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We prove an existence and uniqueness theorem for solving the operator equation F(x) +
G(x)= 0, where F is a continuous and Gâteaux differentiable operator and the operator
G satisfies Lipschitz condition on an open convex subset of a Banach space. As corollaries,
a recent theorem of Argyros (2003) and the classical convergence theorem for modified
Newton iterates are deduced. We further obtain an existence theorem for a class of non-
linear functional integral equations involving the Urysohn operator.
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1. Introduction

This paper considers the problem of approximating a locally unique solution x∗ of the
equation F(x) +G(x) = 0, where F and G are continuous operators defined on an open
convex subset D of a Banach space X with values in a Banach space Y . The solution is
obtained as the limit of a sequence of Newton-type iterates given by

xn+1 = xn−
(
F′xn
)−1[

F
(
xn
)

+G
(
xn
)]
. (1.1)

It may be noted that for G≡ 0, (1.1) reduces to Newton’s method of iterates whose con-
vergence is proved under the usual hypotheses that F is Fréchet differentiable and F′x is in-
vertible. Recently, Argyros [3] obtained an interesting generalization of Newton’s method
which is further extended in this paper along with an earlier result of Vijesh and Subrah-
manyam [1]. More specifically, we prove the convergence of a sequence of Newton-type
iterates under mild conditions on F. In particular, the Gâteaux differentiable operator F

is assumed to satisfy the inequality ‖(F′x0

)−1(
F′x − F′x0

)‖ ≤ ε in a certain neighbourhood
N
(
x0
)

of x0 while G is required to be a contraction in N
(
x0
)
. Using the main theorem,

the existence of a unique continuous solution to a nonlinear functional integral equation
involving the Urysohn operator is deduced from a corollary to the main theorem. This
seems to be the first application of Newton-type algorithm to such nonlinear equations.
Illustrative examples are also discussed.
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2. Convergence analysis

Theorem 2.1 is a general theorem on the convergence of Newton-type iterates, proved
under mild assumptions. It generalizes the theorems in [1, 3].

Theorem 2.1. Let F and G be continuous operators defined on an open convex subset D of
a Banach space X with values in a Banach space Y . Suppose that F is Gâteaux differentiable
at each point in some neighbourhood of x0 ∈D and G is Lipschitz on D. Assume further that

(i) (F
′
xo)−1 ∈ L(Y ,X), the space of bounded linear operators from Y to X ;

(ii) for some η ≥ 0, ‖(F′xo)−1[F(x0) +G(x0)]‖ ≤ η;
(iii) for some r > 0, ‖(F′x0

)−1[F′x −F′xo]‖ ≤ ε(ε > 0) whenever x ∈U(x0,r), where U(x0,
r)= {x ∈ B : ‖x− x0‖ < r} and ‖G(x)−G(y)‖ ≤ k‖x− y‖ for x, y ∈D such that
3ε+ ε∗ < 1 and (1 + c0/(1− c))η < r, where ε∗=k‖(F′x0

)−1‖,c0=(ε+ ε∗)/(1− ε),
and c = (2ε+ ε∗)/(1− ε);

(iv) F′x is piecewise hemicontinuous for each x ∈U(x0,r) and U(x0,r)⊂D.
Then the sequence xn (n ≥ 0) generated recursively by (1.1) is well defined, remains in

U(x0,r) for all n ≥ 0, and converges to a unique solution x∗ ∈ U(x0,r) of the equation
F(x) +G(x)= 0. Moreover, the following error bounds hold for all n≥ 2:

∥
∥xn+1− xn

∥
∥≤ cn−1c0η,

∥
∥xn− x∗

∥
∥≤ cn−1

1− c
c0η.

(2.1)

Proof. Clearly by (ii) ‖x1 − x0‖ = ‖(F′x0
)−1[F(x0) + G(x0)]‖ ≤ η < r, and hence x1 ∈

U(x0,r). It follows from the choice of ε and the well-known Banach lemma (see Rall
[4, page 50]) that (F′x1

)−1 exists and ‖(F′x1
)−1F′x0

‖ ≤ 1/(1− ε). Moreover (1.1) gives for
n= 1 that

x2− x1 =−
(
F′x1

)−1[
F
(
x1
)

+G
(
x1
)]

=−(F′x1

)−1
F′x0

(
F′x0

)−1[
F
(
x1
)

+G
(
x1
)−F

(
x0
)−G

(
x0
)

+F
(
x0
)

+G
(
x0
)]

=−(F′x1

)−1
F′x0

(
F′x0

)−1

×
{∫ 1

0

[
F′θx1+(1−θ)xo −F′x0

](
x1− x0

)
dθ +G

(
x1
)−G

(
x0
)
}

(using (iv))

=−(F′x1

)−1
F′x0

×
{∫ 1

0

(
F′x0

)−1[
F′θx1+(1−θ)xo −F′x0

](
x1− x0

)
dθ +

(
F′x0

)−1[
G
(
x1
)−G

(
x0
)]
}
.

