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In this paper, strong convergence theorem is obtained for the modified Noor iterations in
the framework of uniformly smooth Banach spaces. Our results extend and improve the
recent ones announced by Wittman, Kim, Xu, and some others.
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1. Introduction and preliminaries

Let E be a real Banach space, C a nonempty closed convex subset of E, and T : C→ C a
mapping. Recall that T is nonexpansive if

‖Tx−Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C. (1.1)

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed
points of T ; that is, F(T)= {x ∈ C : Tx = x}. It is assumed throughout the paper that T
is a nonexpansive mapping such that F(T) �=∅.

One classical way to study nonexpansive mappings is to use contractions to approxi-
mate a nonexpansive mapping [1, 9]. More precisely, take t ∈ (0,1) and define a contrac-
tion Tt : C→ C by

Ttx = tu+ (1− t)Tx, x ∈ C, (1.2)

where u∈ C is a fixed point. Banach’s contraction mapping principle guarantees that Tt

has a unique fixed point xt in C. It is unclear, in general, what the behavior of xt is as
t→ 0, even if T has a fixed point. However, in the case of T having a fixed point, Browder
[1] proved that if E is a Hilbert space, then xt does converge strongly to the fixed point of
T that is nearest to u. Reich [9] extended Browder’s results to the setting of Banach spaces
and proved that if E is a uniformly smooth Banach space, then xt converges strongly to a
fixed point of T and the limit defines the (unique) sunny nonexpansive retraction from
C onto F(T).
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Halpern [5] firstly introduced this iteration scheme:

x0 = x ∈ C arbitrarily, xn+1 = αnu+
(
1−αn

)
Txn; (1.3)

see also Browder [2]. He pointed out that the conditions limn→∞αn = 0 and
∑∞

n=1αn =∞
are necessary in the sense that if the iteration scheme (1.3) converges to a fixed point of T ,
then these conditions must be satisfied. Ten years later, Lions [7] investigated the general
case in Hilbert space under the conditions

lim
n→∞αn = 0,

∞∑

n=1

αn =∞, lim
n→∞

αn−αn+1

α2
n+1

= 0 (1.4)

on the parameters. However, Lions’ conditions on the parameters were more restrictive
and did not include the natural candidate {αn = 1/n}. Reich [9] gave the iteration scheme
(1.3) in the case when E is uniformly smooth and αn = n−δ with 0 < δ < 1.

Wittmann [11] studied the iteration scheme (1.3) in the case when E is a Hilbert space
and {αn} satisfies

lim
n→∞αn = 0,

∞∑

n=1

αn =∞,
∞∑

n=1

∥
∥αn+1−αn

∥
∥ <∞. (1.5)

Reich [10] obtained a strong convergence of the iterates (1.3) with two necessary and
decreasing conditions on parameters for convergence in the case when E is uniformly
smooth with a weakly continuous duality mapping.

This paper introduces the composite iteration scheme:

wn = δnxn +
(
1− δn

)
Txn, zn = γnxn +

(
1− γn

)
Twn,

yn = βnxn +
(
1−βn

)
Tzn, xn+1 = αnu+

(
1−αn

)
yn,

(1.6)

where u∈ C is an arbitrary (but fixed) element in C, and {αn}, {βn}, {γn}, and {δn} are
sequences in (0,1). We prove, under certain appropriate assumptions on the sequences
{αn}, {βn}, {γn}, and {δn} that {xn} defined by (1.6) converges to a fixed point of T .

If δn = 1 in (1.6), then iterative scheme (1.6) is a modified Ishikawa iteration:

zn = γnxn +
(
1− γn

)
Txn, yn = βnxn +

(
1−βn

)
Tzn, xn+1 = αnu+

(
1−αn

)
yn.

(1.7)

If γn = 1 in (1.6), then iterative scheme (1.6) is a modified Mann iteration:

yn = βnxn +
(
1−βn

)
Txn, xn+1 = αnu+

(
1−αn

)
yn. (1.8)

If γn = 1 and βn = 0 in (1.6), then iterative scheme (1.6) is a usual Halpern iteration
defined by (1.3).

Kim and Xu [6] proved the iteration scheme (1.8) converges to fixed point of T in
uniformly smooth Banach spaces.

