THE CENTER OF TOPOLOGICALLY PRIMITIVE EXPONENTIALLY GALBED ALGEBRAS

MART ABEL AND MATI ABEL

Received 29 September 2004; Revised 11 December 2005; Accepted 18 December 2005

Let A be a unital sequentially complete topologically primitive exponentially galbed Hausdorff algebra over \mathbb{C} , in which all elements are bounded. It is shown that the center of A is topologically isomorphic to \mathbb{C} .

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

(1) Let A be an associative topological algebra over the field of complex numbers \mathbb{C} with separately continuous multiplication. Then A is an *exponentially galbed algebra* (see, e.g., [1-4, 19, 20]) if every neighbourhood O of zero in A defines another neighbourhood O of zero such that

$$\left\{\sum_{k=0}^{n} \frac{a_k}{2^k} : a_0, \dots, a_n \in U\right\} \subset O$$

$$\tag{1.1}$$

for each $n \in \mathbb{N}$. Herewith, A is $locally\ pseudoconvex$, if it has a base $\{U_{\lambda}: \lambda \in \Lambda\}$ of neighbourhoods of zero consisting of balanced and pseudoconvex sets (i.e., of sets U for which $\mu U \subset U$, whenever $|\mu| \leq 1$, and $U + U \subset \rho U$ for a $\rho \geq 2$). In particular, when every U_{λ} in $\{U_{\lambda}: \lambda \in \Lambda\}$ is idempotent (i.e., $U_{\lambda}U_{\lambda} \subset U_{\lambda}$), then A is called a $locally\ m$ -pseudoconvex algebra, and when every U_{λ} in $\{U_{\lambda}: \lambda \in \Lambda\}$ is A-pseudoconvex (i.e., for any $a \in A$ there is a $\mu > 0$ such that $aU_{\lambda}, U_{\lambda}a \subset \mu U_{\lambda}$), then A is called a $locally\ A$ -pseudoconvex logation A. It is well known (see [21, page 4] or [6, page 189]) that the locally pseudoconvex topology on A is given by a family $\{p_{\lambda}: \lambda \in \Lambda\}$ of k_{λ} -homogeneous seminorms, where $k_{\lambda} \in (0,1]$ for each $\lambda \in \Lambda$. The topology of a locally m-pseudoconvex (A-pseudoconvex) algebra A is given by a family $\{p_{\lambda}: \lambda \in \Lambda\}$ of k_{λ} -homogeneous submultiplicative (i.e., $p_{\lambda}(ab) \leq p_{\lambda}(a)p_{\lambda}(b)$ for each $a,b \in A$ and $\lambda \in \Lambda$) (resp., A-multiplicative (i.e., for each $a \in A$ and each $\lambda \in \Lambda$ there are numbers $N(a,\lambda) > 0$ and $M(a,\lambda) > 0$ such that $p_{\lambda}(ab) \leq N(a,\lambda)p_{\lambda}(b)$ and $p_{\lambda}(ba) \leq M(a,\lambda)p_{\lambda}(b)$ for each $\lambda \in \Lambda$. In particular, when $k_{\lambda} = 1$ for each $\lambda \in \Lambda$, then A is a $locally\ convex$ (resp., $locally\ m$ -convex and $locally\ A$ -convex) $locally\ a$ and when the topology of A has been defined by only one

k-homogeneous seminorm with $k \in (0,1]$, then A is a *locally bounded algebra*. It is easy to see that every locally pseudoconvex algebra is an exponentially galbed algebra.

Moreover, a complete locally bounded Hausdorff algebra *A* is a *p-Banach algebra*; a complete metrizable algebra *A* is a *Fréchet algebra*; a unital topological algebra *A*, in which the set of all invertible elements is open, is a *Q-algebra* (see, e.g., [14, page 43, Definition 6.2]) and a topological algebra *A* is a *topologically primitive algebra* (see [5]), if

$$\{a \in A : aA \subset M\} = \{\theta_A\} \qquad (\{a \in A : Aa \subset M\} = \{\theta_A\}) \tag{1.2}$$

for a closed maximal regular (or modular) left (resp., right) ideal M of A (here θ_A denotes the zero element of A).

