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We study certain sequences of rational matrix-valued functions with poles outside the
unit circle. These sequences are recursively constructed based on a sequence of complex
numbers with norm less than one and a sequence of strictly contractive matrices. We
present some basic facts on the rational matrix-valued functions belonging to such kind
of sequences and we will see that the validity of some Christoffel-Darboux formulae is
an essential property. Furthermore, we point out that the considered dual pairs consist
of orthogonal systems. In fact, we get similar results as in the classical theory of Szegö’s
orthogonal polynomials on the unit circle of the first and second kind.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The theory of orthogonal polynomials is known to have numerous applications in an
extensive range of engineering problems. For instance, the important role of Szegö’s
orthogonal polynomials on the unit circle in circuit and system theory is today well
recognized (see, e.g., [1, 29–32, 39] and for discussing the case of matrix polynomials
[9, 10, 28, 38, 41], [11, Section 3.6]).

Starting from different points of view of applications Bultheel, González-Vera, Hen-
driksen, and Njåstad have formed up a fruitful collaboration and created in the 1990s
a comprehensive theory of scalar orthogonal rational functions on the unit circle. In a
series of research papers they worked systematically out basic parts of a concept of gener-
alizing essential parts of the classical theory of orthogonal polynomials on the unit circle
(see, e.g., [3–7] and probably the first work referring to the rational situation [13] by
Džrbašjan).

The present paper is another contribution generalizing this topic to the case of orthog-
onal rational matrix-valued functions on the unit circle and continues the line of investi-
gations stated in [25–27]. The main objective of this paper is to discuss some dual pairs
of sequences of rational matrix-valued functions which are recursively constructed based
on a sequence of complex numbers with norm less than one and a sequence of strictly
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2 Dual Szegö pairs of rational matrix-valued functions

contractive matrices. The recurrence relations defining such pairs are natural generaliza-
tions to the situation in question of those fulfilling Szegö’s orthogonal polynomials of the
first and the second kind. Following the idea of Delsarte et al. [9] with respect to the case
of orthogonal matrix polynomials, we only use another normalization for the orthogonal
functions in the case under consideration as Szegö in his classical work [39].

Throughout the paper let n be a nonnegative integer, let q be a positive integer, let C
denote the set of all complex numbers, let D := {w ∈ C : |w| < 1}, let T := {z ∈ C : |z| =
1}, and let (αj)∞j=0 be a sequence of complex numbers belonging to the open unit diskD.
Furthermore, Iq stands for the identity matrix of size q× q and the zero matrix of size
q× q is denoted by 0q.

Similar as in [25–27], we consider modules �̆
q×q
α,n of rational q× q matrix-valued func-

tions with prescribed poles (using the convention 1/0 :=∞) at most in the set

Pα,n :=
n⋃

j=0

{
1
αj

}
, (1.1)

in particular, not located on the unit circle T. We will also use the notation

Zα,n :=
n⋃

j=0

{
αj
}
. (1.2)

In fact, �̆
q×q
α,n denotes the set of all complex q× q matrix-valued functions X which can

be represented via

X = 1
πα,n

P, (1.3)

where P is a complex q× q matrix polynomial of degree not greater than n and where the
polynomial πα,n of degree not greater than n+ 1 is given by

πα,n(u) :=
n∏

j=0

(
1−αju

)
, u∈ C. (1.4)

Such kind of rational matrix-valued functions are studied in [25–27] in a way with α0 := 0
but for a larger set {α1,α2, . . .} of underlying complex numbers. Since the principal object
of this paper is to prepare a particular approach to solve an interpolation problem for
matrix-valued Carathéodory functions inD, where α0,α1,α2, . . . coincide with the treated
interpolation points, we make this slight modification.

In the classical case, the connection between orthogonal polynomials on T and Tay-
lor coefficient problems is particularly given by Schur’s algorithm (see [36, 37]). Roughly
speaking, Schur’s algorithm leads to a sequence of numbers, the so-called Schur param-
eters, to check if the given data in the problem correspond to a holomorphic function in
D which is bounded by one. As discovered later by Geronimus (see [29]), these Schur pa-
rameters are closely connected with the parameters introduced by Szegö (see, e.g., [39])
through recurrence relations for orthogonal polynomials on T. In [33], based on some
results contained in [6], an analog interrelation between the parameters which appear in
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an algorithm of Schur-type and the parameters which appear in the recurrence relations
for orthogonal rational (complex-valued) functions on T is proved and used to solve an
interpolation problem of Nevanlinna-Pick type for complex-valued Carathéodory func-
tions in D.

There is a similar connection between orthogonal rational matrix-valued functions
and solving certain interpolation problems of Nevanlinna-Pick type for matrix-valued
Carathéodory functions (i.e., matrix interpolation problems which are studied with other
methods, e.g., in [2, 8, 15]). But it takes more technical effort to verify such a connection
in that case. The main task of this paper is to go some steps towards generalizing the re-
sults presented in [33] to the matrix case. In fact, we provide particular formulae starting
from the recurrence relations for orthogonal rational matrix-valued functions stated in
[26]. In a forthcoming work, these formulae will finally play a key role by solving interpo-
lation problems of Nevanlinna-Pick type for matrix-valued Carathéodory functions inD
via orthogonal rational matrix-valued functions including an interrelation between the
parameters which appear in the recurrence relations studied in the present paper and the
parameters which appear in the algorithm discussed in [24, Section 5].

Similar as in [25, Definition 3.3], here a sequence (Xj)τj=0 of matrix-valued functions
is called a left (resp., right) orthonormal system corresponding to (αj)τj=0 and a nonnegative
Hermitian q× q matrix-valued Borel measure F on T if the following two conditions are
satisfied.

(i) For each integer j ∈ {0,1, . . . ,τ}, the function Xj belongs to �̆
q×q
α, j .

(ii) For all integers j,k ∈ {0,1, . . . ,τ},
∫

T
Xj(z)F(dz)

(
Xk(z)

)∗ = δjkIq

(
resp.,

∫

T

(
Xj(z)

)∗
F(dz)Xk(z)= δjkIq

)
, (1.5)

where δjk := 1 if j = k and δjk := 0 if j �= k.
Recall that a nonnegative Hermitian q× q Borel measure on T is a countably additive map-
ping from the σ-algebra BT of all Borel subsets ofT into the set of nonnegative Hermitian
q× q matrices. For basic facts on the integration theory with respect to nonnegative Her-
mitian Borel measures we refer to [35] (see also [23] concerning the special situation of
rational matrix-valued functions). Note that a measure F has to fulfill some additional
conditions if orthonormal systems of rational matrix-valued functions as above do exist
(see, e.g., [25, Corollary 4.4]).

In [27] it is shown that a pair of orthonormal systems corresponding to (αj)τj=0 and
F, that is, a pair [(Xj)τj=0, (Yj)τj=0] consisting of a left (resp., right) orthonormal system
(Xj)τj=0 (resp., (Yj)τj=0) corresponding to (αj)τj=0 and some nonnegative Hermitian q× q
Borel measure F on T, meets some specific recurrence relations. An essential characteris-
tic of these recurrence relations is marked by an intensive interplay between the elements
of the left and the right orthonormal systems although the left and the right versions come
in without connection to each other per definition. This phenomenon already occurred
in the case of matrix polynomials on T by finding the analogon of Szegö’s recursions for
that situation (see [9]).

Using a special normalization for the orthonormal systems of rational matrix-valued
functions, the recurrence relations stated in [27] gain a simpler structure (see [26]). In
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fact, [26, Theorems 2.11, 3.5, and 3.7] imply a parametrization of these particular pairs
[(Xj)τj=0, (Yj)τj=0] of orthogonal rational matrix-valued functions in terms of an initial
condition and a sequence (E�)τ�=1 of strictly contractive q× q matrices. These considera-
tions are the starting point for the present paper. The crucial idea here is that we associate
to such a pair [(Xj)τj=0, (Yj)τj=0] a dual pair [(X#

j )τj=0, (Y #
j )τj=0] which satisfies analog re-

currence relations depending on (−E�)τ�=1 instead of (E�)τ�=1. Since this duality concept
given by recurrence relations forms the main part in the proofs of the results below (not
directly the orthogonality of the underlying systems), we center such dual pairs of se-
quences of rational matrix-valued functions and we return to some questions concerning
the orthogonality only in the last section of the paper.

A brief synopsis is as follows. In Section 2 we introduce the central notations of this
paper and explain basics on the recurrence relations defining these dual pairs of sequences
of rational matrix-valued functions. By using certain well-known results on Potapov’s J-
theory (see, e.g., [11, 12, 14, 16, 34]) we get in Section 3 some important properties of the
rational matrix-valued functions belonging to such special pairs. In fact, the considera-
tions there are motivated by the studies in [17–19, 21, 22] (see [9] and [11, Section 3.6])
on particular matrix polynomials solving Taylor coefficient problems. In Section 4 we will
see that the pairs in question fulfill so-called Christoffel-Darboux formulae. As the treat-
ments in Section 5 imply, the realization of such kind of Christoffel-Darboux formulae is
in a way also a sufficient condition for rational matrix-valued functions to be dual Szegö
pairs of sequences of rational matrix-valued functions. Finally, we extend in Section 6 the
investigations stated in [26, Section 3] on the connection between recurrence relations
and orthogonality of rational matrix-valued functions including an alternative proof of
[26, Theorem 3.5]. The essential new information in Section 6 is that, based on the duality
concept introduced here, one has more insight into the structure of the nonnegative Her-
mitian q× q Borel measure occurring already in [26, Theorem 3.5]. Following this train
of thoughts, we will obtain two particular choices of measures, where the one corresponds
to the pair [(Xj)τj=0, (Yj)τj=0], the other corresponds to the dual pair [(X#

j )τj=0, (Y #
j )τj=0],

and both can be recovered from each other similar as in the special case of orthogonal
matrix polynomials on T (see, e.g., [11, Definition 3.6.10, Proposition 3.6.9, and Lemma
3.6.28]). In particular, the dual pairs of rational matrix-valued functions are modelled on
Szegö’s classical orthogonal polynomials of the first and the second kind.

2. Some basic facts

As the studies in [25–27] (see also [6]) suggest, the following transform of a rational
function into another is an essential tool for the consideration on orthonormal systems
of rational matrix-valued functions. If X ∈ �̆

q×q
α,n , then the adjoint rational matrix-valued

function X [α,n] of X (with respect to the underlying points α0,α1, . . . ,αn ∈D) is the ratio-
nal matrix-valued function (belonging to �̆

q×q
α,n as well) which is uniquely determined by

the formula

X [α,n](u) := 1
u
Bn(u)

(
X
(

1
u

))∗
, u∈ C \ (Pα,n∪Zα,n∪{0}

)
(2.1)
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(cf. [25, Lemma 2.2 and Remark 2.4]), where

Bn(u) :=
n∏

j=0

bαj (u) (2.2)

and where bαj denotes the elementary Blaschke factor corresponding to αj , that is,

bαj (u) :=

⎧
⎪⎪⎨
⎪⎪⎩

u if αj = 0,

αj

|αj|
αj −u

1−αju
if αj �= 0 .