(2.2)

So

∥
∥x2− x1

∥
∥≤ ∥∥(F′x1

)−1
F′x0

∥
∥

×
{∫ 1

0

∥
∥(F′x0

)−1[
F′θx1+(1−θ)xo−F′x0

](
x1− x0

)
dθ
∥
∥+
∥
∥(F′x0

)−1[
G
(
x1
)−G(x0

)]∥∥
}

≤ 1
1− ε

{
ε
∥
∥x1− x0

∥
∥+

∥
∥(F′x0

)−1∥∥k
∥
∥x1− x0

∥
∥
}
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= 1
1− ε

{
ε
∥
∥x1− x0

∥
∥+ ε∗

∥
∥x1− x0

∥
∥}= ε+ ε∗

1− ε
∥
∥x1− x0

∥
∥,

∥
∥x2− x0

∥
∥≤ ∥∥x2− x1

∥
∥+

∥
∥x1− x0

∥
∥≤ c0η+η < r.

(2.3)

Thus x2 ∈U(x0,r). Again by Banach’s lemma (see [4]) (F′x2
)−1 exists and ‖(F′x2

)−1F′x0
‖ ≤

1/(1− ε). Assume that

xk ∈U
(
x0,r

)
,

∥
∥xk+1− xk

∥
∥≤ ck−1c0η for k = 2,3, . . . ,n− 1. (2.4)

In view of hypotheses (iii) and (iv), it follows as before from Banach’s lemma that (F′xn)−1

exists and

∥
∥(F′xn

)−1
F′x0

∥
∥≤ 1

1− ε . (2.5)

By hypotheses (iii) and (iv) and (2.5), we obtain

xn+1− xn

=−(F′xn
)−1(

F
(
xn
)

+G
(
xn
))

=−(F′xn
)−1

F′x0

(
F′x0

)−1(
F
(
xn
)

+G
(
xn
))

=−(F′xn
)−1

F′x0

(
F′x0

)−1

× [F(xn
)

+G
(
xn
)−F

(
xn−1

)−G
(
xn−1

)
+F

(
xn−1

)
+G

(
xn−1

)]

=−(F′xn
)−1

F′x0

(
F′x0

)−1

×
{∫ 1

0

([
F′θxn+(1−θ)xn−1

−F′x0

]
+
[
F′x0
−F′xn−1

])(
xn− xn−1

)
dθ +G

(
xn
)−G

(
xn−1

)
}

=−(F′xn
)−1

F′x0

{∫ 1

0

(
F′x0

)−1([
F′θxn+(1−θ)xn−1

−F′x0

]
+
[
F′x0
−F′xn−1

])(
xn− xn−1

)
dθ

+
(
F′x0

)−1[
G
(
xn
)−G

(
xn−1

)]
}

,

∥
∥xn+1− xn

∥
∥≤ ∥∥(F′xn

)−1
F′x0

∥
∥
{∫ 1

0

∥
∥(F′x0

)−1[
F′θxn+(1−θ)xn−1

−F′x0

]∥∥
∥
∥(xn− xn−1

)∥∥dθ

+
∫ 1

0

∥
∥(F′x0

)−1[
F′x0
−F′xn−1

]∥∥
∥
∥(xn− xn−1

)∥∥dθ

+
∥
∥(F′x0

)−1∥∥k
∥
∥xn− xn−1

∥
∥
}

,

∥
∥xn+1− xn

∥
∥≤ 2ε+ ε∗

1− ε
∥
∥xn− xn−1

∥
∥.

(2.6)
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Thus by induction hypothesis (2.4), ‖xn+1− xn‖ ≤ cn−1c0η. Since

∥
∥xn+1− x0

∥
∥≤ ∥∥xn+1− xn

∥
∥+

∥
∥xn− xn−1

∥
∥+ ···+

∥
∥x1− x0

∥
∥

≤ cn−1c0η+ cn−2c0η+ ···+ cc0η+ c0η+η,

∥
∥xn+1− x0

∥
∥≤ η

[
1 + c0

1− cn

1− c

]
≤ η

[
1 +

c0

1− c

]
< r.