An element a in a topological algebra A is *bounded*, if there exists an element $\lambda_a \in \mathbb{C} \setminus \{0\}$ such that the set

$$\left\{ \left(\frac{a}{\lambda_a} \right)^n : n \in \mathbb{N} \right\} \tag{1.3}$$

is bounded in A and *nilpotent*, if $a^m = \theta_A$ for some $m \in \mathbb{N}$. If all elements in A are bounded (nilpotent), then A is a topological algebra with bounded elements (resp., a nil algebra).

(2) It is well known that the center of a primitive ring (a ring (in particular, algebra) R is *primitive* if it has a maximal left (right) regular ideal M such that $\{a \in R : aR \subset M\} = \{\theta_R\}$ (resp., $\{a \in R : Ra \subset M\} = \{\theta_R\}$)) is an integral domain (a ring R is an integral domain, if from $a,b \in R$ and $ab = \theta_R$ follows that $a = \theta_R$ or $b = \theta_R$) (see [12, Lemma 2.1.3]) and any commutative integral domain can be the center of a primitive ring (see [13, Chapter II.6, Example 3]). Herewith, every field is a commutative integral domain, but any commutative integral domain is not necessarily a field. In particular (see [5]), when R is a unital primitive locally A-pseudoconvex Hausdorff algebra over $\mathbb C$ or a unital locally pseudoconvex Fréchet Q-algebra over $\mathbb C$, then the center Z(R) of R is topologically isomorphic to $\mathbb C$ (for Banach algebras a similar result has been given in [16, Corollary 2.4.5] (see also [8, page 127], [15, Theorem 4.2.11], and [9, Theorem 2.6.26 (ii)]); for k-Banach algebras in [6, Corollary 9.3.7]; for unital primitive locally m-convex Q-algebras in [17, Corollary 2], and for unital primitive locally A-convex algebras, in which all maximal ideals are closed, in [18, Theorem 3]). For topological algebras with all maximal regular one-sided or two-sided ideals closed see also [7, 10, 11, 14].

In the present paper we will show that a similar result will be true for any unital sequentially complete topologically primitive exponentially galbed Hausdorff algebra over \mathbb{C} in which all elements are bounded.

2. Auxiliary results

For describing the center of primitive exponentially galbed algebras we need the following results.

PROPOSITION 2.1. Let A be a unital exponentially galbed Hausdorff algebra over \mathbb{C} with bounded elements, $\lambda_0 \in \mathbb{C}$ and $a_0 \in A$. If A is a sequentially complete or a nil algebra, then

there exists a neighbourhood $O(\lambda_0)$ of λ_0 such that

$$\sum_{k=0}^{\infty} (\lambda - \lambda_0)^k a_0^k \tag{2.1}$$

converges in A and

$$(e_A + (\lambda_0 - \lambda)a_0)^{-1} = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k a_0^k$$
 (2.2)

for each $\lambda \in O(\lambda_0)$.

Proof. Let O be an arbitrary neighbourhood of zero in A. Then there is a closed and balanced neighbourhood O' of zero in A and a closed neighbourhood A' of zero in A' such that A'' of zero in A' such that A'' of zero in A' such that A'' of zero in A' such that

$$\left\{ \sum_{k=0}^{n} \frac{\nu_k}{2^k} : \nu_0, \dots, \nu_n \in V \right\} \subset O' \tag{2.3}$$

for each $n \in \mathbb{N}$. Since every element in A is bounded, then there is a number $\mu_0 = \mu_{a_0} \in \mathbb{C} \setminus \{0\}$ such that

$$\left\{ \left(\frac{a_0}{\mu_0} \right)^n : n \in \mathbb{N} \right\} \tag{2.4}$$

is bounded in A. Therefore, there exists a number $\rho_0 > 0$ such that

$$\left(\frac{a_0}{\mu_0}\right)^n \in \rho_0 V \tag{2.5}$$

for each $n \in \mathbb{N}$.