(2.3)

Some information on further interrelations between X [α,n] and the underlying function
X can be found in [25, Section 2]. Note that the results on adjoint rational matrix-valued
functions in [25] are explained relating to the special case α0 = 0. But it is not hard to
restate these with their proofs to the present situation. For instance, if X ,Y ∈ �̆

q×q
α,n , then

also in that case the following properties are fulfilled.
(I) X [α,n] ∈ �̆

q×q
α,n , (X [α,n])[α,n] = X .

(II) X [α,n](αn)= 0q ⇔ X ∈ �̆
q×q
α,n−1 for n �= 0.

(III) (X(z))∗Y(z)= X [α,n](z)(Y [α,n](z))∗ for z ∈ T.
We study in the following certain sequences of rational matrix-valued functions

formed by given sequences of points belonging toD and of parameters which are strictly
contractive matrices. Recall that a complex q× q matrix A is said to be contractive (resp.,
strictly contractive) if Iq−A∗A is a nonnegative (resp., positive) Hermitian matrix, where
A∗ denotes the adjoint matrix of A. For instance, the zero matrix 0q of size q× q is a
strictly contractive matrix.

If τ is a nonnegative integer or ∞, if (E�)τ�=1 is a sequence of strictly contractive q× q
matrices, and if X0 and Y0 are nonsingular complex q× q matrices fulfilling the condition
X∗

0 X0 = Y0Y∗0 , then we define sequences of rational matrix-valued functions (Xj)τj=0 and
(Yj)τj=0 by the relations

X0(u) :=
√

1−∣∣α0
∣∣2

1−α0u
X0, Y0(u) :=

√
1−∣∣α0

∣∣2

1−α0u
Y0, u∈ C \Pα,0, (2.4)

and, for all integers � ∈ {1,2, . . . ,τ} and points u∈ C \Pα,� , recursively,

X�(u) :=
√√√√ 1−∣∣α�

∣∣2

1−∣∣α�−1
∣∣2

1−α�−1u

1−α�u

(
Iq−E�E∗�

)−1/2
(
bα�−1 (u)X�−1(u) + E�Y

[α,�−1]
�−1 (u)

)
,

Y�(u) :=
√√√√ 1−∣∣α�

∣∣2

1−∣∣α�−1
∣∣2

1−α�−1u

1−α�u

(
bα�−1 (u)Y�−1(u) +X [α,�−1]

�−1 (u)E�

)(
Iq−E∗� E�

)−1/2
.

(2.5)

Here and in the sequel A1/2 stands for the (unique) nonnegative Hermitian square root
of a nonnegative Hermitian q× q matrix A, the notation A−1 stands for the inverse of a
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nonsingular q× q matrix A, and hence A−1/2 denotes the inverse matrix of the nonneg-
ative Hermitian square root of a positive Hermitian q× q matrix A tantamount to the
nonnegative Hermitian square root of A−1.

Similar as in [26], we call [(Xj)τj=0, (Yj)τj=0] the Szegö pair of rational matrix-valued
functions generated by [(αj)τj=0; (E�)τ�=1;X0,Y0]. In addition, we consider simultaneously
the Szegö pair [(X#

j )τj=0, (Y #
j )τj=0] of rational matrix-valued functions generated by the

special choice [(αj)τj=0; (−E�)τ�=1; (X−1
0 )∗, (Y−1

0 )∗] and call this the dual Szegö pair of
[(Xj)τj=0, (Yj)τj=0] in the following. In fact, we have

X#
0 (u) :=

√
1−∣∣α0

∣∣2

1−α0u

(
X−1

0

)∗
, Y #

0 (u) :=
√

1−∣∣α0
∣∣2

1−α0u

(
Y−1

0

)∗
, u∈ C \Pα,0, (2.6)

and, for all integers � ∈ {1,2, . . . ,τ} and points u∈ C \Pα,� , the recurrence relations

X#
� (u) :=

√√√√ 1−∣∣α�
∣∣2

1−∣∣α�−1
∣∣2

1−α�−1u

1−α�u

(
Iq−E�E∗�

)−1/2
(
bα�−1(u)X#

�−1(u)−E�(Y #
�−1)[α,�−1](u)

)
,

Y #
� (u) :=

√√√√ 1−∣∣α�
∣∣2

1−∣∣α�−1
∣∣2

1−α�−1u

1−α�u

(
bα�−1(u)Y #

�−1(u)− (X#
�−1)[α,�−1](u)E�

)(
Iq−E∗� E�

)−1/2
.

(2.7)

Remark 2.1. If [(X#
j )τj=0, (Y #

j )τj=0] is the dual Szegö pair of [(Xj)τj=0, (Yj)τj=0], then
[(Xj)τj=0, (Yj)τj=0] is the dual Szegö pair of [(X#

j )τj=0, (Y #
j )τj=0].

The definition of a Szegö pair of rational matrix-valued functions is inspired by the
recurrence relations presented in [26, Section 2]. This will be emphasized by the follow-
ing theorem on particular orthogonal systems of rational matrix-valued functions. A left
(resp., right) orthonormal system (Xj)τj=0 corresponding to (αj)τj=0 and some nonnega-
tive Hermitian q× q matrix-valued Borel measure F on T is said to be of left (resp., right)
Szegö-type if in addition the matrices

η�η�−1

1−α�α�−1

(
X [α,�]
�

(
α�−1

))−1
X [α,�−1]
�−1

(
α�−1

)

(
resp.,

η�η�−1

1−α�α�−1
X [α,�−1]
�−1

(
α�−1

)(
X [α,�]
�

(
α�−1

))−1
)

, � ∈ {1,2, . . . ,τ},
(2.8)

are positive Hermitian, where the numbers ηj , j ∈ {0,1, . . . ,τ}, are defined by

ηj :=

⎧
⎪⎪⎨
⎪⎪⎩

−1 if αj = 0,

αj∣∣αj

∣∣ if αj �= 0 .
(2.9)

Note that if there exists a left (resp., right) orthonormal system (Yj)τj=0 corresponding to
(αj)τj=0 and F, then one can always choose such a special sequence (Xj)τj=0 of orthonormal
systems (cf. [25, Corollary 4.4] and [26, Remark 2.2]).
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Finally, a pair [(Xj)τj=0, (Yj)τj=0] consisting of a left (resp., right) Szegö-type orthonor-
mal system (Xj)τj=0 (resp., (Yj)τj=0) corresponding to (αj)τj=0 and F is called a Szegö pair of
orthonormal systems corresponding to (αj)τj=0 and F. Using the same arguments as in [26,
Section 2], we get the following statement.

Theorem 2.2. If [(Xj)τj=0, (Yj)τj=0] is a Szegö pair of orthonormal systems corresponding
to (αj)τj=0 and some nonnegative Hermitian q× q Borel measure F on T, then [(Xj)τj=0,
(Yj)τj=0] is the Szegö pair of rational matrix-valued functions generated by [(αj)τj=0;

(E�)τ�=1;X0,Y0], where E� :=η�η�−1(X [α,�]
� (α�−1))−1Y�(α�−1) for each integer �∈{1,2, . . . ,τ},

X0 :=√1−|α0|2X0(α0), and Y0 :=√1−|α0|2Y0(α0).

Example 2.3. If q = 1 and if [(Xj)τj=0, (Yj)τj=0] is the Szegö pair of rational functions
formed by an appropriate initial condition and corresponding recurrence relations as
above, then there exists z ∈ T such that the equality Xj = zYj is fulfilled for each integer
j ∈ {0,1, . . . ,τ}. Moreover, if we consider the probably first studied system of orthogonal
rational functions (see, e.g., [13, 40]), the so-called Malmquist-Takenaka system (ϕj)τj=0,
that is, the rational functions ϕ0,ϕ1, . . . ,ϕτ given by

ϕj(u) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
1−∣∣α0

∣∣2

1−α0u
if j = 0,

√
1−∣∣αj

∣∣2

1−αju

j−1∏

k=0

bαk(u) if j �= 0,

(2.10)

for each integer j ∈ {0,1, . . . ,τ} and point u∈ C \Pα, j , then [(ϕj)τj=0, (ϕj)τj=0] is the Szegö
pair of rational functions generated by [(αj)τj=0; (0)τ�=1;1,1]. Therefore, [(ϕj)τj=0, (ϕj)τj=0]
is the dual Szegö pair of [(ϕj)τj=0, (ϕj)τj=0].

For a strictly contractive q× q matrix E, we use in the following the notation

HE :=
⎛
⎝
(

Iq−EE∗
)−1/2

E
(

Iq−E∗E
)−1/2

E∗
(

Iq−EE∗
)−1/2 (

Iq−E∗E
)−1/2

⎞
⎠ . (2.11)

With a view to (2.1) and the complex 2q× 2q matrix-valued functions,

Θ j :=
⎛
⎝−bαjY

#
j

(
X#

j

)[α, j]

bαjYj X
[α, j]
j

⎞
⎠ , j ∈ {0,1, . . . ,τ},

⎛
⎝resp., Ξ j :=

⎛
⎝
−bαjX

#
j bαjXj

(
Y #
j

)[α, j]
Y

[α, j]
j

⎞
⎠
⎞
⎠ , j ∈ {0,1, . . . ,τ},

(2.12)

the recurrence formulae above can be written for all integers � ∈ {1,2, . . . ,τ} and points
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u∈ C \Pα,� in matricial form as

Θ�(u)=
√√√√ 1−∣∣α�

∣∣2

1−∣∣α�−1
∣∣2

1−α�−1u

1−α�u
Θ�−1(u)Θ̂�(u)

(
resp., Ξ�(u)=

√√√√ 1−∣∣α�
∣∣2

1−∣∣α�−1
∣∣2

1−α�−1u

1−α�u
Ξ̂�(u)Ξ�−1(u)

)
,

(2.13)

where

Θ̂�(u) :=HE∗�

(
bα�(u)Iq 0q

0q η�η�−1 Iq

)
, � ∈ {1,2, . . . ,τ},

(
resp., Ξ̂�(u) :=

(
bα�(u)Iq 0q

0q η�η�−1 Iq

)
HE�

)
, � ∈ {1,2, . . . ,τ},

(2.14)

and where the numbers ηj , j ∈ {0,1, . . . ,τ}, are defined by (2.9).

Proposition 2.4. Let X0,Y0 be given as in (2.4) with some nonsingular q × q matri-
ces X0,Y0 fulfilling X∗

0 X0=Y0Y∗0 and let X� ,Y� ∈ �̆
q×q
α,� for each integer � ∈ {1,2, . . . ,τ}.

Then [(Xj)τj=0, (Yj)τj=0] is the Szegö pair of rational matrix-valued functions generated by
[(αj)τj=0; (E�)τ�=1;X0,Y0] if and only if for each integer � ∈ {1,2, . . . ,τ} and point u∈ C \Pα,�

the following backward recurrence relations are satisfied:

η�η�−1Y�(u)−X [α,�]
� (u)E� =

(
1−α�α�−1

)(
bα� (u)− bα�

(
α�−1

))
√(

1−∣∣α�
∣∣2
)(

1−∣∣α�−1
∣∣2
) Y�−1(u)

(
Iq−E∗� E�

)1/2
,

η�η�−1X�(u)−E�Y
[α,�]
� (u)=

(
1−α�α�−1

)(
bα� (u)− bα�

(
α�−1

))
√(

1−∣∣α�
∣∣2
)(

1−∣∣α�−1
∣∣2
)
(

Iq−E�E∗�
)1/2

X�−1(u).

