = 1,...,n, embedded into the Euclidian space must be a sphere.

The purpose of this note is to prove a spherical theorem of the Liebmann type for the compact spacelike hypersurface immersed in the de Sitter space by setting up a generalized Minkowski formula. The main result is the following.

THEOREM 1.1. Let M be a compact connected hypersurface immersed in the de Sitter space S_1^{n+1} . If for some fixed r, $1 \le r \le n$, the rth mean curvature H_r is a positive constant on M, then M is isometric to a sphere.

For the cases of the constant mean curvature and constant scalar curvature, that is, r = 1, 2, the theorem was founded by Montiel [4] and Cheng and Ishikawa [1], respectively.

2 Spacelike hypersurfaces in de Sitter space

2. Preliminaries

Let \mathbb{R}_1^{n+2} be the real vector space \mathbb{R}^{n+2} endowed with the Lorentzian metric $\langle \cdot, \cdot \rangle$ given by

$$\langle x, y \rangle = -x_0 y_0 + \sum_{i=1}^{n+2} x_i y_i$$
 (2.1)

for $x, y \in \mathbb{R}^{n+2}$. The de Sitter space $S_1^{n+1}(c)$ can be defined as the following hyperquadratic:

$$S_1^{n+1}(c) = \left\{ x \in \mathbb{R}_1^{n+2} \mid |x|^2 = \frac{1}{c}, \ \frac{1}{c} > 0 \right\}.$$
 (2.2)

In this way, the de Sitter space inherits from $\langle \cdot, \cdot \rangle$ a metric which makes it an indefinite Riemannian manifold of constant sectional curvature *c*. If $x \in S_1^{n+1}(c)$, we can put

$$T_{x}S_{1}^{n+1}(c) = \{ v \in \mathbb{R}_{1}^{n+2} \mid \langle v, x \rangle = 0 \}.$$
(2.3)

Let $\psi : M \to S_1^{n+1}$ be a connected spacelike hypersurface immersed in the de Sitter space with the sectional curvature 1. Following O'Neill [6], the unit normal vector field N for ψ can be viewed as the Gauss map of M:

$$N: M \longrightarrow \{ x \in \mathbb{R}_1^{n+2} \mid |x|^2 = -1 \}.$$
(2.4)

Let $S_r : \mathbb{R}^n \to \mathbb{R}$, r = 1,...,n, be the normalized *r*th elementary symmetric function in the variables $y_1,...,y_n$. For r = 1,...,n, we denote by C_r the connected component of the set $\{y \in \mathbb{R}^n | S_r(y) > 0\}$ containing the vector y = (1,...,1). Notice that every vector $(y_1,...,y_n)$ with all its components greater than zero lies in each C_r . We derive the following two lemmas, which will be needed for the proof of the theorem.

LEMMA 2.1 [3]. (i) If $r \ge k$, then $C_r \subset C_k$; (ii) for $y \in C_r$,

$$S_r^{1/r} \le S_{r-1}^{1/r-1} \le \dots \le S_2^{1/2} \le S_1.$$
 (2.5)

LEMMA 2.2 (Minkowski formula). Let $\psi : M \to S_1^{n+1} \subset \mathbb{R}_1^{n+2}$ be a connected spacelike hypersurface immersed in de Sitter space S_1^{n+1} . For the rth mean curvature H_r of ψ , r = 0, 1, ..., n-1,

$$\int_{M} \left(H_r \langle \psi, a \rangle + H_{r+1} \langle N, a \rangle \right) dV = 0,$$
(2.6)

where $H_0 = 1$ and $a \in \mathbb{R}_1^{n+1}$ is an arbitrary fixed vector and N is the unit normal vector of M.

Proof. The argument is based on the approach of geodesic parallel hypersurfaces in [5]. Let k_r and e_i , i = 1, ..., n, be the principal curvatures and the principal directions at a point $p \in M$. The *r*th mean curvature of ψ is defined by the identity

$$P_n(t) = (1 + tk_1) \cdots (1 + tk_n) = 1 + \binom{n}{1} H_1 t + \dots + \binom{n}{n} H_n t^n$$
(2.7)

for all $t \in \mathbb{R}$. Thus $H_1 = H$ is the mean curvature, $H_2 = (n^2H^2 - S)/n(n-1)$, where *S* is the square length of the second fundamental form and H_n is the Gauss-Kronecker curvature of *M* immersed in S_1^{n+1} . Let us consider a family of geodesic parallel hypersurfaces ψ_t given by

$$\psi_t(p) = \exp_{\psi(p)}\left(-tN(p)\right) = \cosh t \cdot \psi(p) + \sinh t \cdot N(p). \tag{2.8}$$