Let now $a_0 \in A$ and $\lambda_0 \in \mathbb{C}$ be fixed,

$$S_n(\lambda) = \sum_{k=0}^{n} (\lambda - \lambda_0)^k a_0^k$$
 (2.6)

for each $n \in \mathbb{N}$ and $\lambda \in \mathbb{C}$,

$$U_{\mathbb{C}} = \left\{ \lambda \in \mathbb{C} : |\lambda| < \frac{1}{3|\mu_0|} \right\} \tag{2.7}$$

and $U(\lambda_0) = \lambda_0 + U_{\mathbb{C}}$. Then

$$S_m(\lambda) - S_n(\lambda) = \sum_{k=n+1}^m (\lambda - \lambda_0)^k a_0^k = \sum_{k=0}^{m-n-1} (\lambda - \lambda_0)^{n+k+1} a_0^{n+k+1}$$
 (2.8)

for each $n, m \in \mathbb{N}$, whenever m > n and $\lambda \in \mathbb{C}$. If we take

$$\nu_{n,k}(\lambda) = 2^k (\lambda - \lambda_0)^k \frac{a_0^{n+k+1}}{\rho_0 \mu_0^{n+1}}$$
 (2.9)

4 The center of exponentially galbed algebras

for each $n, k \in \mathbb{N}$ and $\lambda \in \mathbb{C}$, then

$$S_m(\lambda) - S_n(\lambda) = (\lambda - \lambda_0)^{n+1} \mu_0^{n+1} \rho_0 \sum_{k=0}^{m-n-1} \frac{v_{n,k}(\lambda)}{2^k}$$
 (2.10)

for each $n, m \in \mathbb{N}$, whenever m > n and $\lambda \in \mathbb{C}$. Now,

$$\nu_{n,k}(\lambda) = \frac{1}{\rho_0} \left(2(\lambda - \lambda_0) \mu_0 \right)^k \left(\frac{a_0}{\mu_0} \right)^{n+k+1} \in \frac{1}{\rho_0} \left(2\mu_0 (\lambda - \lambda_0) \right)^k \rho_0 V \subset V$$
 (2.11)

for each $n, k \in \mathbb{N}$ and $\lambda \in U(\lambda_0)$, because $|2\mu_0(\lambda - \lambda_0)| < 2/3 < 1$. Hence,

$$S_m(\lambda) - S_n(\lambda) \in \frac{(2\mu_0(\lambda - \lambda_0))^{n+1}}{2^{n+1}} \rho_0 O',$$
 (2.12)

whenever m > n and $\lambda \in U(\lambda_0)$. Since again $|2\mu_0(\lambda - \lambda_0)| < 1$, then there exists a number $n_0 \in \mathbb{N}$ such that

$$(2\mu_0(\lambda - \lambda_0))^{n+1} \in \frac{1}{\rho_0}O''$$
 (2.13)

for each $n > n_0$. Taking this into account,

$$S_m(\lambda) - S_n(\lambda) \in \frac{1}{2^{n+1}} \frac{1}{\rho_0} O'' \rho_0 O' \subset O'' O' \subset O, \tag{2.14}$$

whenever $m > n > n_0$ and $\lambda \in U(\lambda_0)$, since O' is balanced. It means that $(S_n(\lambda))$ is a Cauchy complete, the sequence in A for each $\lambda \in U(\lambda_0)$.

In the case when *A* is sequentially complete the sequence $(S_n(\lambda))$ converges in *A*. Suppose now that *A* is a nil algebra. Then $a_0^{m+1} = \theta_A$ for some $m \in \mathbb{N}$. Hence,

$$S_n(\lambda) = \sum_{k=0}^{m} (\lambda - \lambda_0)^k a_0^k$$
 (2.15)

for each $\lambda \in \mathbb{C}$, whenever $n \ge m$. Consequently, $(S_n(\lambda))$ converges in A for each $\lambda \in O(\lambda_0)$ in both cases.

Since

$$(e_A + (\lambda_0 - \lambda)a_0) \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k a_0^k = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k a_0^k (e_A + (\lambda_0 - \lambda)a_0) = e_A, \qquad (2.16)$$

one gets

$$(e_A + (\lambda_0 - \lambda)a_0)^{-1} = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k a_0^k$$
(2.17)

for each
$$\lambda \in O(\lambda_0)$$
.

COROLLARY 2.2. Let A be a unital exponentially galbed algebra over \mathbb{C} with bounded elements. If A is a sequentially complete or a nil algebra, then for each $a_0 \in A$ there exists a number R > 0 such that

$$\sum_{k=0}^{\infty} \frac{a_0^k}{\mu^{k+1}} \tag{2.18}$$

converges in A, whenever $|\mu| > R$.