(2.15)

In particular, if X#
0 , Y #

0 are defined as in (2.6), if X#
� ,Y #

� ∈ �̆
q×q
α,� for each integer � ∈

{1,2, . . . ,τ}, and if [(Xj)τj=0, (Yj)τj=0] is the Szegö pair of rational matrix-valued functions
generated by [(αj)τj=0; (E�)τ�=1;X0,Y0], then [(X#

j )τj=0, (Y #
j )τj=0] is the dual Szegö pair of

[(Xj)τj=0, (Yj)τj=0] if and only if for each integer � ∈ {1,2, . . . ,τ} and point u ∈ C \Pα,� the
following backward recurrence relations are satisfied:

η�η�−1Y
#
� (u) +

(
X#
�

)[α,�]
(u)E� =

(
1−α�α�−1

)(
bα� (u)− bα�

(
α�−1

))
√(

1−∣∣α�
∣∣2
)(

1−∣∣α�−1
∣∣2
) Y #

�−1(u)(Iq−E∗� E�)1/2,

η�η�−1X
#
� (u) + E�

(
Y #
�

)[α,�]
(u)=

(
1−α�α�−1

)(
bα� (u)− bα�

(
α�−1

))
√(

1−∣∣α�
∣∣2
)(

1−∣∣α�−1
∣∣2
)
(

Iq−E�E∗�
)1/2

X#
�−1(u).

(2.16)
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Proof. Let � ∈ {1,2, . . . ,τ} and u∈ C \Pα,� . Evidently (cf. [11, Lemma 3.6.32]),

HE∗� H−E∗� = I2q
(
resp., HE� H−E� = I2q

)
(2.17)

is satisfied. Therefore, (2.13) is equivalent to the relation

⎛
⎝−Y #

� (u) η�η�−1
(
X#
�

)[α,�]
(u)

Y�(u) η�η�−1X
[α,�]
� (u)

⎞
⎠H−E∗� =

√√√√ 1−∣∣α�
∣∣2

1−∣∣α�−1
∣∣2

1−α�−1u

1−α�u
Θ�−1(u)

(
resp., H−E�

( −X#
� (u) X�(u)

η�η�−1(Y #
� )[α,�](u) η�η�−1Y

[α,�]
� (u)

)
=
√√√√ 1−∣∣α�

∣∣2

1−∣∣α�−1
∣∣2

1−α�−1u

1−α�u
Ξ�−1(u)

)
.

(2.18)

Hence, by considering the first column of Θ�−1(u) and the first row of Ξ�−1(u), using the
identity

η�η�−1
1−α�α�−1

1−∣∣α�
∣∣2

(
bα�(u)− bα�

(
α�−1

))= 1−α�−1u

1−α�u
bα�−1(u), (2.19)

and taking into account property (I) of adjoint rational matrix-valued functions, one can
finally conclude the assertion. �

Observe that the difference between the backward recurrence relations stated in Propo-
sition 2.4 for a Szegö pair of rational matrix-valued functions and for its dual Szegö pair
consists in the different signs in front of the parameters E� , � ∈ {1,2, . . . ,τ}, similar to the
case of the forward recursions defining such pairs of rational matrix-valued functions.

3. Connection to Potapov’s J-theory

We will show in this section that one can use Potapov’s J-theory (see, e.g., [11, 12, 14,
34]) to obtain some information on the rational functions belonging to dual Szegö pairs.
In fact, we get certain formulae which can be considered as a generalization of results
on matrix polynomials in [21] (with respect to an approach solving Taylor coefficient
problems for matrix-valued Carathéodory functions via orthogonal matrix polynomials)
to the rational case.

Recall that if p is a positive integer and if J1 and J2 are complex p× p signature matrices
(i.e., unitary and Hermitian) respectively, then a complex p× p matrix A is called J2-
J1-contractive (resp., J2-J1-unitary) when J2−A∗J1A is a nonnegative Hermitian matrix
(resp., the zero matrix 0p). In the particular case J1= J2 we write shortly J1-contractive
(resp., J1-unitary) instead of J1-J1-contractive (resp., J1-J1-unitary). The special choice of
the 2q× 2q signature matrices

jqq :=
(

Iq 0q

0q −Iq

)
, Jq :=

(
0q −Iq
−Iq 0q

)
(3.1)

will be essential in the considerations below.
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In the following [(Xj)τj=0, (Yj)τj=0] denotes always the Szegö pair of rational matrix-
valued functions generated by some [(αj)τj=0; (E�)τ�=1;X0,Y0], where (αj)τj=0 is a sequence
of points belonging toD, where (E�)τ�=1 is a sequence of strictly contractive q× q matrices,
and where X0, Y0 are nonsingular complex q× q matrices fulfilling X∗

0 X0=Y0Y∗0 , as well
as [(X#

j )τj=0, (Y #
j )τj=0] stands for its dual Szegö pair.

Theorem 3.1. For each integer j ∈ {0,1, . . . ,τ} and point u∈ C \Pα, j ,

Θ j(u)=

√
2
(

1−∣∣αj

∣∣2
)

1−αju
Θ̂0(u)Θ̂1(u)···Θ̂ j(u),

Ξ j(u)=

√
2
(

1−∣∣αj

∣∣2
)

1−αju
Ξ̂ j(u)Ξ̂ j−1(u)··· Ξ̂0(u),

(3.2)

where Θ j(u), Ξ j(u) and Θ̂�(u), Ξ̂�(u) for � ∈ {1,2, . . . , j} are given by (2.12) and (2.14) as
well as

Θ̂0(u) := 1−α0u√
2
(

1−∣∣α0
∣∣2
)Θ0(u)= 1√

2

(
−(Y−1

0

)∗
X−1

0

Y0 X∗
0

)(
bα0(u)Iq 0q

0q −η0Iq

)
,

Ξ̂0(u) := 1−α0u√
2
(

1−∣∣α0
∣∣2
)Ξ0(u)= 1√

2

(
bα0(u)Iq 0q

0q −η0Iq

)(
−(X−1

0

)∗
X0

Y−1
0 Y∗0

)
.

(3.3)

In particular, if u∈D, then the matrices ((1−αju)/
√

2(1−|αj|2))Θ j(u) and (((1−αju)/
√

2(1−|αj|2))Ξ j(u))∗ are jqq-Jq-contractive and if u ∈ T, then ((1− αju)/
√

2(1−|αj|2))

Θ j(u) and (((1−αju)/
√

2(1−|αj|2))Ξ j(u))∗ are even jqq-Jq-unitary.

Proof. Let j ∈ {0,1, . . . ,τ} and u∈ C \Pα, j . We prove only the expressions with respect to
Θ j(u). Similarly, one can verify the others by using the same arguments. The represen-
tation (3.2) of Θ j(u) is an easy consequence of (2.13) and the choice of X0, Y0, X#

0 , and
Y #

0 (according to (2.4) and (2.6)). It remains to prove that if u∈D (resp., u∈T), then the

matrix ((1−αju)/
√

2(1−|αj|2))Θ j(u) is jqq-Jq-contractive (resp., jqq-Jq-unitary). Obvi-
ously, we have

(
bαk (u)Iq 0q

0q zIq

)∗
jqq

(
bαk(u)Iq 0q

0q zIq

)
=
(∣∣bαk (u)

∣∣2
Iq 0q

0q −Iq

)
, k ∈ {0,1, . . . , j},

(3.4)

if z ∈ T and (cf. [11, Lemma 3.6.32])

(HE∗� )∗ jqqHE∗� = jqq, � ∈ {1,2, . . . , j}, (3.5)
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as well as, since X∗
0 X0 = Y0Y∗0 , furthermore

(
−(Y−1

0

)∗
X−1

0

Y0 X∗
0

)∗
Jq

(
−(Y−1

0

)∗
X−1

0

Y0 X∗
0

)
= 2 jqq. (3.6)

Hence (using [16, Lemma 4]), if u ∈ D (resp., u ∈ T) then the matrix Θ̂�(u) is jqq-

contractive (resp., jqq-unitary) for each � ∈ {1,2, . . . , j} as well as the matrix Θ̂0(u) is
jqq-Jq-contractive (resp., jqq-Jq-unitary) which implies by virtue of (3.2) that the matrix

((1−αju)/
√

2(1−|αj|2))Θ j(u) is jqq-Jq-contractive (resp., jqq-Jq-unitary). �

Theorem 3.1 yields in view of some well-known results on jqq-Jq-contractive matrices
(see, e.g., [16, Lemma 8] and use in addition [11, Lemma 2.1.5]) particularly the follow-
ing result.

Corollary 3.2. For each integer j ∈ {0,1, . . . ,τ} and point u∈D ∪ T, the relations

detX [α,�]
j (u) �=0, det(X#

j )[α,�](u) �= 0, detY [α,�]
j (u) �= 0, and det(Y #

j )[α,�](u) �= 0 are satisfied.
Moreover, for each integer j∈{0,1, . . . ,τ}, the real part of

(
X#

j

)[α, j]
(u)
(
X

[α, j]
j (u)

)−1
, X

[α, j]
j (u)

((
X#

j

)[α, j]
(u)
)−1

(
resp.,

(
Y

[α, j]
j (u)

)−1(
Y #
j

)[α, j]
(u),

((
Y #
j

)[α, j]
(u)
)−1

Y
[α, j]
j (u)

)
,

(3.7)

respectively, is a positive Hermitian matrix if u∈D∪T and the matrices

bαj(u)
(
X

[α, j]
j (u)

)−1
Yj(u), bαj(u)

((
X#

j

)[α, j]
(u)
)−1

Y #
j (u)

(
resp., bαj(u)Xj(u)

(
Y

[α, j]
j (u)

)−1
,bαj(u)X#

j (u)
((
Y #
j

)[α, j]
(u)
)−1
) (3.8)

are strictly contractive if u∈D and unitary if u∈ T.

Since Corollary 3.2 includes a localization of the zeros of detX [α,�]
� , det(X#

� )[α,�],

detY [α,�]
� , and det(Y #

� )[α,�], � ∈ {1,2, . . . ,τ}, the next Corollary is an easy conclusion of
Proposition 2.4 and (2.13) by the special choice u= α�−1.

Corollary 3.3. For each integer � ∈ {1,2, . . . ,τ}, the parameter E� can be attained via

E� = η�η�−1

(
X [α,�]
�

(
α�−1

))−1
Y�
(
α�−1

)= η�η�−1X�
(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1
,

−E� = η�η�−1

((
X#
�

)[α,�](
α�−1

))−1
Y #
�

(
α�−1

)= η�η�−1X
#
�

(
α�−1

)((
Y #
�

)[α,�](
α�−1

))−1

(3.9)
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(cf.Theorem 2.2) and in addition

(
Iq−E�E∗�

)1/2

= η�η�−1

√(
1−∣∣α�

∣∣2
)(

1−∣∣α�−1
∣∣2
)

1−α�α�−1

(
X [α,�]
�

(
α�−1

))−1
X [α,�−1]
�−1

(
α�−1

)

= η�η�−1

√(
1−∣∣α�

∣∣2
)(

1−∣∣α�−1
∣∣2
)

1−α�α�−1

((
X#
�

)[α,�](
α�−1

))−1(X#
�−1

)[α,�−1](α�−1
)
,

(
Iq−E∗� E�

)1/2

= η�η�−1

√(
1−∣∣α�

∣∣2
)(

1−∣∣α�−1
∣∣2
)

1−α�α�−1
Y [α,�−1]
�−1

(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1

= η�η�−1

√(
1−∣∣α�

∣∣2
)(

1−∣∣α�−1
∣∣2
)

1−α�α�−1

(
Y #
�−1

)[α,�−1](
α�−1

)((
Y #
�

)[α,�](
α�−1

))−1
.