(2.7)

Hence xn ∈U(x0,r) for all n≥ 0. For k ≥ 2, m≥ 0.

∥
∥xk+m− xk

∥
∥≤ ∥∥xk+m− xk+m−1

∥
∥+

∥
∥xk+m−1− xk+m−2

∥
∥+ ···+

∥
∥xk+1− xk

∥
∥

≤ ck+m−2c0η+ ck+m−3c0η+ . . .+ ck−1c0η

≤ ηc0c
k−1[1 + c+ ···+ cm−1]

≤ 1− cm

1− c
ck−1c0η ≤ ck−1

1− c
c0η.

(2.8)

As 0 < c < 1, xn is a Cauchy sequence in the closed subset U(x0,r) of the Banach space
X ; it hence converges to an element x∗ in U(x0,r). From hypothesis (iii) using triangle
inequality, it follows that ‖F′xn‖ ≤M, where M = (ε/‖(F′x0

)−1‖+‖(F′x0
)−1‖). Since

xn+1 = xn−
(
F′xn
)−1(

F
(
xn
)

+G
(
xn
))

, F
(
xn
)

+G
(
xn
)=−F′xn

(
xn+1− xn

)
. (2.9)

So

∥
∥F
(
xn
)

+G
(
xn
)∥∥≤ ∥∥F′xn

∥
∥
∥
∥xn+1− xn

∥
∥≤M

∥
∥xn+1− xn

∥
∥. (2.10)

Proceeding to the limit in (2.10) as n tends to infinity and using the continuity of F
and G it follows from the convergence of (xn) to x∗ that F(x∗) +G(x∗)= 0. If x∗ and y∗

are two solutions of F(x) +G(x)= 0 in U(x0,r), then

∥
∥x∗ − y∗

∥
∥= ∥∥x∗ − y∗ − (F′x0

)−1[
F
(
x∗
)

+G
(
x∗
)−F

(
y∗
)−G

(
y∗
)]∥∥

≤
∥
∥
∥
∥

∫ 1

0

[
I − (F′x0

)−1
F′θx∗+(1−θ)y∗

](
x∗ − y∗

)
dθ
∥
∥
∥
∥

+
∥
∥(F′x0

)−1(
G
(
x∗
)−G

(
y∗
))∥∥

≤ ε∥∥x∗ − y∗
∥
∥+ ε∗

∥
∥x∗ − y∗

∥
∥

= (ε+ ε∗
)∥∥x∗ − y∗

∥
∥ <

∥
∥x∗ − y∗

∥
∥ as 0≤ ε+ ε∗ ≤ 3ε+ ε∗ < 1.

(2.11)

This contradiction implies that x∗ = y∗. Hence the theorem holds. �

Corollary 2.2 (see Argyros [3, Theorem 1]). Let F be a continuous operator defined on an
open convex subset D of a Banach space X with values in a Banach space Y and continuously
Fréchet differentiable at some x0 ∈D. Assume that

(i) (F′xo)
−1 ∈ L(Y ,X);

(ii) there exists a parameter η such that 0≤ ‖(F′xo)
−1F(x0)‖ ≤ η;
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(iii) for some ε ∈ (0,1/3), there exists δ > 0 such that ‖(F′xo)
−1(F′x −F′xo)‖ ≤ ε whenever

x ∈U(x0,δ)= {x ∈ X : ‖x− x0‖ < δ
}

, with (c2/(1− c) + c0 + 1)η < δ, where c0 =
ε/(1− ε) and c = 2c0.

Then the Newton iterates (xn) generated by (1.1) are well defined, remain in U(x0,δ) for
all n ≥ 0, and converge to a solution x∗ ∈ U(x0,δ) of equation F(x) = 0. Moreover, for all
n≥ 2, the following error bounds hold:

∥
∥xn+1− xn

∥
∥≤ cn

∥
∥x1− x0

∥
∥,

∥
∥xn− x∗

∥
∥≤ cn

1− c

∥
∥x1− x0

∥
∥.