Proof. If we take $\lambda_0 = 0$ in the previous proposition, then we get that

$$\sum_{k=0}^{\infty} \lambda^k a_0^k \tag{2.19}$$

converges in A, whenever $|\lambda| < \delta$ for some $\delta > 0$. If now $\mu > R = \delta^{-1}$, then $|\mu^{-1}| < \delta$, which means that

$$\sum_{k=0}^{\infty} \frac{a_0^k}{\mu^k} \tag{2.20}$$

converges in A. Hence,

$$\sum_{k=0}^{\infty} \frac{a_0^k}{\mu^{k+1}} = \frac{1}{\mu} \sum_{k=0}^{\infty} \frac{a_0^k}{\mu^k}$$
 (2.21)

converges in A, whenever $|\mu| > R$.

3. Main result

Now, based on Proposition 2.1 and Corollary 2.2, we give a description of the center Z(A)of such unital topologically primitive exponentially galbed Hausdorff algebras A over \mathbb{C} in which all elements are bounded.

Theorem 3.1. Let A be a unital sequentially complete topologically primitive exponentially galbed Hausdorff algebra over $\mathbb C$ with bounded elements. Then Z(A) is topologically isomorphic to \mathbb{C} .

Proof. Since A is a topologically primitive algebra, there is a closed maximal left ideal (if M is a closed maximal right ideal, then the proof is similar) M in A such that

$$\{a \in A : aA \subset M\} = \{\theta_A\} \tag{3.1}$$

(then $M \cap Z(A) = \{\theta_A\}$). Denote by π_M the canonical homomorphism from A onto the quotient space A-M of A with respect to M. For each $z \in Z(A) \setminus \{\theta_A\}$ consider the left ideal

$$K_z = \{ a \in A : az \in M \}.$$
 (3.2)

Since $mz = zm \in M$ for each $m \in M$ and $e_A z = z \notin M$, $M \subset K_z \neq A$. Hence, K_z is a proper left ideal in A. Since the ideal M is maximal, $M = K_z$ for each $z \in Z(A) \setminus \{\theta_A\}$.

6 The center of exponentially galbed algebras

We will show that every $z \in Z(A)$ defines a number $\lambda_z \in \mathbb{C}$ such that $z = \lambda_z e_A$. If $z = \theta_A$, then we take $\lambda_z = 0$. Suppose now that there exists a $z \in Z(A) \setminus \{\theta_A\}$ such that $z(\lambda) = \lambda e_A - z \neq \theta_A$ for all $\lambda \in \mathbb{C}$. Then $z(\lambda) \in Z(A) \setminus \{\theta_A\}$ means that $z(\lambda) \notin M$ for each $\lambda \in \mathbb{C}$, $M + Az(\lambda)$ is a left ideal in $A, M \in M + Az(\lambda)$ and

$$z(\lambda) = \theta_A + e_A z(\lambda) \in (M + Az(\lambda)) \setminus M \tag{3.3}$$

for each $\lambda \in \mathbb{C}$. Since M is a maximal left ideal in A, then $M + Az(\lambda) = A$ for each $\lambda \in \mathbb{C}$. Therefore, for each $\lambda \in \mathbb{C}$ there are elements $m(\lambda) \in M$ and $a(\lambda) \in A$ such that $e_A = m(\lambda) + a(\lambda)z(\lambda)$, because of which $a(\lambda)z(\lambda) - e_A \in M$.

Let $a'(\lambda) \in A$ be another element such that $a'(\lambda)z(\lambda) - e_A \in M$. Then from

$$[a(\lambda) - a'(\lambda)]z(\lambda) = a(\lambda)z(\lambda) - a'(\lambda)z(\lambda) \in M$$
(3.4)

it follows that $[a(\lambda) - a'(\lambda)] \in K_{z(\lambda)} = M$. Therefore, $\pi_M(a(\lambda)) = \pi_M(a'(\lambda))$ for each $\lambda \in \mathbb{C}$.

Let now $\lambda_0 \in \mathbb{C}$ and

$$d(\lambda) = e_A + (\lambda - \lambda_0) a(\lambda_0) \tag{3.5}$$

for each $\lambda \in \mathbb{C}$. Then there is (by Proposition 2.1) a neighbourhood $O(\lambda_0)$ of λ_0 such that

$$\sum_{k=0}^{\infty} (\lambda - \lambda_0)^k a(\lambda_0)^k \tag{3.6}$$

converges in A and

$$d(\lambda)^{-1} = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k a(\lambda_0)^k$$
(3.7)

for each $\lambda \in O(\lambda_0)$.