It is our purpose in this paper to introduce composite iteration scheme (1.6) for
approximating a fixed point of nonexpansive mappings in the framework of uniformly
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smooth Banach spaces; we establish the strong convergence of the composite iteration
scheme {xn} defined by (1.6). The results improve and extend results of Kim and Xu [6],
Wittmann [11], and others.

Let E be a real Banach space and let J denote the normalized duality mapping from E
into 2E

∗
given by

J(x)= { f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖ f ‖2}, x ∈ E, (1.9)

where E∗ denotes the dual space of E and 〈·,·〉 denotes the generalized duality pairing.
The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

lim
t→0

‖x+ ty‖−‖x‖
t

(1.10)

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said to be uniformly
Fréchet differentiable (and E is said to be uniformly smooth) if the limit in (1.10) is
attained uniformly for (x, y)∈U ×U .

We need the following definitions and lemmas for the proof of our main results.

Lemma 1.1. A Banach space E is uniformly smooth if and only if the duality map J is single-
valued and norm-to-norm uniformly continuous on bounded sets of E.

Lemma 1.2. In a Banach space E, there holds the inequality

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉
, x, y ∈ E, (1.11)

where j(x+ y)∈ J(x+ y).

Recall that if C and D are nonempty subsets of a Banach space E such that C is
nonempty closed convex and D ⊂ C, then a map Q : C → D is sunny [3, 8] provided
Q(x+ t(x−Q(x)))=Q(x) for all x ∈ C and t ≥ 0 whenever x+ t(x−Q(x))∈ C. A sunny
nonexpansive retraction is a sunny retraction, which is also nonexpansive. Sunny non-
expansive retractions play an important role in our argument. They are characterized as
follows [3, 4, 8]: if E is a smooth Banach space, then Q : C→D is a sunny nonexpansive
retraction if and only if there holds the inequality

〈
x−Qx, J(y−Qx)

〉≤ 0, ∀x ∈ C, y ∈D. (1.12)

Reich [9] showed that if E is uniformly smooth and if D is the fixed point set of a nonex-
pansive mapping from C into itself, then there is a sunny nonexpansive retraction from
C onto D and it can be constructed as follows.

Lemma 1.3 (see Reich [9]). Let E be a uniformly smooth Banach space and let T : C→ C be
a nonexpansive mapping with a fixed point xt ∈ C of the contraction C � x �→ tu+ (1− t)tx
that converges strongly as t → 0 to a fixed point of T . Define Q : C → F(T) by Qu = s−
limt→0 xt. Then Q is the unique sunny nonexpansive retract from C onto F(T); that is, Q
satisfies the property

〈
u−Qu, J(z−Qu)

〉≤ 0, u∈ C, z ∈ F(T). (1.13)
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Lemma 1.4 (see Xu [12, 13]). Let {αn}∞n=0 be a sequence of nonnegative real numbers satis-
fying the property

αn+1 ≤
(
1− γn

)
αn + γnσn, n≥ 0, (1.14)

where {γn}∞n=0 ⊂ (0,1) and {σn}∞n=0 such that
(i) limn→∞ γn = 0 and

∑∞
n=0 γn =∞,

(ii) either limsupn→∞ σn ≤ 0 or
∑∞

n=0 |γnσn| <∞.
Then {αn}∞n=0 converges to zero.

2. Main results

Theorem 2.1. Let C be a closed convex subset of a uniformly smooth Banach space E and
let T : C → C be a nonexpansive mapping such that F(T) �= ∅. Given a point u ∈ C, the
initial guess x0 ∈ C is chosen arbitrarily, and given sequences {αn}∞n=0, {βn}∞n=0 in (0,1) and
{γn}∞n=0, {δn}∞n=0 in [0,1], the following conditions are satisfied:

(i)
∑∞

n=0αn =∞, αn→ 0;
(ii) βn + (1 +βn)(1− γn)(2− δn)∈ [0,a) for some a∈ (0,1);

(iii)
∑∞

n=0 |αn+1− αn| < ∞,
∑∞

n=0 |βn+1− βn| < ∞,
∑∞

n=0 |γn+1− γn| < ∞, and
∑∞

n=0

|δn+1− δn| <∞.
Let {xn}∞n=1 be a composite process defined by

wn = δnxn +
(
1− δn

)
Txn, zn = γnxn +

(
1− γn

)
Twn,

yn = βnxn +
(
1−βn

)
Tzn, xn+1 = αnu+

(
1−αn

)
yn.