(2.12)

Proof. Since F is Fréchet differentiable, it is Gâteaux differentiable. Take G≡ 0 in
Theorem 2.1. Let δ = r and note that

δ >
[

c2

1− c
+ c0 + 1

]
η ≥

[
1 +

c0

1− c

]
η. (2.13)

Since F is continuously Fréchet differentiable, F′x is hemicontinuous at each x ∈U(x0,δ)
and thus all the conditions of Theorem 2.1 are satisfied. So F has a unique zero inU(x0,δ).

�

Corollary 2.3. Let F be a continuous operator defined on an open convex subset D of a
Banach space X with values in a Banach space Y having a Gâteaux derivative at each point
in some neighbourhood of x0 ∈D. Assume further that

(i) the inverse of F′xo exists and (F′xo)
−1 ∈ L(Y ,X);

(ii) for some η ≥ 0 ‖(F′xo)
−1F(x0)‖ ≤ η;

(iii) for some r > 0, ‖(F′x0
)−1[F′x − F′xo]‖ ≤ ε whenever x ∈ U(x0,r). Suppose (1 + c0/

(1− c))η < r and 0 < 3ε < 1, where c0 = ε/(1− ε) and c = 2c0;
(iv) F′x is piecewise hemi continuous at each x ∈U(x0,r).

Then the modified Newton iterates (xn), n≥ 0, generated by

xn+1 = xn−
(
F′xo
)−1

F
(
xn
)

(2.14)

are well defined, remain in U(x0,r) for all n≥ 0, and converge to a solution x∗ ∈U(x0,r) of
F(x)= 0.

To prove Corollary 2.3, set G≡ 0 in Theorem 2.1 and proceed as in Theorem 2.1.

3. Solutions of a class of nonlinear functional integral equations

In this section, some existence theorems for an operator equation involving the Urysohn
operator are proved. More specifically, given a compact subset Ω of R, g ∈ C(Ω×R)
and K ∈ C(Ω2×R), Theorem 3.2 gives sufficient conditions for the existence of a unique
solution of the nonlinear functional integral equation of the form

x(t) +
∫

Ω
K
(
t,s,x(s)

)
ds+ g

(
t,x(t)

)= 0 ∀t ∈Ω, x ∈ C(Ω). (3.1)

Hereafter we denote x(t) +
∫
ΩK(t,s,x(s))ds by Fx(t).
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Lemma 3.1. For K ∈ C(Ω2 ×R), suppose that K3(t,s,u) = �K/�u ∈ C(Ω2 ×R) satisfies
the Lipschitz condition with respect to the third variable. Then the Fréchet derivative of F
exists for x ∈U(x0,r) and x0 ∈ C(Ω) and the derivative at x is given by

F′x(h)t = h(t) +
∫

Ω
K3
(
t,s,x(s)

)
h(s)ds. (3.2)

For the proof, see [2].

Theorem 3.2. Let K(t,s,u) ∈ C(Ω2 ×R), let K3(t,s,u) ∈ C(Ω2 ×R), let g ∈ C(Ω×R),
and let Ω be a compact subset of R whose Lebesgue measure is equal to d > 0. Suppose that

(i) for some m∈(0,1), ‖K3(t,s,u1)−K3(t,s,u2)‖≤m‖u1−u2‖ holds for all (t,s,ui)∈
Ω2×R, i= 1,2;

(ii) |g(t, y1)− g(t, y2)| ≤ ε∗|y1 − y2| for all y1, y2 ∈ R, t ∈ Ω, where β + ε∗ < 1 β =
supt∈Ω |

∫
ΩK3(t,s,x0(s))ds|. Further let η ≥ 0 be chosen such that η ≥ supt∈Ω |

Fx0(t) + g(t,x0(t))|;
(iii) let α1 and α2 be the positive roots of p(x)= 4m2d2x2− 4md(1−β)(2− 2β− ε∗)x+

[(1−β− ε∗)(1− β)]2 and let r1 and r2 with r1 ≤ r2 be the positive roots of q(x)=
3md(1−β)x2− [(1−β− ε∗)(1−β) + 2mdη]x+ (1−β)η;

(iv) suppose further that η ≤min{α1,α2} and η/(1−β) < r1 < (1−β− ε∗)/3md.
Then the functional integral equation Fx(t) + g(t,x(t)) = 0 for all t ∈Ω has a unique so-
lution in U(x0,r0) for all r0 ∈

(
r1,min

{
r2, (1−β− ε∗)/3md

})
and the sequence of iterates

given in (1.1) converges to this solution.