Now,

$$a(\lambda_{0})d(\lambda)^{-1}z(\lambda) - e_{A}$$

$$= a(\lambda_{0})d(\lambda)^{-1}z(\lambda) - [a(\lambda_{0})z(\lambda_{0}) + m(\lambda_{0})]$$

$$= -a(\lambda_{0})d(\lambda)^{-1}[-z(\lambda) + d(\lambda)z(\lambda_{0})] - m(\lambda_{0})$$

$$= -a(\lambda_{0})d(\lambda)^{-1}[(z - \lambda e_{A}) + (e_{A} + (\lambda - \lambda_{0})a(\lambda_{0}))(\lambda_{0}e_{A} - z)] - m(\lambda_{0})$$

$$= -a(\lambda_{0})d(\lambda)^{-1}[(\lambda_{0} - \lambda)(e_{A} - a(\lambda_{0})z(\lambda_{0}))] - m(\lambda_{0})$$

$$= -a(\lambda_{0})d(\lambda)^{-1}(\lambda_{0} - \lambda)m(\lambda_{0}) - m(\lambda_{0}) \in M.$$
(3.8)

Therefore,

$$\pi_M(a(\lambda)) = \pi_M(a(\lambda_0)d(\lambda)^{-1})$$
(3.9)

for each $\lambda \in O(\lambda_0)$.

Let now $\Psi(\lambda) = \pi_M(a(\lambda))$ for each $\lambda \in \mathbb{C}$. We will show that Ψ is an (A-M)-valued analytic function (i.e., if $\lambda_0 \in \mathbb{C}$, then there are a number $\delta > 0$ and a sequence (x_n) of elements of A-M such that $\Psi(\lambda_0 + \lambda) = \sum_{k=0}^{\infty} (x_k \lambda^k)$, whenever $|\lambda| < \delta$, and a number R > 0 and a sequence (y_n) of elements of A-M such that $\Psi(\lambda) = \sum_{k=0}^{\infty} (y_k/\lambda^k)$, whenever $|\lambda| > R$) on $\mathbb{C} \cup \{\infty\}$. For it, let again $\lambda_0 \in \mathbb{C}$. Then $\Psi(\lambda) = \pi_M(a(\lambda_0)d(\lambda)^{-1})$ for each $\lambda \in O(\lambda_0)$ and there exists a number $\delta > 0$ such that $\lambda_0 + \lambda \in O(\lambda_0)$, whenever $|\lambda| < \delta$. Now,

$$\Psi(\lambda_0 + h) = \pi_M(a(\lambda_0)d(\lambda_0 + h)^{-1})
= \pi_M\left(a(\lambda_0)\sum_{k=0}^{\infty} h^k a(\lambda_0)^k\right) = \sum_{k=0}^{\infty} h^k \pi_M(a(\lambda_0)^{k+1}),$$
(3.10)

if $|h| < \delta$, where $\pi_M(a(\lambda_0)^{k+1}) \in A - M$ for each $k \in \mathbb{N}$.

By Corollary 2.2, there is a number R > 0 such that

$$\sum_{k=0}^{\infty} \frac{z^k}{\lambda^{k+1}} \tag{3.11}$$

converges in A, if $|\lambda| > R$. Easy calculation shows that

$$z(\lambda) \sum_{k=0}^{\infty} \frac{z^k}{\lambda^{k+1}} = \sum_{k=0}^{\infty} \frac{z^k}{\lambda^{k+1}} z(\lambda) = e_A.$$
 (3.12)

Therefore,

$$z(\lambda)^{-1} = \sum_{k=0}^{\infty} \frac{z^k}{\lambda^{k+1}},$$
 (3.13)

whenever $|\lambda| > R$. Since $z(\lambda)^{-1}z(\lambda) - e_A \in M$ for each λ with $|\lambda| > R$, then

$$\Psi(\lambda) = \pi_M(z(\lambda)^{-1}) = \pi_M\left(\sum_{k=0}^{\infty} \frac{z^k}{\lambda^{k+1}}\right) = \sum_{k=0}^{\infty} \frac{\pi_M(z^k)}{\lambda^{k+1}}$$
(3.14)

if $|\lambda| > R$, where $\pi_M(z^k) \in A - M$ for each $k \in \mathbb{N}$. Consequently, Ψ is an analytic (A - M)-valued function on $\mathbb{C} \cup \{\infty\}$. Since A - M is an exponentially galbed Hausdorff space, Ψ is a constant map by Turpin's theorem (see [19, page 56]).