(2.1)

Then {xn}∞n=1 converges strongly to a fixed point of T .

Proof. First we observe that {xn}∞n=0 is bounded. Indeed, if we take a fixed point p of T ,
note that

∥
∥wn− p

∥
∥≤ δn

∥
∥xn− p

∥
∥+

(
1− δn

)∥∥Txn− p
∥
∥≤ ∥∥xn− p

∥
∥. (2.2)

It follows from (1.6) and (2.2) that

∥
∥zn− p

∥
∥≤ γn

∥
∥xn− p

∥
∥+

(
1− γn

)∥∥Twn− p
∥
∥

≤ γn
∥
∥xn− p

∥
∥+

(
1− γn

)∥∥wn− p
∥
∥

≤ γn
∥
∥xn− p

∥
∥+

(
1− γn

)∥∥xn− p
∥
∥

≤ ∥∥xn− p
∥
∥,

∥
∥yn− p

∥
∥≤ βn

∥
∥xn− p

∥
∥+

(
1−βn

)∥∥Tzn− p
∥
∥

≤ βn
∥
∥xn− p

∥
∥+

(
1−βn

)∥∥zn− p
∥
∥

≤ βn
∥
∥xn− p

∥
∥+

(
1−βn

)∥∥xn− p
∥
∥

≤ ∥∥xn− p
∥
∥.

(2.3)
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Therefore
∥
∥xn+1− p

∥
∥≤ αn

∥
∥u− p

∥
∥+

(
1−αn

)∥∥yn− p
∥
∥

≤ αn
∥
∥u− p

∥
∥+

(
1−αn

)∥∥xn− p
∥
∥

≤max
{‖u− p‖,

∥
∥xn− p

∥
∥}.

(2.4)

Now, an induction yields

∥
∥xn− p

∥
∥≤max

{‖u− p‖,
∥
∥x0− p

∥
∥}, n≥ 0. (2.5)

Hence, {xn} is bounded, so are {yn}, {zn}, and {wn}. Next, we claim that

∥
∥xn+1− xn

∥
∥−→ 0. (2.6)

In order to prove (2.6), it follows from (1.6) that

xn+1 = αnu+
(
1−αn

)
yn, xn = αn−1u+

(
1−αn−1

)
yn−1. (2.7)

We have

xn+1− xn =
(
1−αn

)(
1−βn

)(
Tzn−Tzn−1

)
+
(
1−αn

)
βn
(
xn− xn−1

)

+
[(
βn−βn−1

)(
1−αn

)− (αn−αn−1
)
βn−1

](
xn−1−Tzn−1

)

+
(
αn−αn−1

)(
u−Tzn−1

)
.

(2.8)

Therefore
∥
∥xn+1− xn

∥
∥≤ (1−βn

)(
1−αn

)∥∥Tzn−Tzn−1
∥
∥+

(
1−αn

)
βn
∥
∥xn− xn−1

∥
∥

+
∣
∣(βn−βn−1

)(
1−αn

)− (αn−αn−1
)
βn−1

∣
∣
∥
∥xn−1−Tzn−1

∥
∥

+
∣
∣αn−αn−1

∣
∣
∥
∥u−Tzn−1

∥
∥.

(2.9)

That is,
∥
∥xn+1− xn

∥
∥≤ (1−βn

)(
1−αn

)∥∥zn− zn−1
∥
∥+

(
1−αn

)
βn
∥
∥xn− xn−1

∥
∥

+
∣
∣(βn−βn−1

)(
1−αn

)− (αn−αn−1
)
βn−1

∣
∣
∥
∥xn−1−Tzn−1

∥
∥

+
∣
∣αn−αn−1

∣
∣
∥
∥u−Tzn−1

∥
∥.