(3.10)

Remark 3.4. For each integer j∈{0,1, . . . ,τ}, from Corollary 3.2 we know that X
[α, j]
j (αj),

(X#
j )[α, j](αj), Y

[α, j]
j (αj), and (Y #

j )[α, j](αj) are nonsingular matrices. In particular, prop-
erty (II) of adjoint rational matrix-valued functions implies that for each integer �∈
{1,2, . . . ,τ} the functions X� , Y� , X#

� , and Y #
� belong to �̆

q×q
α,� \ �̆

q×q
α,�−1 and that if we put

Zj ∈ {Xj ,Yj ,X#
j ,Y #

j } for all integers j and n satisfying 0 ≤ j ≤ n ≤ τ, then the system

Z0,Z1, . . . ,Zn is both a basis of the right and the left Cq×q-module �̆
q×q
α,n (cf. [25, (2.10)]

and [23, Proposition 2.7]).

Proposition 3.5. For each integer j ∈ {0,1, . . . ,τ} and point u∈ C \Pα, j ,

Ξ j(u)

(
0q Iq
−Iq 0q

)
Θ j(u)= 2ηj

1−∣∣αj

∣∣2

(
1−αju

)2 Bj(u)

(
0q Iq
−Iq 0q

)
, (3.11)

where Θ j(u) and Ξ j(u) are defined as in (2.12), the number ηj is given as in (2.9) concerning
αj , and Bj(u) is given as in (2.2) with respect to α0,α1, . . . ,αj .

Proof. Let j ∈ {0,1, . . . ,τ} and u∈ C \Pα, j . Further, let η−1 :=−1. A straightforward cal-
culation yields
(
bαk(u)Iq 0q

0q ηkηk−1 Iq

)(
0q Iq
−Iq 0q

)(
bαk (u)Iq 0q

0q ηkηk−1 Iq

)
= ηkηk−1bαk (u)

(
0q Iq
−Iq 0q

)

(3.12)

for each k ∈ {0,1, . . . , j} and (using [11, Lemma 1.1.12])

HE�

(
0q Iq
−Iq 0q

)
HE∗� =

(
0q Iq
−Iq 0q

)
, � ∈ {1,2, . . . , j}, (3.13)
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as well as, since X∗
0 X0 = Y0Y∗0 ,

(
−(X−1

0

)∗
X0

Y−1
0 Y∗0

)(
0q Iq
−Iq 0q

)(
−(Y−1

0

)∗
X−1

0

Y0 X∗
0

)
=−2

(
0q Iq
−Iq 0q

)
. (3.14)

Consequently, from (3.2) one can finally conclude the assertion. �

The next result is an easy consequence of Proposition 3.5, (2.12), and

(
0q Iq
−Iq 0q

)(
0q Iq
−Iq 0q

)
=−I2q. (3.15)

Corollary 3.6. For each integer j ∈ {0,1, . . . ,τ} and point u∈ C \ (Pα, j ∪Zα, j), the ma-
trices Ξ j(u), Θ j(u) are nonsingular and

(
Ξ j(u)

)−1 = (1−αju)2

2ηj

(
1−∣∣αj

∣∣2
)
Bj(u)

⎛
⎝ X

[α, j]
j (u) −bαj(u)Yj(u)

−(X#
j

)[α, j]
(u) −bαj(u)Y #

j (u)

⎞
⎠ ,

(
Θ j(u)

)−1 =
(
1−αju

)2

2ηj

(
1−∣∣αj

∣∣2
)
Bj(u)

⎛
⎝ Y

[α, j]
j (u) −(Y #

j

)[α, j]
(u)

−bαj(u)Xj(u) −bαj(u)X#
j (u)

⎞
⎠ .

(3.16)

Proposition 3.5 and Corollary 3.6 imply by considering the q× q block entries of Θ j

and Ξ j , j ∈ {0,1, . . . ,τ}, according to (2.12) the identities below.

Corollary 3.7. For each integer j ∈ {0,1, . . . ,τ} and point u∈ C \Pα, j ,

Xj(u)Y #
j (u)= X#

j (u)Yj(u),
(
Y #
j

)[α, j]
(u)X

[α, j]
j (u)= Y

[α, j]
j (u)

(
X#

j

)[α, j]
(u),

X
[α, j]
j (u)Xj(u)= Yj(u)Y

[α, j]
j (u),

(
X#

j

)[α, j]
(u)X#

j (u)= Y #
j (u)

(
Y #
j

)[α, j]
(u),

bαj(u)
(
Xj(u)

(
X#

j

)[α, j]
(u) +X#

j (u)X
[α, j]
j (u)

)
=−2ηj

1−∣∣αj

∣∣2

(
1−αju

)2 Bj(u)Iq,

bαj(u)
((
Y #
j

)[α, j]
(u)Yj(u) +Y

[α, j]
j (u)Y #

j (u)
)
=−2ηj

1−∣∣αj

∣∣2

(
1−αju

)2 Bj(u)Iq,

bαj(u)
((
X#

j

)[α, j]
(u)Xj(u) +Y #

j (u)Y
[α, j]
j (u)

)
=−2ηj

1−∣∣αj

∣∣2

(
1−αju

)2 Bj(u)Iq,

bαj(u)
(
X

[α, j]
j (u)X#

j (u) +Yj(u)
(
Y #
j

)[α, j]
(u)
)
=−2ηj

1−∣∣αj

∣∣2

(
1−αju

)2 Bj(u)Iq.

(3.17)



14 Dual Szegö pairs of rational matrix-valued functions

Remark 3.8. For all integers � ∈ {1,2, . . . ,τ} and j ∈ {0,1, . . . ,�− 1}, Corollary 3.7 implies

X�(αj)(X#
� )[α,�](αj)=−X#

� (αj)X
[α,�]
� (αj), (Y #

� )[α,�](αj)Y�(αj)=−Y [α,�]
� (αj)Y #

� (αj),

(X#
� )[α,�](αj)X�(αj)=−Y #

� (αj)Y
[α,�]
� (αj), X [α,�]

� (αj)X#
� (αj)=−Y�(αj)(Y #

� )[α,�](αj),
(3.18)

since the points α0,α1, . . . ,α�−1 are the zeros of the function B�−1 (cf. (2.2)).

Proposition 3.9. For all integers � ∈ {1,2, . . . ,τ} and j ∈ {0,1, . . . ,�− 1},
(
X#
�

)[α,�](
αj
)(
X [α,�]
� (αj)

)−1 = (X#
�−1

)[α,�−1](
αj
)(
X [α,�−1]
�−1

(
αj
))−1

=
(
Y [α,�−1]
�−1

(
αj
))−1(

Y #
�−1

)[α,�−1](
αj
)

=
(
Y [α,�]
�

(
αj
))−1(

Y #
�

)[α,�](
αj
)
.

(3.19)

Proof. Let � ∈ {1,2, . . . ,τ} and j ∈ {0,1, . . . ,� − 1}. From Corollary 3.2 it follows that

detX [α,�]
� (αj) �= 0, detX [α,�−1]

�−1 (αj) �= 0, detY [α,�]
� (αj) �= 0, detY [α,�−1]

�−1 (αj) �= 0, and
det(Y #

�−1)[α,�−1](αj) �= 0. Hence, Corollary 3.7 provides the equalities

(
X#
�

)[α,�](
αj
)(
X [α,�]
�

(
αj
))−1 =

(
Y [α,�]
�

(
αj
))−1(

Y #
�

)[α,�](
αj
)
,

(
X#
�−1

)[α,�−1](
αj
)(
X [α,�−1]
�−1

(
αj
))−1 =

(
Y [α,�−1]
�−1

(
αj
))−1(

Y #
�−1

)[α,�−1](
αj
)
.

(3.20)

Furthermore, if j = �− 1, then Corollary 3.3 yields

(
X#
�

)[α,�](
αj
)(
X [α,�]
�

(
αj
))−1 = (X#

�−1

)[α,�−1](
αj
)(
X [α,�−1]
�−1

(
αj
))−1

(3.21)

and if j �= �− 1, then from (2.13), Corollary 3.7, and Remark 3.8, one can get

(
Y�−1

)[α,�−1](
αj
)(
X#
�

)[α,�](
αj
)(
X [α,�]
�

(
αj
))−1((

Y #
�−1

)[α,�−1](
αj
))−1

= (Y�−1
)[α,�−1](

αj
)((

X#
�−1

)[α,�−1](
αj
)−bα�−1

(
αj
)
Y #
�−1

(
αj
)

E∗�
)

×
((
X�−1

)[α,�−1](
αj
)

+bα�−1Y�−1
(
αj
)

E∗�
)−1((

Y #
�−1

)[α,�−1](
αj
))−1

=
((
Y�−1

)[α,�−1](
αj
)(
X#
�−1

)[α,�−1](
αj
)−bα�−1

(
αj
)(
Y�−1

)[α,�−1](
αj
)
Y #
�−1

(
αj
)

E∗�
)

×
((
Y�−1

)[α,�−1](
αj
)(
X#
�−1

)[α,�−1](
αj
)−bα�−1

(
αj
)(
Y�−1

)[α,�−1](
αj
)
Y #
�−1

(
αj
)

E∗�
)−1=Iq,

(3.22)

that is, (X#
� )[α,�](αj)(X [α,�]

� (αj))−1 = ((Y�−1)[α,�−1](αj))−1(Y #
�−1)[α,�−1](αj), which complet-

es the proof. �

Proposition 3.9 implies in view of (2.4), (2.6), and (2.1) the following.
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Corollary 3.10. For each integer j ∈ {0,1, . . . ,τ},
(
X#

j

)[α, j](
α0
)(
X

[α, j]
j

(
α0
))−1 = (X∗

0 X0
)−1 = (Y0Y∗0

)−1 =
(
Y

[α, j]
j

(
α0
))−1(

Y #
j

)[α, j](
α0
)
.