We show that $\Psi(\lambda) = \theta_{A-M}$ for each $\lambda \in \mathbb{C}$. So, if O is any neighbourhood of zero in A, then there exist in A a closed neighbourhood O' of zero and a neighbourhood V of zero such that $O' \subset O$ and

$$\left\{\sum_{k=0}^{n} \frac{v_k}{2^k} : v_1, \dots, v_n \in V\right\} \subset O'$$

$$(3.15)$$

for each $n \in \mathbb{N}$. Moreover, there are $\mu_z \in \mathbb{C} \setminus \{0\}$ and $\rho_V > 0$ such that

$$\left(\frac{z}{\mu_z}\right)^k \in \rho_V V \tag{3.16}$$

for each $k \in \mathbb{N}$. If now $|\lambda| > \max\{3|\mu_z|, \rho_V\}$, then

$$\nu_k(\lambda) = \frac{2^k z^k}{\lambda^{k+1}} = \frac{1}{\rho_V} \frac{\rho_V}{\lambda} \left(\frac{2\mu_z}{\lambda}\right)^k \left(\frac{z}{\mu_z}\right)^k \in \frac{1}{\rho_V} \left[\frac{\rho_V}{\lambda} \left(\frac{2\mu_z}{\lambda}\right)^k\right] \rho_V V \subset V \tag{3.17}$$

for each $k \in \mathbb{N}$. Therefore,

$$\sum_{k=0}^{n} \frac{z^k}{\lambda^{k+1}} = \sum_{k=0}^{n} \frac{\nu_k(\lambda)}{2^k} \in O'$$
 (3.18)

for each $n \in \mathbb{N}$. Since O' is closed, then

$$z(\lambda)^{-1} = \sum_{k=0}^{\infty} \frac{z^k}{\lambda^{k+1}} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{\nu_k(\lambda)}{2^k} \in O' \subset O,$$
 (3.19)

whenever $|\lambda| > \max\{3|\mu_z|, \rho_V, R\}$. Hence,

$$\lim_{|\lambda| \to \infty} z(\lambda)^{-1} = \theta_A,$$

$$\lim_{|\lambda| \to \infty} \Psi(\lambda) = \lim_{|\lambda| \to \infty} \pi_M (z(\lambda)^{-1}) = \pi_M \left(\lim_{|\lambda| \to \infty} z(\lambda)^{-1} \right) = \theta_{A-M}.$$
(3.20)

Thus, $\Psi(\lambda) = \theta_{A-M}$ or $a(\lambda) \in M$ for each $\lambda \in \mathbb{C}$. Therefore,

$$e_A = -(a(\lambda)z(\lambda) - e_A) + a(\lambda)z(\lambda) \in M, \tag{3.21}$$

which is a contradiction. Consequently, every $z \in Z(A)$ defines a $\lambda_z \in \mathbb{C}$ such that $z = \lambda_z e_A$. Hence, Z(A) is isomorphic to \mathbb{C} .

Moreover, the isomorphism ρ , defined by $\rho(z) = \lambda_z$ for each $z \in Z(A)$, is continuous. Indeed, if O is a neighbourhood of zero in \mathbb{C} , then there exists an $\epsilon > 0$ such that

$$O_{\epsilon} = \{ \lambda \in \mathbb{C} : |\lambda| < \epsilon \} \subset O.$$
 (3.22)

Let $\lambda_0 \in O_{\epsilon} \setminus \{0\}$. Since *A* is a Hausdorff space, there exists a balanced neighbourhood *V* of zero in *A* such that $\lambda_0 e_A \notin V$. But then we also have

$$\lambda_0 e_A \notin V' = V \cap Z(A). \tag{3.23}$$

If $|\lambda_z| \geqslant |\lambda_0|$, then $|\lambda_0\lambda_z^{-1}| \leqslant 1$ and $\lambda_0e_A = (\lambda_0\lambda_z^{-1})z \in V'$ for each $z \in V'$, which is not possible. Hence, $\lambda_z \in O$ for each $z \in V'$. Thus, ρ is continuous (ρ^{-1}) is continuous because Z(A) is a topological linear space in the subspace topology). Consequently, Z(A) is topologically isomorphic to \mathbb{C} .