(2.10)

Again, from (1.6) we obtain

wn = δnxn +
(
1− δn

)
Txn, wn−1 = δn−1xn−1 +

(
1− δn−1

)
Txn−1; (2.11)

therefore

wn−wn−1 =
(
1− δn

)(
Txn−Txn−1

)
+ δn

(
xn− xn−1

)
+
(
δn− δn−1

)(
xn−1−Txn−1

)
,

(2.12)
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that is,
∥
∥wn−wn−1

∥
∥≤ ∥∥xn− xn−1

∥
∥+

∣
∣δn− δn−1

∣
∣
∥
∥xn−1−Txn−1

∥
∥. (2.13)

Similarly we obtain

zn = γnxn +
(
1− γn

)
Twn, zn−1 = γn−1xn−1 +

(
1− γn−1

)
Twn−1. (2.14)

Thus,

zn− zn−1 =
(
1− γn

)(
Twn−Twn−1

)
+ γn

(
xn− xn−1

)
+
(
γn− γn−1

)(
xn−1−Twn−1

)
,

(2.15)

that is,
∥
∥zn− zn−1

∥
∥≤ (1− γn

)∥∥Twn−Twn−1
∥
∥+ γn

∥
∥xn− xn−1

∥
∥+

∣
∣γn− γn−1

∣
∣
∥
∥xn−1−Twn−1

∥
∥

≤ (1− γn
)∥∥wn−wn−1

∥
∥+ γn

∥
∥xn− xn−1

∥
∥+

∣
∣γn− γn−1

∣
∣
∥
∥xn−1−Twn−1

∥
∥.
(2.16)

Now, substituting (2.13) into (2.16) we have
∥
∥zn− zn−1

∥
∥≤ (1− γn

)∥∥wn−wn−1
∥
∥+ γn

∥
∥xn− xn−1

∥
∥+

∣
∣γn− γn−1

∣
∣
∥
∥xn−1−Twn−1

∥
∥

≤ (1− γn
)(∥∥xn− xn−1

∥
∥+

∣
∣δn− δn−1

∣
∣
∥
∥xn−1−Txn−1

∥
∥)

+ γn
∥
∥xn− xn−1

∥
∥+

∣
∣γn− γn−1

∣
∣
∥
∥xn−1−Twn−1

∥
∥

≤ ∥∥xn− xn−1
∥
∥+

∣
∣δn− δn−1

∣
∣
∥
∥xn−1−Txn−1

∥
∥+

∣
∣γn− γn−1

∣
∣
∥
∥xn−1−Twn−1

∥
∥.

(2.17)

It follows that
∥
∥zn− zn−1

∥
∥≤ ∥∥xn− xn−1

∥
∥+

(∣∣δn−1− δn
∣
∣+

∣
∣γn−1− γn

∣
∣)M1, (2.18)

where M1 is a constant such that

M1 ≥max
{∥∥xn−1−Txn−1

∥
∥,
∥
∥Twn−1− xn−1

∥
∥}. (2.19)

Substituting (2.18) into (2.10), we get
∥
∥xn+1− xn

∥
∥≤ (1−αn

)∥∥xn− xn−1
∥
∥+

(
1−αn

)(
1−βn

)(∣∣δn−1− δn
∣
∣+

∣
∣γn−1− γn

∣
∣)M1

+
∣
∣(βn−βn−1

)(
1−αn

)− (αn−αn−1
)
βn−1

∣
∣
∥
∥xn−1−Tzn−1

∥
∥

+
∣
∣αn−αn−1

∣
∣
∥
∥u−Tzn−1

∥
∥,

(2.20)

that is,
∥
∥xn+1− xn

∥
∥≤ (1−αn

)∥∥xn− xn−1
∥
∥

+M
(∣∣γn− γn−1

∣
∣+

∣
∣βn−βn−1

∣
∣+ 2

∣
∣αn−αn−1

∣
∣+

∣
∣δn− δn−1

∣
∣),

(2.21)
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where M is a constant such that

M ≥max
{∥∥u−Tzn−1

∥
∥,
∥
∥xn−1−Tzn−1

∥
∥, M1

}
(2.22)

for all n. By assumptions (i)–(iii), we have that

lim
n→∞αn = 0,

∞∑

n=1

αn =∞,

∞∑

n=1

(∣∣γn− γn−1
∣
∣+

∣
∣βn−βn−1

∣
∣+ 2

∣
∣αn−αn−1

∣
∣+

∣
∣δn− δn−1

∣
∣) <∞.