Proof. Clearly F maps C(Ω) into itself. Let G : C(Ω) → C(Ω) be defined by Gx(t) =
g(t,x(t))∀t ∈Ω. Then G maps C(Ω) into itself,

∣
∣Gx1(t)−Gx2(t)

∣
∣= ∣∣g(t,x1(t)

)− g
(
t,x2(t)

)∣∣

≤ ε∗∣∣x1(t)− x2(t)
∣
∣ (by (ii))

≤ ε∗∥∥x1− x2
∥
∥.

(3.3)

Thus ‖Gx1−Gx2‖ ≤ ε∗‖x1− x2‖. Assumption (i) together with Lemma 3.1 implies that
F′x exists. Now,

∣
∣(I −F′x0

)
h(t)

∣
∣=

∣
∣
∣
∣h(t)−h(t)−

∫

Ω
K3
(
t,s,x0(s)

)
h(s)ds

∣
∣
∣
∣

≤
∫

Ω

∣
∣K3

(
t,s,x0(s)

)
h(s)ds

∣
∣≤ ‖h‖

∫

Ω

∥
∥K3

(
t,s,x0(s)

)∥∥ds

≤ ‖h‖β.

(3.4)

This implies that ‖I − F′x0
‖ ≤ β < 1, and hence F′x0

is invertible and by Banach’s lemma,
‖(F′x0

)−1‖ ≤ 1/(1−β). Since the roots α1 and α2 of p(x) are positive and

(
x−α1

)(
x−α2

)= x2−
[

(1−β)
(
2− 2β− ε∗)
md

]

x+

[(
1−β− ε∗)(1−β)

2md

]2

,

(3.5)



V. A. Vijesh and P. V. Subrahmanyam 7

by assumption (iv), (η−α1)(η−α2)≥ 0. This implies that

η2−
[

(1−β)
(
2− 2β− ε∗)
md

]

η+

[(
1−β− ε∗)(1−β)

2md

]2

≥ 0. (3.6)

Thus

[(
1−β− ε∗)(1−β)

]2− 4md(1−β)
(
2− 2β− ε∗)η+ 4m2d2η2 ≥ 0. (3.7)

In other words, the discriminant of the quadratic equation q(x)= 0 being

[(
1−β− ε∗)(1−β) + 2mdη

]2− 12md(1−β)2η (3.8)

is nonnegative by (3.6). So q(x) always has positive roots r1 and r2. Since by assump-
tion (iv) η/(1−β) < r1 < (1−β− ε∗)/3md, choose r0with r1 < r0 < min{r2, (1−β− ε∗)/
3md}. Then

q
(
r0
)= 3md(1−β)r0

2− r0
[(

1−β− ε∗)(1−β) + 2mdη
]

+ (1−β)η < 0. (3.9)

So

[(
1−β− ε∗)(1−β) + 2mdη

]
r0− 3md(1−β)r2

0 > (1−β)η. (3.10)

Hence

[
1−β− 2mr0 d

1−β− ε∗ − 3mr0 d

]
η

1−β
< r0. (3.11)

Now for t ∈Ω,

∣
∣(F′x0

)−1(
F′x −F′x0

)
h(t)

∣
∣=

∣
∣
∣
∣
(
F′x0

)−1
{∫

Ω

(
K3
(
t,s,x(s)

)−K3
(
t,s,x0(s)

))
h(s)ds

}∣∣
∣
∣

≤ ∥∥(F′x0

)−1∥∥
∫

Ω

∣
∣K3

(
t,s,x(s)

)−K3
(
t,s,x0(s)

)∣∣
∣
∣h(s)

∣
∣ds

≤ mr0d

1−β
‖h‖ (using (i)).

(3.12)

This implies that ‖(F′x0
)−1(F′x − F′x0

)‖ ≤ mr0 d/(1−β). Setting ε = mr0 d/(1−β), ε∗1 =
ε∗/(1−β), η1 = η/(1−β), c0 = (ε+ ε∗1 )/(1− ε), and c = (2ε+ ε∗1 )/(1− ε), and using
(3.11), all the hypotheses of Theorem 2.1 are readily verified. Hence Fx(t) + g(t,x(t)) =
0 for all t ∈ Ω has a unique solution in U(x0,r0). Thus there is a unique continuous
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function x∗ satisfying

x∗(t) +
∫

Ω
K
(
t,s,x∗(s)

)
ds+ g

(
t,x∗(t)

)= 0, ∀t ∈Ω, (3.13)

and this solution can obtained as the limit of the iterates in (1.1). �

4. Illustrative examples

The example below illustrates Theorem 3.2.