(3.23)

Proposition 3.11. For each integer � ∈ {1,2, . . . ,τ}, the 2q× 2q matrices

1−∣∣α�
∣∣2

∣∣1−α�u
∣∣2

((
Θ�(u)

)−1
)∗

jqq
(
Θ�(u)

)−1− 1−∣∣α�−1
∣∣2

∣∣1−α�−1u
∣∣2

((
Θ�−1(u)

)−1
)∗

jqq
(
Θ�−1(u)

)−1
,

1−∣∣α�
∣∣2

∣∣1−α�u
∣∣2

(
Ξ�(u)

)−1
jqq
((
Ξ�(u)

)−1
)∗ − 1−∣∣α�−1

∣∣2

∣∣1−α�−1u
∣∣2

(
Ξ�−1(u)

)−1
jqq
((
Ξ�−1(u)

)−1
)∗

(3.24)

are nonnegative Hermitian if u∈D \Zα,� and if u∈ T, then

1−∣∣α�
∣∣2

∣∣1−α�u
∣∣2

((
Θ�(u)

)−1
)∗

jqq
(
Θ�(u)

)−1 = 1−∣∣α�−1
∣∣2

∣∣1−α�−1u
∣∣2

((
Θ�−1(u)

)−1
)∗

jqq
(
Θ�−1(u)

)−1
,

1−∣∣α�
∣∣2

∣∣1−α�u
∣∣2

(
Ξ�(u)

)−1
jqq
((
Ξ�(u)

)−1
)∗ = 1−∣∣α�−1

∣∣2

∣∣1−α�−1u
∣∣2

(
Ξ�−1(u)

)−1
jqq
((
Ξ�−1(u)

)−1
)∗

,

(3.25)

where Θ�(u), Θ�−1(u), Ξ�(u), and Ξ�−1(u) are defined as in (2.12).

Proof. Let �∈{1,2, . . . ,τ} and u∈ (D∪ T) \ Zα,� . We prove only the assertion with re-
spect to Θ�(u). Similarly, one can verify the others by using the same arguments. From
Corollary 3.6 we know that the matrix Θ�−1(u) is nonsingular. Consequently,

√√√√1−∣∣α�−1
∣∣2

1−∣∣α�
∣∣2

1−α�u

1−α�−1u

(
Θ�−1(u)

)−1
Θ�(u)=HE∗�

(
bα�(u)Iq 0q

0q η�η�−1 Iq

)
(3.26)

follows from (2.13). Hence (cf. the proof of Theorem 3.1), the matrix

A :=
√√√√1−∣∣α�−1

∣∣2

1−∣∣α�
∣∣2

1−α�u

1−α�−1u

(
Θ�−1(u)

)−1
Θ�(u) (3.27)

is jqq-contractive if u∈D \Zα,� and jqq-unitary if u∈ T. Therefore, the identity

1−∣∣α�
∣∣2

∣∣1−α�u
∣∣2

((
Θ�(u)

)−1
)∗

jqq
(
Θ�(u)

)−1− 1−∣∣α�−1
∣∣2

∣∣1−α�−1u
∣∣2

((
Θ�−1(u)

)−1
)∗

jqq
(
Θ�−1(u)

)−1

= 1−∣∣α�
∣∣2

∣∣1−α�u
∣∣2

((
Θ�(u)

)−1
)∗(

jqq−A∗jqqA
)(
Θ�(u)

)−1

(3.28)

implies immediately the assertion referring to Θ�(u). �
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4. Christoffel-Darboux formulae

We show in the present section that, similar as for orthogonal rational matrix-valued
functions (cf. [25, Section 5]), any Szegö pair of rational matrix-valued functions along
with its dual Szegö pair satisfies some Christoffel-Darboux formulae. Here [(Xj)τj=0,
(Yj)τj=0] denotes again the Szegö pair of rational matrix-valued functions generated by
[(αj)τj=0; (E�)τ�=1;X0,Y0] and [(X#

j )τj=0, (Y #
j )τj=0] stands for its dual Szegö pair, where

(αj)τj=0 is a sequence of points belonging to D, where (E�)τ�=1 is a sequence of strictly
contractive q× q matrices, and where X0, Y0 are some nonsingular complex q× q matri-
ces fulfilling X∗

0 X0=Y0Y∗0 . For technical reasons, if αj ∈D and if u,v ∈ C \ {1/ αj}, we
also use the notation

kαj(u,v) := 1− bαj(u)bαj(v)=
(

1−∣∣αj

∣∣2
)

(1−uv)
(
1−uαj

)(
1−αjv

) . (4.1)

At first, we remark the following identities with respect to [(Xj)τj=0, (Yj)τj=0] and [(X#
j )τj=0,

(Y #
j )τj=0].

Lemma 4.1. For each integer � ∈ {1,2, . . . ,τ} and points u,v ∈ C \Pα,� ,

kα�−1(u,v)
((

Y [α,�]
� (v)

)∗
Y [α,�]
� (u)− (X�(v)

)∗
X�(u)

)

= kα�(u,v)
((

Y [α,�−1]
�−1 (v)

)∗
Y [α,�−1]
�−1 (u)− bα�−1(v)bα�−1(u)

(
X�−1(v)

)∗
X�−1(u)

)
,

kα�−1(u,v)
(
X [α,�]
� (u)

(
X [α,�]
� (v)

)∗ −Y�(u)
(
Y�(v)

)∗)

= kα�(u,v)
(
X [α,�−1]
�−1 (u)

(
X [α,�−1]
�−1 (v)

)∗− bα�−1(u)bα�−1(v)Y�−1(u)
(
Y�−1(v)

)∗)
,

kα�−1(u,v)
(((

Y #
�

)[α,�]
(v)
)∗
Y [α,�]
� (u) +

(
X#
� (v)

)∗
X�(u)

)

= kα�(u,v)
(((

Y #
�−1

)[α,�−1]
(v)
)∗
Y [α,�−1]
�−1 (u) + bα�−1(v)bα�−1(u)

(
X#
�−1(v)

)∗
X�−1(u)

)
,

kα�−1(u,v)
(
X [α,�]
� (u)

((
X#
�

)[α,�]
(v)
)∗

+Y�(u)
(
Y #
� (v)

)∗)

= kα�(u,v)
(
X [α,�−1]
�−1 (u)

((
X#
�−1

)[α,�−1]
(v)
)∗

+ bα�−1(u)bα�−1(v)Y�−1(u)
(
Y #
�−1(v)

)∗)
.

(4.2)

Proof. Let � ∈ {1,2, . . . ,τ} and let u,v ∈ C \Pα,� . Considering the second q× q block row
of Θ�(u) and the first q× q block column of (Θ�(v))∗, from (2.13) and (3.5) (note also
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[11, Theorem 1.3.3]) one can see

− 1−∣∣α�−1
∣∣2

1−∣∣α�
∣∣2

1−α�u

1−α�−1u

1−α�v

1−α�−1v

(
X [α,�]
� (u)

((
X#
�

)[α,�]
(v)
)∗

+Y�(u)
(
Y #
� (v)

)∗)

= 1−∣∣α�−1
∣∣2

1−∣∣α�
∣∣2

1−α�u

1−α�−1u

1−α�v

1−α�−1v

(
Y�(u) η�η�−1X

[α,�]
� (u)

)
jqq

⎛
⎝

−(Y #
� (v)

)∗

η�η�−1

(
(X#

� )[α,�](v)
)∗

⎞
⎠

=
(
bα�−1 (u)Y�−1(u) X [α,�−1]

�−1 (u)
)

HE∗� jqq
(

HE∗�

)∗
⎛
⎝
−bα�−1 (v)

(
Y #
�−1(v)

)∗
((
X#
�−1

)[α,�−1]
(v)
)∗

⎞
⎠

=
(
bα�−1 (u)Y�−1(u) X [α,�−1]

�−1 (u)
)
⎛
⎝
−bα�−1 (v)

(
Y #
�−1(v)

)∗

−
(

(X#
�−1

)[α,�−1]
(v)
)∗

⎞
⎠

=−X [α,�−1]
�−1 (u)

((
X#
�−1

)[α,�−1]
(v)
)∗ − bα�−1 (u)bα�−1 (v)Y�−1(u)

(
Y #
�−1(v)

)∗
.

(4.3)

Hence, (4.1) yields the fourth identity. Similarly, observing further combinations of q× q
block rows and q× q block columns of the matrix-valued function Θ� or Ξ� , in view of
(2.13), (3.5), and (4.1), one can obtain the other equalities. �

Theorem 4.2. For each integer j ∈ {0,1, . . . ,τ} and points u,v ∈ C \ Pα, j , the following
Christoffel-Darboux formulae hold:

(
1− bαj(v)bαj(u)

) j∑

k=0

(
Xk(v)

)∗
Xk(u)

=
(
Y

[α, j]
j (v)

)∗
Y

[α, j]
j (u)− bαj(v)bαj(u)

(
Xj(v)

)∗
Xj(u),

(
1− bαj(u)bαj(v)

) j∑

k=0

Yk(u)
(
Yk(v)

)∗

= X
[α, j]
j (u)

(
X

[α, j]
j (v)

)∗ − bαj(u)bαj(v)Yj(u)
(
Yj(v)

)∗
,

(
1− bαj(v)bαj(u)

) j∑

k=0

(
X#
k (v)

)∗
Xk(u)

= 2
(
1−∣∣αj

∣∣2)
(
1−αjv

)(
1−uαj

) Iq−
((
Y #
j

)[α, j]
(v)
)∗

Y
[α, j]
j (u)− bαj(v)bαj(u)

(
X#

j (v)
)∗
Xj(u),

(
1− bαj(u)bαj(v)

) j∑

k=0

Yk(u)
(
Y #
k (v)

)∗

= 2
(
1−∣∣αj

∣∣2)
(
1−uαj

)(
1−αjv

) Iq−X
[α, j]
j (u)

((
X#

j

)[α, j]
(v)
)∗ − bαj(u)bαj(v)Yj(u)

(
Y #
j (v)

)∗
.

(4.4)



18 Dual Szegö pairs of rational matrix-valued functions

Proof. Let u,v ∈ C \Pα,0. According to (2.1), (2.4), and (2.6) we have

X [α,0]
0 (u)

((
X#

0

)[α,0]
(v)
)∗ =

⎛
⎝−η0

√
1−∣∣α0

∣∣2

1−α0u
X∗

0

⎞
⎠
⎛
⎝−η0

√
1−∣∣α0

∣∣2

1−α0v
X−1

0

⎞
⎠
∗

= 1−∣∣α0
∣∣2

(
1−uα0

)(
1−α0v

) Iq,

Y0(u)
(
Y #

0 (v)
)∗ =

⎛
⎝

√
1−∣∣α0

∣∣2

1−α0u
Y0

⎞
⎠
⎛
⎝

√
1−∣∣α0

∣∣2

1−α0v

(
Y−1

0

)∗
⎞
⎠
∗

= 1−∣∣α0
∣∣2

(
1−uα0

)(
1−α0v

) Iq.