(2.23)

Hence, Lemma 1.4 is applicable to (2.21) and we obtain

∥
∥xn+1− xn

∥
∥−→ 0. (2.24)

On the other hand, from (1.6) and condition (i), we have

∥
∥xn+1− yn

∥
∥= αn

∥
∥u− yn

∥
∥−→ 0, as n−→∞, (2.25)

∥
∥Txn− xn

∥
∥≤ ∥∥xn− xn+1

∥
∥+

∥
∥xn+1− yn

∥
∥+

∥
∥yn−Tzn

∥
∥+

∥
∥Tzn−Txn

∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥+

∥
∥yn−Tzn

∥
∥+

∥
∥zn− xn

∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥+βn

∥
∥xn−Tzn

∥
∥+

∥
∥zn− xn

∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥+βn

∥
∥xn−Txn

∥
∥

+βn
∥
∥Txn−Tzn

∥
∥+

∥
∥zn− xn

∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥+βn

∥
∥xn−Txn

∥
∥

+βn
∥
∥xn− zn

∥
∥+

∥
∥zn− xn

∥
∥

= ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥+βn

∥
∥xn−Txn

∥
∥

+
(
1 +βn

)∥∥xn− zn
∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥+βn

∥
∥xn−Txn

∥
∥

+
(
1 +βn

)(
1− γn

)∥∥xn−Twn

∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥+βn

∥
∥xn−Txn

∥
∥

+
(
1 +βn

)(
1− γn

)∥∥xn−Txn
∥
∥+

(
1 +βn

)(
1− γn

)∥∥Txn−Twn

∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥+βn

∥
∥xn−Txn

∥
∥

+
(
1 +βn

)(
1− γn

)∥∥xn−Txn
∥
∥+

(
1 +βn

)(
1− γn

)∥∥xn−wn

∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥+βn

∥
∥xn−Txn

∥
∥

+
(
1 +βn

)(
1− γn

)∥∥xn−Txn
∥
∥+

(
1 +βn

)(
1− γn

)(
1− δn

)∥∥Txn− xn
∥
∥.

(2.26)
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It follows that
{

1− [βn +
(
1 +βn

)(
1− γn

)
+
(
1 +βn

)(
1− γn

)(
1− δn

)]}∥∥Txn− xn
∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥.

(2.27)

That is,
{

1− [βn +
(
1 +βn

)(
1− γn

)(
2− δn

)]}∥∥Txn− xn
∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥.

(2.28)

From condition (ii), (2.24), and (2.25), we know

∥
∥Txn− xn

∥
∥−→ 0. (2.29)

Next, we claim that

limsup
n→∞

〈
u− q, J

(
xn− q

)〉≤ 0, (2.30)

where q = Qu = s− limt→0 zt with zt being the fixed point of the contraction z �→ tu +
(1− t)Tz.

From zt, the fixed point equation

zt = tu+ (1− t)Tzt, (2.31)

is solved. Since Tt defined by (1.2) is a contraction, we obtain that Tt has a unique fixed
point. Thus we have

∥
∥zt − xn

∥
∥= ∥∥(1− t)

(
Tzt − xn

)
+ t
(
u− xn

)∥∥. (2.32)

It follows from Lemma 1.2 that
∥
∥zt − xn

∥
∥2 ≤ (1− t)2

∥
∥Tzt − xn

∥
∥2

+ 2t
〈
u− xn, J

(
zt − xn

)〉

≤ (1− 2t+ t2)∥∥zt − xn
∥
∥2

+ fn(t)

+ 2t
〈
u− zt, J

(
zt − xn

)〉
+ 2t

∥
∥zt − xn

∥
∥2

,

(2.33)

where

fn(t)= (2∥∥zt − xn
∥
∥+

∥
∥xn−Txn

∥
∥)
∥
∥xn−Txn

∥
∥−→ 0, as n−→ 0. (2.34)

It follows that

〈
zt −u, J

(
zt − xn

)〉≤ t

2

∥
∥zt − xn

∥
∥2

+
1
2t

fn(t). (2.35)

Letting n→∞ in (2.35) and noting (2.34) yield

limsup
n→∞

〈
zt −u, J

(
zt − xn

)〉≤ t

2
M, (2.36)
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where M > 0 is a constant such that M ≥ ‖zt − xn‖2 for all t ∈ (0,1) and n ≥ 1. Letting
t→ 0 from (2.36), we have

limsup
t→0

limsup
n→∞

〈
zt −u, J

(
zt − xn

)〉≤ 0. (2.37)

So, for any ε > 0, there exists a positive number δ1 such that, for t ∈ (0,δ1), we get

limsup
n→∞

〈
zt −u, J

(
zt − xn

)〉≤ ε
2
. (2.38)