Remark 3.2. Using Theorem 3.1, it is possible to describe all closed maximal regular onesided and two-sided ideals in sequentially complete exponentially galbed algebras with bounded elements

Acknowledgments

We would like to express our gratitude to the referee for valuable remarks and suggestions. Research is in part supported by Estonian Science Foundation Grant 6205.

References

- [1] M. Abel, On the Gel'fand-Mazur theorem for exponentially galbed algebras, Tartu Riikliku Ülikooli Toimetised (1990), no. 899, 65-70.
- [2] ______, Gel'fand-Mazur algebras, Topological Vector Spaces, Algebras and Related Areas (Hamilton, ON, 1994), Pitman Research Notes in Mathematics Series, vol. 316, Longman Scientific & Technical, Harlow, 1994, pp. 116-129.
- [3] Mart Abel, Description of closed maximal ideals in Gelfand-Mazur algebras, General Topological Algebras (Tartu, 1999), Mathematical Studies (Tartu), vol. 1, Estonian Mathematical Society, Tartu, 2001, pp. 7–13.
- [4] ______, Sectional representations of Gelfand-Mazur algebras, Scientiae Mathematicae Japonicae 54 (2001), no. 3, 441–448.
- [5] M. Abel, The center of primitive locally pseudoconvex algebras, Bulletin of the Belgian Mathematical Society. Simon Stevin 11 (2004), no. 2, 191-199.
- [6] V. K. Balachandran, Topological Algebras, North-Holland Mathematics Studies, vol. 185, North-Holland, Amsterdam, 2000.
- [7] B. A. Barnes, Modular annihilator algebras, Canadian Journal of Mathematics 18 (1966), 566-578.
- [8] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973.
- [9] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series, vol. 24, The Clarendon Press, Oxford University Press, New York, 2000.
- [10] M. Haralampidou, Annihilator topological algebras, Portugaliae Mathematica 51 (1994), no. 1, 147-162.
- [11] ______, On complementing topological algebras. Functional analysis, Journal of Mathematical Sciences (New York) 96 (1999), no. 6, 3722-3734.
- [12] I. N. Herstein, Noncommutative Rings, The Carus Mathematical Monographs, No. 15, John Wiley & Sons, New York, 1968.
- [13] N. Jacobson, Structure of Rings, Colloquium Publications, vol. 37, American Mathematical Society, Rhode Island, 1956.
- [14] A. Mallios, Topological Algebras. Selected Topics, North-Holland Mathematics Studies, vol. 124, North-Holland, Amsterdam, 1986.
- [15] Th. W. Palmer, Banach Algebras and the General Theory of *-Algebras. Vol. I: Algebras and Banach Algebras, Encyclopedia of Mathematics and Its Applications, vol. 49, Cambridge University Press, Cambridge, 1994.
- [16] C. E. Rickart, General Topology of Banach Algebras, D. van Nostrad, New Jersey, 1960.
- [17] Y. Tsertos, On primitive topological algebras, Bulletin of the Greek Mathematical Society 28 (1987), 81-92.
- [18] ______, On primitive A-convex algebras, Commentationes Mathematicae. Prace Matematyczne 41 (2001), 203-219.
- [19] Ph. Turpin, Espaces et opérateurs exponentiellement galbés, Séminaire Pierre Lelong (Analyse), Année 1973–1974, Lecture Notes in Mathematics, vol. 474, Springer, Berlin, 1975, pp. 48-62.

10 The center of exponentially galbed algebras

- [20] ______, *Convexités dans les espaces vectoriels topologiques généraux*, Dissertationes Mathematicae (Rozprawy Matematyczne) **131** (1976), 221.
- [21] L. Waelbroeck, *Topological Vector Spaces and Algebras*, Lecture Notes in Mathematics, vol. 230, Springer, Berlin, 1971.

Mart Abel: Institute of Pure Mathematics, University of Tartu, J. Liivi 2-615, 50409 Tartu, Estonia *E-mail address*: mart.abel@ut.ee

Mati Abel: Institute of Pure Mathematics, University of Tartu, J. Liivi 2-615, 50409 Tartu, Estonia *E-mail address*: mati.abel@ut.ee