(4.5)

Hence, the fourth identity is obviously fulfilled for j=0. Now we assume that for each in-
teger �∈{1,2, . . . ,τ} and points u,v∈C \Pα,� the fourth formula with j :=�− 1 is already
proved. Thus, the fourth equality in Lemma 4.1 and (4.1) imply

(
1− bα�(u)bα�(v)

) �∑

k=0

Yk(u)
(
Y #
k (v)

)∗

= kα�(u,v)
kα�−1(u,v)

(
1− bα�−1(u)bα�−1(v)

) �−1∑

k=0

Yk(u)
(
Y #
k (v)

)∗
+ kα�(u,v)Y�(u)

(
Y #
� (v)

)∗

= − kα�(u,v)
kα�−1(u,v)

(
X [α,�−1]
�−1 (u)

(
(X#

�−1)
[α,�−1](v)

)∗
+ bα�−1(u)bα�−1(v)Y�−1(u)

(
Y #
�−1(v)

)∗)

+
2kα�(u,v)

(
1−∣∣α�−1

∣∣2
)

kα�−1(u,v)
(
1−uα�−1

)(
1−α�−1v

) Iq +Y�(u)
(
Y #
� (v)

)∗−bα�(u)bα�(v)Y�(u)
(
Y #
� (v)

)∗

= −X [α,�]
� (u)

(
(X#

� )[α,�](v)
)∗ −Y�(u)

(
Y #
� (v)

)∗
+

2
(

1−∣∣α�
∣∣2
)

(1−uα�)(1−α�v)
Iq

+ Y�(u)
(
Y #
� (v)

)∗ − bα�(u)bα�(v)Y�(u)
(
Y #
� (v)

)∗

=
2
(

1−∣∣α�
∣∣2
)

(
1−uα�

)(
1−α�v

) Iq−X [α,�]
� (u)

((
X#
�

)[α,�]
(v)
)∗ − bα�(u)bα�(v)Y�(u)

(
Y #
� (v)

)∗

(4.6)

firstly for u,v ∈ C \Pα,� satisfying uv �= 1. Applying a continuity argument one can get
that this identity is actually fulfilled for all u,v ∈ C \Pα,� . Consequently, for each inte-
ger j ∈ {0,1, . . . ,τ} and points u,v ∈ C \Pα, j the fourth formula is inductively shown.
Similarly, the first, second, and third formulae can be verified by using (2.1), (2.4), (2.6),
Lemma 4.1, and (4.1). �
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Observe that the first and second Christoffel-Darboux formulae in Theorem 4.2 co-
incide with the identities for orthogonal rational matrix-valued functions proved in [25,
Section 5] (see also [27, Theorem 3.10]). In view of Remark 2.1, these relations yield for
each integer j ∈ {0,1, . . . ,τ} and points u,v ∈ C \Pα, j directly

(
1− bαj(v)bαj(u)

) j∑

k=0

(
X#
k (v)

)∗
X#
k (u)

=
(

(Y #
j )[α, j](v)

)∗(
Y #
j

)[α, j]
(u)− bαj(v)bαj(u)

(
X#

j (v)
)∗
X#

j (u),

(4.7)

(
1− bαj(u)bαj(v)

) j∑

k=0

Y #
k (u)

(
Y #
k (v)

)∗

= (X#
j

)[α, j]
(u)
((
X#

j

)[α, j]
(v)
)∗ − bαj(u)bαj(v)Y #

j (u)
(
Y #
j (v)

)∗
.

(4.8)

The essential new information concerns the third and fourth Christoffel-Darboux for-
mulae in Theorem 4.2 which can be regarded as a matricial version of [6, the first identity
in Corollary 4.3.4]. Furthermore, the Christoffel-Darboux formulae in Theorem 4.2 can
be obviously restated as follows.

Corollary 4.3. For each integer � ∈ {1,2, . . . ,τ} and points u,v ∈ C \Pα,� , the following
Christoffel-Darboux formulae hold:

(
1− bα�(v)bα�(u)

) �−1∑

k=0

(
Xk(v)

)∗
Xk(u)=

(
Y [α,�]
� (v)

)∗
Y [α,�]
� (u)− (X�(v)

)∗
X�(u),

(
1− bα�(u)bα�(v)

) �−1∑

k=0

Yk(u)
(
Yk(v)

)∗ = X [α,�]
� (u)

(
X [α,�]
� (v)

)∗ −Y�(u)
(
Y�(v)

)∗
,

(
1− bα�(v)bα�(u)

) �−1∑

k=0

(
X#
k (v)

)∗
Xk(u)

=
2
(

1−∣∣α�
∣∣2
)

(
1−α�v

)(
1−uα�

) Iq−
((
Y #
�

)[α,�]
(v)
)∗
Y [α,�]
� (u)− (X#

� (v)
)∗
X�(u),

(
1− bα�(u)bα�(v)

) �−1∑

k=0

Yk(u)
(
Y #
k (v)

)∗

=
2
(

1−∣∣α�
∣∣2
)

(
1−uα�

)(
1−α�v

) Iq−X [α,�]
� (u)

((
X#
�

)[α,�]
(v)
)∗ −Y�(u)

(
Y #
� (v)

)∗
.

(4.9)

Remark 4.4. Similarly as performed in [25, Lemma 6.5], the first (or second) Christof-
fel-Darboux formulae with u = v = z, z ∈ T in Corollary 4.3 yield for each integer � ∈
{1,2, . . . ,τ} and point u∈ C \Pα,� an alternative approach (cf. Corollary 3.7) to the equal-

ity X [α,�]
� (u)X�(u)= Y�(u)Y [α,�]

� (u).
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Remark 4.5. Using the same strategy as in the case of orthogonal rational matrix-valued
functions (cf. [25, Section 7]), from the first (or second) Christoffel-Darboux formulae
with u = v in Corollary 4.3 one can conclude that, for each integer � ∈ {1,2, . . . ,τ} and

point u∈D, the relations detX [α,�]
� (u) �=0 and detY [α,�]

� (u) �= 0 are satisfied at which the
complex q× q matrices (X [α,�]

� (u))−1Y�(u) and X�(u)(Y [α,�]
� (u))−1 are strictly contractive

(cf. Corollary 3.2).

5. A characterization of Szegö pairs

In the previous section (see, e.g., Theorem 4.2), we have explained that a Szegö pair of
rational matrix-valued functions along with its dual Szegö pair fulfills some Christoffel-
Darboux formulae. Referring to this, we study now an inverse problem. Roughly speak-
ing, we will see that the realization of Christoffel-Darboux formulae is in a way also a
sufficient condition for rational matrix-valued functions to be dual Szegö pairs of ratio-
nal matrix-valued functions (cf. [27, Theorem 3.10]).

Remark 5.1. If � is a positive integer and if Xk,Yk, X#
k ,Y #

k ∈ �̆
q×q
α,k for each k ∈ {0,1, . . . ,�}

then, by setting j := �, the following statements are equivalent.
(i) The first (resp., second, third, or fourth) formula of Theorem 4.2 is satisfied.

(ii) The first (resp., second, third, or fourth) formula of Corollary 4.3 is satisfied.

Lemma 5.2. Let � be a positive integer and let Xk,Yk,X#
k ,Y #

k ∈ �̆
q×q
α,k for k ∈ {�− 1,�}. The

following statements are equivalent.
(i) The first (resp., third) identity of Lemma 4.1 is satisfied.

(ii) The second (resp., fourth) identity of Lemma 4.1 is satisfied.

Proof. If we fix v ∈ C \Pα,� then, in view of (2.1) and forming the adjoint with respect to
the � + 2 points α0,α1, . . . ,α� ,α�−1, the first identity of Lemma 4.1 is equal to

(
bα�−1(u)− bα�−1(v)

)(
Y�(u)Y [α,�]

� (v)−X [α,�]
� (u)X�(v)

)

= (bα�(u)− bα�(v)
)(
bα�−1(u)Y�−1(u)Y [α,�−1]

�−1 (v)− bα�−1(v)X [α,�−1]
�−1 (u)X�−1(v)

)
.

(5.1)

Since, by fixing now the point u∈ C \Pα,� and adjoining, this relation is equal to

(
bα�−1(v)bα�−1(u)− 1

)(
Y�(v)

(
Y�(u)

)∗ −X [α,�]
� (v)

(
X [α,�]
� (u)

)∗)

= (bα�(v)bα�(u)− 1
)(
bα�−1(u)bα�−1(v)Y�−1(v)

(
Y�−1(u)

)∗−X [α,�−1]
�−1 (v)

(
X [α,�−1]
�−1 (u)

)∗)
,

(5.2)

we obtain the equivalence of the first and the second identity of Lemma 4.1. Similarly,
one can conclude that the third and the fourth identity of Lemma 4.1 are equivalent. �

Lemma 5.3. Let X� ,Y� ,X#
� ,Y #

� ∈ �̆
q×q
α,� for each integer � ∈ {1,2, . . . ,τ} and let X0,Y0,X#

0 ,Y #
0

be the rational matrix-valued functions defined as in (2.4) and (2.6) for some nonsingu-
lar complex q× q matrices X0, Y0 satisfying the condition X∗

0 X0 = Y0Y∗0 . The following
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statements are equivalent.
(i) For each integer � ∈ {1,2, . . . ,τ}, the first (resp., second, third, or fourth) identity of

Lemma 4.1 is fulfilled.
(ii) For each integer j ∈ {1,2, . . . ,τ}, the first (resp., second, third, or fourth) identity of

Theorem 4.2 is fulfilled.

Proof. Using the same arguments as in the proof of Theorem 4.2, one can inductively
show that (i) implies (ii). It remains to verify that (ii) implicates also (i). Note that the
choice of X0, Y0 supplies immediately that the identities of Theorem 4.2 are also satisfied
for j = 0 (cf. the proof of Theorem 4.2). Thus, for each integer � ∈ {1,2, . . . ,τ} and points
u,v ∈ C \Pα,� , from (4.1), (ii), Remark 5.1, the fourth identity of Corollary 4.3, and the
fourth identity of Theorem 4.2, it follows that

kα�−1(u,v)
(
X [α,�]
� (u)

((
X#
�

)[α,�]
(v)
)∗

+Y�(u)
(
Y #
� (v)

)∗
)

=−kα�−1(u,v)

⎛
⎜⎝

2
(

1−∣∣α�
∣∣2
)

(
1−uα�

)(
1−α�v

) Iq−X [α,�]
� (u)

((
X#
�

)[α,�]
(v)
)∗ −Y�(u)

(
Y #
� (v)

)∗
⎞
⎟⎠

+
2
(

1−∣∣α�
∣∣2
)(

1−∣∣α�−1
∣∣2
)(

1−uv
)

(
1−uα�

)(
1−α�v

)(
1−uα�−1

)(
1−α�−1v

) Iq

= kα�−1(u,v)kα�(u,v)
�−1∑

k=0

Yk(u)
(
Y #
k (v)

)∗
+ kα�(u,v)

2
(

1−∣∣α�−1
∣∣2
)

(
1−uα�−1

)(
1−α�−1v

) Iq

= kα�(u,v)
(
X [α,�−1]
�−1 (u)

((
X#
�−1

)[α,�−1]
(v)
)∗

+ bα�−1(u)bα�−1(v)Y�−1(u)
(
Y #
�−1(v)

)∗)
.