Then the unit normal vector field of ψ_t with $|N_t|^2 = -1$ can be written as

$$N_t(p) = -\sinh t \cdot \psi(p) - \cosh t \cdot N(p). \tag{2.9}$$

Because we have

$$\psi_{t_*}(e_i) = (\cosh t - k_i \sinh t)(e_i), N_{t_*}(e_i) = (-\sinh t + k_i \cosh t)(e_i);$$
(2.10)

for the principal directions $\{e_i\}$, i = 1, ..., n and $|t| < \varepsilon$, the second fundamental form of ψ_t can be expressed as

$$\sigma_{t}(\psi_{t_{*}}(e_{i}),\psi_{t_{*}}(e_{j})) = -\langle N_{t_{*}}(e_{i}),\psi_{t_{*}}(e_{j})\rangle$$

$$= (\sinh t - k_{i}\cosh t)\langle e_{i},\psi_{t_{*}}(e_{j})\rangle$$

$$= \frac{\sinh t - k_{i}\cosh t}{\cosh t - k_{i}\sinh t}\langle \psi_{t_{*}}(e_{i}),\psi_{t_{*}}(e_{j})\rangle.$$
(2.11)

Then the mean curvature H(t) of ψ can be expressed as

$$H(t) = \frac{1}{n} \sum_{i=1}^{n} k_i(t) = \frac{1}{n} \sum_{i=1}^{n} \frac{\tanh t - k_i}{1 - k_i \tanh t}$$

= $\frac{1}{n P_n(-\tanh t)} \sum_{i=1}^{n} (\tanh t - k_i) \prod_{j \neq i} (1 - k_j \tanh t).$ (2.12)

But

$$\prod_{j \neq i} (1 - k_j \tanh t) = n P_n(-\tanh t) - \cosh t \sinh t P'_n(-\tanh t).$$
(2.13)

Then we get

$$H(t) = \tanh t + \frac{P'_n(-\tanh t)}{nP_n(-\tanh t)}.$$
(2.14)

By the way, we must point out that the formula (7') in [5] is incorrect because the second term in the right-hand side of the expression of H(t) should be $P'_n(\tanh t)/nP_n(\tanh t)$. The volume element dV_t for immersion ψ_t can be given by

$$dV_t = (\cosh t - k_1 \sinh t) \cdots (\cosh t - k_n \sinh t) dV$$

= $-\cosh^n t P_n(-\tanh t) dV$, (2.15)

4 Spacelike hypersurfaces in de Sitter space

where dV is the volume element of ψ . It is an easy computation that

$$\triangle (\langle \psi, a \rangle + H \langle N, a \rangle) = 0, \qquad (2.16)$$

where *N* is a unit normal field of ψ and $a \in \mathbb{R}_1^{n+2}$ an arbitrary fixed vector (cf. [4, page 914]). Integrating both sides of (2.16) over the hypersurface *M* and applying Stoke's theorem, we get

$$\int_{M} \left(\langle \psi, a \rangle + H_1 \langle N, a \rangle \right) dV = 0.$$
(2.17)

For ψ_t , $|t| < \varepsilon$, we obtain

$$\int_{M} \left(\langle \psi_t, a \rangle + H(t) \langle N_t, a \rangle \right) dV_t = 0.$$
(2.18)

Substituting (2.14) and (2.15) into (2.18), we get

$$\int_{M} \langle \psi_{t}, a \rangle + H(t) \langle N_{t}, a \rangle dV_{t}$$

$$= \frac{1}{n} \cosh^{n-1} t \int_{M} \left(\left(nP_{n}(-\tanh t) - \sinh t \cosh t P_{n}^{'}(-\tanh t) \right) \langle \psi, a \rangle - \cosh^{2} t P_{n}^{'}(-\tanh t) \langle N, a \rangle \right) dV = 0.$$
(2.19)

By using the expression

$$nP_{n}(-\tanh t) - \sinh t \cosh t P'_{n}(-\tanh t) = n + (n-1)\binom{n}{1}H_{1}(-\tanh t) + \dots + n\binom{n}{n-1}H_{n}(-\tanh t)^{n-1},$$
(2.20)

we obtain

$$\int_{M} \left\{ \left(nP_{n}(-\tanh t) - \sinh t \cosh t P_{n}^{'}(-\tan t) \right) \langle \psi, a \rangle - \cosh^{2} t P_{n}^{'}(-\tanh t) \langle N, a \rangle \right\} dV$$

$$= \sum_{r=1}^{n} (n-r-1) \binom{n}{(r-1)} (-\tanh t)^{r-1},$$

$$\int_{M} \left(H_{r-1} \langle \psi_{t}, a \rangle + H_{r} \langle N_{t}, a \rangle \right) dV = 0.$$
(2.21)

The left-hand side in the equality is a polynomial in the variable tanh t. Therefore, all its coefficients are null. This completes the proof of Lemma 2.2.