Example 4.1. Consider the problem of solving the functional integral equation

x(t)− 1
1000

∫ 1

0
t cos(st)sin

(
x(s)− 1

1000

)
ds− sin

(∣∣x(t)
∣
∣

1000

)
= 0 in C[0,1]. (4.1)

For the choice F(x) = x(t) − 1/1000
∫ 1

0 t cos(st)sin((x(s)− 1)/1000)ds and g(t,x(t)) =
−sin(|x(t)|/1000), where Ω = [0,1] and x0 ≡ 1/1000, β = supt∈Ω |Fx0(t) + g(t,x0(t))|
= supt∈Ω |1/1000− 0.17× 10−7 sin t− 0.17× 10−7| < 1/1000, F′xh(t) = h(t)− 1/10002

∫ 1
0 t

cos(st)cos((x(s)− 1)/1000)h(s)ds. For η = 1/1000, η/(1−β) = 0.001000001. Setting
m = 10−6, ε∗ = 10−3, and d = 1, we have p(x) = 4 × 10−12x2 − 0.000007993x +
0.997997006 and α1 the smaller positive root of p(x) is 0.000007993− 0.000006923/
8× 10−12 = 133750 > η. For q(x) = 0.000002999x2 − 0.998999002x + 0.00099999, r1

the smaller positive root of q(x) is (0.998999002− 0.998998996)/0.000005998 =
0.001000333 > η/(1−β). As the other positive root r2 = 338110.7032 > 332999.667 =
(1−β− ε∗)/3md, Theorem 3.2(4) is satisfied. For r0 ∈ (0.001000333,332999.667), all
the conditions of Theorem 3.2 are fulfilled. So the functional integral equation has a
unique solution in U(x0,r0) and this solution can be obtained as the limit of the sequence
of iterates in (1.1).

Example 4.2. The next example shows that Theorem 2.1 is more general than Corollary
2.2, the main theorem obtained by Argyros [3].

Let f :R→R be the map defined by

f (x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
x− 0.01

25

)(
20 + x2 sin

1
x

)
, x �= 0,

− 1
125

, x = 0,

(4.2)

let g : R→ R be the map defined by g(x) = |x|− 0.01/1000. Choose x0 = 0, ε = 0.25,
and r = 0.4. Clearly for y ∈R,

f ′x (y)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[(
x− 0.01

25

)(

2x sin
1
x
− cos

1
x

)

+

(
20 + x2 sin(1/x)

25

)]

y, for x �= 0,

0.8y, for x = 0,
(4.3)
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( f ′x0
)−1 exists and ‖( f ′x0

)−1‖ = 1/0.8. As G satisfies the Lipschitz condition with M =
1/1000, ε∗ = (M‖( f ′x0

)−1‖)= 0.00125. For x ∈ (−0.4,0.4),

∥
∥ f ′x − f ′xo

∥
∥= sup

{∣∣( f ′x − f ′xo
)
(y)
∣
∣ : ‖y‖ ≤ 1

}

= sup

{∣∣
∣
∣
∣

[(
x− 0.01

25

)(

2x sin
1
x
− cos

1
x

)

+

(
x2 sin(1/x)

25

)]

y

∣
∣
∣
∣
∣ : ‖y‖ ≤ 1

}

≤ sup
{[

0.4 + 0.01
25

(2× 0.4 + 1) +
0.16
25

]
|y| : ‖y‖ ≤ 1

}

= 0.03592.≤ 0.25× 0.8= ε
∥
∥(F′x0

)−1∥∥
,

(4.4)

and ‖(F′x0
)−1(F′x − F′x0

)‖ < ε = 0.25. Also c0 = 0.335, c = 0.66833, η = 0.0100125, 0 ≤
‖( f ′x0

)−1( f (x0) + g(x0))‖ ≤ 0.0100125, and (c0/(1− c) + 1) = 2.0097891587. Since
(c0/(1− c) + 1)η < r, all the conditions of Theorem 2.1 are verified. Thus f (x) + g(x)= 0
has a unique solution in U(0,0.4). However, F′x is not continuous at zero but piecewise
hemicontinuous in U(0,0.4). It may be noted that Corollary 2.2 (due to Argyros) cannot
be applied to prove that this equation has a solution, whereas Theorem 2.1 insures this.
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