(5.3)

Consequently, with respect to the fourth kind of identities it is shown that (ii) yields (i).
Similarly by a straightforward calculation, one can prove this implication referring to the
first, second, and third kind of identities, respectively. �

Theorem 5.4. Let (Xj)τj=0, (Yj)τj=0 be such that Xj ,Yj ∈ �̆
q×q
α, j and the first (or second)

identity of Theorem 4.2 is fulfilled for each integer j ∈ {0,1, . . . ,τ} as well as that X0(α0),

Y0(α0) are nonsingular matrices. Then the matrices X [α,�]
� (α�−1), Y [α,�]

� (α�−1) are nonsingu-
lar for each integer � ∈ {1,2, . . . ,τ} and if in addition

η�η�−1

1−α�α�−1

(
X [α,�]
� (α�−1)

)−1
X [α,�−1]
�−1 (α�−1),

η�η�−1

1−α�α�−1
Y [α,�−1]
�−1 (α�−1)

(
Y [α,�]
� (α�−1)

)−1

(5.4)

are positive Hermitian matrices and if in that case

E� := η�η�−1

(
X [α,�]
� (α�−1)

)−1
Y�(α�−1), � ∈ {1,2, . . . ,τ}, (5.5)

X0 :=√1−|α0|2X0(α0), and Y0 :=√1−|α0|2Y0(α0), then [(Xj)τj=0, (Yj)τj=0] is the Szegö pair
of rational matrix-valued functions generated by [(αj)τj=0; (E�)τ�=1;X0,Y0]. Moreover in that
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case, if (X#
j )τj=0, (Y #

j )τj=0 are chosen such that X#
j ,Y #

j ∈ �̆
q×q
α, j and (4.7) (or (4.8)) is fulfilled

for each integer j ∈ {0,1, . . . ,τ}, then the following statements are equivalent.
(i) [(X#

j )τj=0, (Y #
j )τj=0] is the dual Szegö pair of [(Xj)τj=0, (Yj)τj=0].

(ii) (X#
0(α0))∗X#

0(α0) = (1 − |α0|2)(X#
0(α0))∗X#

0(α0)X∗
0 X0(X#

0(α0))∗X#
0(α0) (or Y #

0(α0)
(Y #

0(α0))∗ = (1 − |α0|2)Y #
0(α0)(Y #

0(α0))∗Y0Y∗0 Y
#
0(α0)(Y #

0(α0))∗ ) and the third (or
fourth) identity of Theorem 4.2 is fulfilled for each integer j ∈ {0,1, . . . ,τ}.

(iii) X#
0 (α0)=1/(1− |α0|2)((X0(α0))−1)∗, Y #

0 (α0)=1/(1− |α0|2)((Y0(α0))−1)∗, and for
each integer � ∈ {1,2, . . . ,τ} the three relations below are satisfied:

(
X [α,�]
�

(
α�−1

))−1
Y�
(
α�−1

)=−((X#
�

)[α,�](
α�−1

))−1
Y #
�

(
α�−1

)
,

(
X [α,�]
�

(
α�−1

))−1
X [α,�−1]
�−1

(
α�−1

)= ((X#
�

)[α,�](
α�−1

))−1(
X#
�−1

)[α,�−1](
α�−1

)
,

Y [α,�−1]
�−1

(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1 = (Y #
�−1

)[α,�−1](
α�−1

)((
Y #
�

)[α,�](
α�−1

))−1
.

(5.6)

Proof. First, we consider the case j = 0. Since X0,Y0 ∈ �̆
q×q
α,0 , the definitions

X0 :=
√

1−∣∣α0
∣∣2
X0
(
α0
)
, Y0 :=

√
1−∣∣α0

∣∣2
Y0
(
α0
)

(5.7)

imply immediately that X0 and Y0 admit the representations in (2.4), where X0 and Y0 are
nonsingular complex q× q matrices. Furthermore, from the first (resp., second) identity
of Theorem 4.2 we get

(
X0(v)

)∗
X0(u)=

(
Y [α,0]

0 (v)
)∗
Y [α,0]

0 (u)

(
resp., Y0(u)

(
Y0(v)

)∗ = X [α,0]
0 (u)

(
X [α,0]

0 (v)
)∗) (5.8)

for each u,v ∈ C \Pα,0. Hence, in view of (2.1) and (2.4), it follows X∗
0 X0 = Y0Y∗0 . Par-

ticularly for the case τ = 0 it is shown that [(Xj)τj=0, (Yj)τj=0] is the Szegö pair of rational
matrix-valued functions generated by [(αj)τj=0; (E�)τ�=1;X0,Y0].

Now let τ be a positive integer or ∞ and let � be an integer belonging to {1,2, . . . ,τ}.
Because of the choice of (Xj)τj=0 and (Yj)τj=0, Lemmas 5.2 and 5.3 (which include espe-
cially that at any rate the first identity of Lemma 4.1 is fulfilled), Remarks 5.1 and 4.5 we

obtain that the matrices X [α,�]
� (u), Y [α,�]

� (u) are nonsingular for each u∈D and by using
bα�−1(α�−1)= 0 that

(
Y [α,�]
�

(
α�−1

))∗
Y [α,�]
� (u)− (X�

(
α�−1

))∗
X�(u)

= (1− bα�−1(u)bα�−1

(
α�−1

))((
Y [α,�]
�

(
α�−1

))∗
Y [α,�]
� (u)− (X�

(
α�−1

))∗
X�(u)

)

= (1− bα�(u)bα�
(
α�−1

))(
Y [α,�−1]
�−1

(
α�−1

))∗
Y [α,�−1]
�−1 (u)

(5.9)
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for all u∈C \Pα,� . Notably, we have that X [α,�]
� (α�−1),Y [α,�]

� (α�−1) are nonsingular as well
as by the choice of E� , Remarks 4.4, 4.5, and 5.1 that

E� = η�η�−1

(
X [α,�]
�

(
α�−1

))−1
Y�
(
α�−1

)= η�η�−1X�
(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1
(5.10)

and therefore

(
Y [α,�]
�

(
α�−1

))∗(
Iq−E∗� E�

)
Y [α,�]
�

(
α�−1

)

=
(
Y [α,�]
�

(
α�−1

))∗
Y [α,�]
�

(
α�−1

)− (X�
(
α�−1

))∗
X�
(
α�−1

)

=
(

1−∣∣bα�
(
α�−1

)∣∣2
)(

Y [α,�−1]
�−1

(
α�−1

))∗
Y [α,�−1]
�−1

(
α�−1

)
.

(5.11)

This implies that E� is a strictly contractive q× q matrix and that

(
Iq−E∗� E�

)1/2 = η�η�−1

√(
1−∣∣α�

∣∣2)(
1−∣∣α�−1

∣∣2)

1−α�α�−1
Y [α,�−1]
�−1

(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1
,

(5.12)

in view of (4.1) and the assumption that

η�η�−1

1−α�α�−1
Y [α,�−1]
�−1

(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1
(5.13)

is a positive Hermitian matrix. Moreover, (5.9) yields by virtue of (2.1) the equality

Y�(u)Y [α,�]
�

(
α�−1

)−X [α,�]
� (u)X�

(
α�−1

)= (bα�(u)−bα�
(
α�−1

))
Y�−1(u)Y [α,�−1]

�−1

(
α�−1

)

(5.14)

for each u∈ C \Pα,� . Consequently, an application of (5.10) and (5.12) provides

η�η�−1Y�(u)−X [α,�]
� (u)E�

=η�η�−1Y�(u)−η�η�−1X
[α,�]
� (u)X�

(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1

=η�η�−1
(
bα�(u)−bα�

(
α�−1

))
Y�−1(u)Y [α,�−1]

�−1

(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1

=
(
1−α�α�−1

)(
bα�(u)− bα�

(
α�−1

))
√(

1−∣∣α�
∣∣2
)(

1−∣∣α�−1
∣∣2
) Y�−1(u)

(
Iq−E∗� E�

)1/2

(5.15)

for each u∈ C \Pα,� . Similarly, by using Lemmas 5.2, 5.3, Remarks 4.5, and 5.1, based on
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the second identity of Lemma 4.1 one can obtain that

(
Iq−E�E∗� )1/2 =

η�η�−1

√(
1−∣∣α�

∣∣2
)(

1−∣∣α�−1
∣∣2
)

1−α�α�−1

(
X [α,�]
�

(
α�−1

))−1
X [α,�−1]
�−1

(
α�−1

)

(5.16)

and that the recurrence relation

η�η�−1X�(u)−E�Y
[α,�]
� (u)=

(
1−α�α�−1

)(
bα�(u)− bα�

(
α�−1

))
√(

1−∣∣α�
∣∣2
)(

1−∣∣α�−1
∣∣2
)
(

Iq−E�E∗�
)1/2

X�−1(u)

(5.17)

is satisfied for each u ∈ C \ Pα,� . In the end, from Proposition 2.4 one can conclude
that [(Xj)τj=0, (Yj)τj=0] is the Szegö pair of rational matrix-valued functions generated by
[(αj)τj=0; (E�)τ�=1;X0,Y0].

It remains to prove the equivalence of (i), (ii), and (iii). Because of (2.6), (5.7), and
Theorem 4.2 the statement (ii) follows from (i). Now we assume (ii). Since the functions
X#

0 and Y #
0 belong to �̆

q×q
α,0 , the definitions

X#
0 :=

√
1−∣∣α0

∣∣2
X#

0

(
α0
)
, Y#

0 :=
√

1−∣∣α0
∣∣2
Y #

0

(
α0
)

(5.18)

imply immediately that X#
0 and Y #

0 admit the representations

X#
0 (u) :=

√
1−∣∣α0

∣∣2

1−α0u
X#

0, Y #
0 (u) :=

√
1−∣∣α0

∣∣2

1−α0u
Y#

0, u∈ C \Pα,0, (5.19)

where X#
0 and Y#

0 are some complex q× q matrices. From (2.1), (5.19), and the identity
(4.7) (or (4.8)) with j = 0 we get, similar as above,

(
X#

0

)∗
X#

0 = Y#
0

(
Y#

0

)∗
(5.20)

as well as, in view of the third (or fourth) identity of Theorem 4.2, it follows that

(
X#

0

)∗
X0 + Y#

0Y∗0 = 2Iq
(
or X∗

0 X#
0 + Y0

(
Y#

0

)∗ = 2Iq
)
. (5.21)

Thus, we have at any rate

(−Y0 X∗
0

Y#
0

(
X#

0

)∗

)(
−(Y#

0

)∗
Y∗0

X#
0 X0

)
= 2

(
Iq 0q

0q Iq

)
, (5.22)

which implicates

(
−(Y#

0

)∗
Y∗0

X#
0 X0

)(−Y0 X∗
0

Y#
0

(
X#

0

)∗

)
= 2

(
Iq 0q

0q Iq

)
. (5.23)
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In particular, the equality

X#
0X∗

0 + X0
(

X#
0

)∗ = 2Iq (5.24)

is fulfilled. Moreover, by virtue of (5.18) and (5.20) we see that the relation

(
X#

0

(
α0
))∗

X#
0

(
α0
)=
(

1−∣∣α0
∣∣2
)(
X#

0

(
α0
))∗

X#
0

(
α0
)

X∗
0 X0

(
X#

0

(
α0
))∗

X#
0

(
α0
)

(5.25)

is tantamount to

Y #
0

(
α0
)(
Y #

0

(
α0
))∗=

(
1−∣∣α0

∣∣2
)
Y #

0

(
α0
)(
Y #

0

(
α0
))∗

Y0Y∗0 Y
#
0

(
α0
)(
Y #

0

(
α0
))∗

. (5.26)

Because (5.24) supplies that the real part of X#
0X∗

0 is a positive Hermitian matrix, [11,
Lemma 1.1.13 (c)] shows that even X#

0 is a nonsingular matrix. Hence, (5.18) and (5.25)
yield (X#

0)∗X#
0 = (X∗

0 X0)−1 such that from (5.24) one can get

(
Iq−X0

(
X#

0

)∗)2 = 0q. (5.27)

Using this equality in combination with the fact that the real part of Iq −X0(X#
0)∗ is 0q

(cf. (5.24)) one can conclude X#
0 = (X−1

0 )∗. Therefore, from (5.21) it follows in addition
that Y#

0 = (Y−1
0 )∗. In view of (5.7) and (5.18), we have

X#
0

(
α0
)= 1

1−∣∣α0
∣∣2

((
X0
(
α0
))−1

)∗
, Y #

0

(
α0
)= 1

1−∣∣α0
∣∣2

((
Y0
(
α0
))−1

)∗
.