On the other hand, since zt → q as t→ 0, from Lemma 1.1, there exists δ2 > 0 such that,
for t ∈ (0,δ2), we have

∣
∣〈u− q, J

(
xn− q

)〉− 〈zt −u, J
(
zt − xn

)〉∣∣

≤ ∣∣〈u− q, J
(
xn− q

)〉− 〈u− q, J
(
xn− zt

)〉∣∣

+
∣
∣〈u− q, J

(
xn− zt

)〉− 〈zt −u, J
(
zt − xn

)〉∣∣

≤ ∣∣〈u− q, J
(
xn− q

)− J
(
xn− zt

)〉∣∣+
∣
∣〈zt − q, J

(
xn− zt

)〉∣∣

≤ ‖u− q‖∥∥J(xn− q
)− J

(
xn− zt

)∥∥+
∥
∥zt − q

∥
∥
∥
∥xn− zt

∥
∥ <

ε
2
.

(2.39)

Choosing δ =min{δ1,δ2}, for all t ∈ (0,δ), we have

〈
u− q, J

(
xn− q

)〉≤ 〈zt −u, J
(
zt − xn

)〉
+
ε
2

, (2.40)

that is,

limsup
n→∞

〈
u− q, J

(
xn− q

)〉≤ lim
n→∞

〈
zt −u, J

(
zt − xn

)〉
+
ε
2
. (2.41)

It follows from (2.38) that

limsup
n→∞

〈
u− q, J

(
xn− q

)〉≤ ε. (2.42)

Since ε is chosen arbitrarily, we have

limsup
n→∞

〈
u− q, J

(
xn− q

)〉≤ 0. (2.43)

Finally, we show that xn → q strongly and this concludes the proof. Indeed, using
Lemma 1.2 again, we obtain

∥
∥xn+1− q

∥
∥2 = ∥∥(1−αn

)(
yn− q

)
+αn(u− q)

∥
∥2

≤ (1−αn
)2∥∥yn− q

∥
∥2

+ 2αn
〈
u− q, J

(
xn+1− q

)〉

≤ (1−αn
)∥∥xn− q

∥
∥2

+ 2αn
〈
u− q, J

(
xn+1− q

)〉
.

(2.44)

Now we apply Lemma 1.4 and use (2.43) to see that ‖xn− q‖→ 0. �



10 Nonexpansive mapping

As a corollary of Theorem 2.1, we have the following.

Corollary 2.2. Let C be a closed convex subset of a uniformly smooth Banach space E and
let T : C → C be a nonexpansive mapping such that F(T) �= ∅. Given a point u ∈ C, the
initial guess x0 ∈ C is chosen arbitrarily, and given sequences {αn}∞n=0, {βn}∞n=0 in (0,1) and
{γn}∞n=0 in [0,1], the following conditions are satisfied:

(i)
∑∞

n=0αn =∞, αn→ 0;
(ii) βn + (1 +βn)(1− γn)∈ [0,a) for some a∈ (0,1);

(iii)
∑∞

n=0 |αn+1−αn| <∞,
∑∞

n=0 |βn+1−βn| <∞, and
∑∞

n=0 |γn+1− γn| <∞.
Let {xn}∞n=1 be the composite process defined by (1.7).
Then {xn}∞n=1 converges strongly to a fixed point of T .

Proof. By taking δn = 1, we can obtain the desired conclusion. �

Corollary 2.3. Let C be a closed convex subset of a uniformly smooth Banach space E and
let T : C → C be a nonexpansive mapping such that F(T) �= ∅. Given a point u ∈ C, the
initial guess x0 ∈ C is chosen arbitrarily, and given sequences {αn}∞n=0, {βn}∞n=0 in (0,1), the
following conditions are satisfied:

(i)
∑∞

n=0αn =∞, αn→ 0;
(ii) βn ∈ [0,a) for some a∈ (0,1);

(iii)
∑∞

n=0 |αn+1−αn| <∞,
∑∞

n=0 |βn+1−βn| <∞.
Let {xn}∞n=1 be the composite process defined by (1.8).
Then {xn}∞n=1 converges strongly to a fixed point of T .

Proof. By taking γn = 1, then {xn}∞n=1 converges strongly to a fixed point of T . �
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