3. Proof of Theorem 1.1

Here we work for the immersed hypersurfaces in S_1^{n+1} instead of embedded hypersurfaces because we can only use algebraic inequalities and the integral formula above to complete the proof. Let some H_r be a positive constant. Multiplying (2.17) by H_r and then abstracting from (2.6), we obtain that

$$\int_{M} (H_{1}H_{r} - H_{r+1}) \langle N, a \rangle dV = 0.$$
(3.1)

We know from Newton inequality [2] that $H_{r-1}H_{r+1} \le H_r^2$, where the equality implies that $k_1 = \cdots = k_n$. Hence

$$H_{r-1}(H_1H_r - H_{r+1}) \ge H_r(H_1H_{r-1} - H_r).$$
(3.2)

It derives from Lemma 2.1 that

$$0 \le H_r^{1/r} \le H_{r-1}^{1/r-1} \le \dots \le H_2^{1/2} \le H_1.$$
(3.3)

Thus we conclude that

$$H_{r-1}(H_1H_r - H_{r+1}) \ge H_r(H_1H_{r_1} - H_r) \ge 0, \tag{3.4}$$

and if $r \ge 2$, the equalities happen only at umbilical points of *M*. We choose a constant vector *a* such that $|a|^2 = -1$ and $a_0 \le -1$. Since the normal vector *N* satisfies $|N|^2 = -1$, we have $\langle N, a \rangle \ge 1$ on *M*. It follows from (3.1) that

$$H_1 H_r - H_{r+1} = 0. (3.5)$$

Thus, $k_1 = \cdots = k_n$, *M* is totally umbilical, and *M* is isometric to a sphere. This ends the proof of Theorem 1.1.

If there is a convex point on M, that is, a point at which $k_i > 0$, for all i = 1, ..., n, then the constant rth mean curvature H_r is positive. By means of the same argument as that of Theorem 1.1, we derive the following.

COROLLARY 3.1. Let *M* be a compact connected hypersurface immersed in the de Sitter space S_1^{n+1} . If for some fixed *r*, $1 \le r \le n$, the *r*th mean curvature H_r is constant, and there is a convex point on *M*, then *M* is isometric to a sphere.

Acknowledgment

The project is supported by the Natural Science Foundation of Zhejiang Provence in China.

References

- [1] Q.-M. Cheng and S. Ishikawa, *Spacelike hypersurfaces with constant scalar curvature*, Manuscripta Mathematica **95** (1998), no. 4, 499–505.
- [2] J. Eells Jr. and J. H. Sampson, *Harmonic mappings of Riemannian manifolds*, American Journal of Mathematics **86** (1964), 109–160.
- [3] L. Gårding, An inequality for hyperbolic polynomials, Journal of Mathematics and Mechanics 8 (1959), 957–965.
- [4] S. Montiel, An integral inequality for compact spacelike hypersurfaces in de Sitter space and applications to the case of constant mean curvature, Indiana University Mathematics Journal 37 (1988), no. 4, 909–917.

- 6 Spacelike hypersurfaces in de Sitter space
- [5] S. Montiel and A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures, Differential Geometry. Proceedings Conference in Honor of Manfredo do Carmo, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Scientific & Technical, Harlow, 1991, pp. 279–296.
- [6] B. O'Neill, *Semi-Riemannian Geometry. With Applications to Relativity*, Pure and Applied Mathematics, vol. 103, Academic Press, New York, 1983.
- [7] R. C. Reilly, *Applications of the Hessian operator in a Riemannian manifold*, Indiana University Mathematics Journal **26** (1977), no. 3, 459–472.
- [8] A. Ros, Compact hypersurfaces with constant higher order mean curvatures, Revista Matemática Iberoamericana 3 (1987), no. 3-4, 447–453.

Kairen Cai: Department of Mathematics, Hangzhou Teachers College, 222 Wen Yi Road, Hangzhou 310036, China *E-mail addresses*: kcai53@hotmail.com; kairencai408@hzcnc.com

Huiqun Xu: Department of Mathematics, Hangzhou Teachers College, 222 Wen Yi Road, Hangzhou 310036, China *E-mail addresses*: huiqunxhu@hotmail.com; xuhuiqun@163.com