(5.28)

Since the identity (4.7) (or (4.8)) is fulfilled for each integer j ∈ {0,1, . . . ,τ}, as above we
see at least from Remark 4.5 that (X#

� )[α,�](α�−1),(Y #
� )[α,�](α�−1) are nonsingular matrices

for each integer � ∈ {1,2, . . . ,τ}. Because of (ii), Lemmas 5.2, 5.3 (which include that at
any rate the third identity of Lemma 4.1 is fulfilled), and bα�−1(α�−1)= 0 one can reason

((
Y #
�

)[α,�](
α�−1

))∗
Y [α,�]
� (u) +

(
X#
�

(
α�−1

))∗
X�(u)

= (1−bα�(u)bα�
(
α�−1

))((
Y #
�−1

)[α,�−1](
α�−1

))∗
Y [α,�−1]
�−1 (u)

(5.29)

for each integer � ∈ {1,2, . . . ,τ} and point u∈ C \Pα,� . By virtue of (2.1) we get

Y�(u)
(
Y #
�

)[α,�](
α�−1

)
+X [α,�]

� (u)X#
�

(
α�−1

)

= (bα�(u)−bα�
(
α�−1

))
Y�−1(u)

(
Y #
�−1

)[α,�−1](
α�−1

) (5.30)
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for each integer � ∈ {1,2, . . . ,τ} and point u ∈ C \Pα,� . Choosing in this equality at first
u= α�−1, one can see

(
X [α,�]
�

(
α�−1

))−1
Y�
(
α�−1

)=−X#
�

(
α�−1

)((
Y #
�

)[α,�](
α�−1

))−1
, (5.31)

and then in view of (5.10), (5.12), and (5.15) also

Y [α,�−1]
�−1

(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1 = (Y #
�−1

)[α,�−1](
α�−1

)((
Y #
�

)[α,�](
α�−1

))−1
(5.32)

for each integer � ∈ {1,2, . . . ,τ}. Similarly, by using Lemmas 5.2, 5.3, and based on the
fourth identity of Lemma 4.1 one can obtain that

X�
(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1 =−
((
X#
�

)[α,�](
α�−1

))−1
Y #
�

(
α�−1

)
,

(
X [α,�]
�

(
α�−1

))−1
X [α,�−1]
�−1

(
α�−1

)=
((
X#
�

)[α,�](
α�−1

))−1(
X#
�−1

)[α,�−1](
α�−1

)
.

(5.33)

Consequently (note (5.28) and again (5.10)), the statement (iii) is fulfilled. Finally, we
show that (iii) implies (i). Since X#

0 ,Y #
0 ∈ �̆

q×q
α,0 , the relations (5.7) and (5.28) imply that

X#
0 and Y #

0 admit the representations in (5.7). Furthermore, from (iii), the choice of E� ,
(5.12), and (5.16), it follows that

−E� =−η�η�−1

(
X [α,�]
�

(
α�−1

))−1
Y�
(
α�−1

)= η�η�−1

((
X#
�

)[α,�](
α�−1

))−1
Y #
�

(
α�−1

)
,

(
Iq−E�E∗�

)1/2

=
η�η�−1

√(
1−∣∣α�

∣∣2
)(

1−∣∣α�−1
∣∣2
)

1−α�α�−1

((
X#
�

)[α,�](
α�−1

))−1(
X#
�−1

)[α,�−1](
α�−1

)
,

(
Iq−E∗� E�

)1/2

=
η�η�−1

√(
1−∣∣α�

∣∣2
)(

1−∣∣α�−1
∣∣2
)

1−α�α�−1

(
Y #
�−1

)[α,�−1](
α�−1

)((
Y #
�

)[α,�](
α�−1

))−1

(5.34)

for each integer � ∈ {1,2, . . . ,τ}. In particular, the matrices

η�η�−1

1−α�α�−1

((
X#
�

)[α,�](
α�−1

))−1(
X#
�−1

)[α,�−1](
α�−1

)
,

η�η�−1

1−α�α�−1

(
Y #
�−1

)[α,�−1](
α�−1

)((
Y #
�

)[α,�](
α�−1

))−1
(5.35)

are positive Hermitian for each integer � ∈ {1,2, . . . ,τ}. Thus, the considerations at the
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first part of the proof yield that [(X#
j )τj=0, (Y #

j )τj=0] is the Szegö pair of rational matrix-
valued functions generated by [(αj)τj=0; (−E�)τ�=1; (X−1

0 )∗, (Y−1
0 )∗], or in other words,

[(X#
j )τj=0, (Y #

j )τj=0] is the dual Szegö pair of [(Xj)τj=0, (Yj)τj=0]. �

Remark that, in view of Corollary 3.3 (cf. (5.10)), it is not hard to accept that for an
� ∈ {1,2, . . . ,τ} the definition of E� in Theorem 5.4 can be replaced by

E� := η�η�−1X�
(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1
(5.36)

and the left-hand side of the relation in the third line of (iii) by X�(α�−1)(Y [α,�]
� (α�−1))−1

or the right-hand side by −X#
� (α�−1)((Y #

� )[α,�](α�−1))−1.

6. On particular measures corresponding to the dual pairs

We study now an inverse question to Theorem 2.2. By using similar arguments as in [26,
Section 3], it is not hard to accept that if [(Xj)τj=0, (Yj)τj=0] is some Szegö pair of rational
matrix-valued functions, then there exists a nonnegative Hermitian q× q Borel measure
F on T so that [(Xj)τj=0, (Yj)τj=0] is exactly a Szegö pair of orthonormal systems corre-
sponding to (αj)τj=0 and F. The following considerations are to explain that the construc-
tion of such a measure occurring already in [26, Section 3] includes actually a simultane-
ous answer referring to the dual pair [(X#

j )τj=0, (Y #
j )τj=0] of [(Xj)τj=0, (Yj)τj=0]. For technical

reasons we prove before two useful results. Here and in the sequel, if A is a complex q× q
matrix, then
eA stands for the real part of A, that is,
eA := (1/2)(A + A∗).

Lemma 6.1. For each integer j ∈ {0,1, . . . ,τ} and point z ∈ T,

1−∣∣αj

∣∣2

∣∣z−αj

∣∣2

(
Xj(z)

)−1
((
Xj(z)

)−1
)∗

=
e
[(
X#

j

)[α, j]
(z)
(
X

[α, j]
j (z)

)−1]=
e
[(
Y

[α, j]
j (z)

)−1(
Y #
j

)[α, j]
(z)
]

= 1−∣∣αj

∣∣2

∣∣z−αj

∣∣2

((
Yj(z)

)−1
)∗(

Yj(z)
)−1

(6.1)

if [(Xj)τj=0, (Yj)τj=0] is a Szegö pair of rational matrix-valued functions generated by some
[(αj)τj=0; (E�)τ�=1;X0,Y0], where (E�)τ�=1 is a sequence of strictly contractive q× q matrices
and X0, Y0 are nonsingular q× q matrices fulfilling X∗

0 X0 = Y0Y∗0 .

Proof. Let j ∈ {0,1, . . . ,τ} and z ∈ T. In view of Corollary 3.2 and (2.1) it follows that the

matrices X
[α, j]
j (z), Y

[α, j]
j (z), Xj(z), and Yj(z) are nonsingular. Therefore, an application

of Corollary 3.7 yields


e

[(
X#

j

)[α, j]
(z)
(
X

[α, j]
j (z)

)−1
]
=
e

[(
Y

[α, j]
j (z)

)−1(
Y #
j

)[α, j]
(z)
]

(6.2)
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as well as by virtue of (2.1), z = 1/z, and |Bj(z)|2 = 1,

1−∣∣αj

∣∣2

∣∣z−αj

∣∣2

(
Xj(z)

)−1
((
Xj(z)

)−1
)∗

= 1−∣∣αj

∣∣2

∣∣z−αj

∣∣2

((
X

[α, j]
j (z)

)−1
)∗(

X
[α, j]
j (z)

)−1

= 1−αjz

−2ηj
(
1−αjz

)Bj(z)
((

X
[α, j]
j (z)

)−1
)∗(

− 2ηj
1−∣∣αj

∣∣2

(
1−αjz

)2 Bj(z)Iq

)(
X

[α, j]
j (z)

)−1

= 1
2
zBj(z)

((
X

[α, j]
j (z)

)−1
)∗(

Xj(z)
(
X#

j

)[α, j]
(z) +X#

j (z)X
[α, j]
j (z)

)(
X

[α, j]
j (z)

)−1

= 1
2

((
X

[α, j]
j (z)

)−1
)∗((

X
[α, j]
j (z)

)∗(
X#

j

)[α, j]
(z) +

((
X#

j

)[α, j]
(z)
)∗
X

[α, j]
j (z)

)(
X

[α, j]
j (z)

)−1

= 1
2

((
X#

j

)[α, j]
(z)
(
X

[α, j]
j (z)

)−1
+
((
X#

j

)[α, j]
(z)
(
X

[α, j]
j (z)

)−1)∗)

=
e

[(
X#

j

)[α, j]
(z)
(
X

[α, j]
j (z)

)−1
]

(6.3)

and similarly

1−∣∣αj

∣∣2

∣∣z−αj

∣∣2

((
Yj(z)

)−1
)∗(

Yj(z)
)−1 =
e

[(
Y

[α, j]
j (z)

)−1(
Y #
j

)[α, j]
(z)
]
. (6.4)

�

Lemma 6.2. If X̃n,Ỹn∈ �̆
q×q
α,n , then there is at most one Szegö pair of rational matrix-valued

functions [(Xj)nj=0, (Yj)nj=0] generated by some [(αj)nj=0; (E�)n�=1;X0,Y0] such that Xn = X̃n

and Yn = Ỹn, where (E�)n�=1 is a sequence of strictly contractive q× q matrices and X0, Y0

are nonsingular q× q matrices fulfilling X∗
0 X0 = Y0Y∗0 .

Proof. In the case n= 0, the assertion follows directly from (2.4). Since Corollary 3.3 and
(2.1) show that if [(Xj)nj=0, (Yj)nj=0] is the Szegö pair of rational matrix-valued functions
generated by some [(αj)nj=0; (E�)n�=1;X0,Y0], then for each integer � ∈ {1,2, . . . ,n} the pa-
rameter E� can be recovered via the elements X� and Y� and since Proposition 2.4 and
(2.1) yield that the elements X�−1 and Y�−1 are uniquely determined by X� , Y� , and E� , by
induction on n, one can finally conclude that the assertion is also fulfilled if n is a positive
integer. �

Remark that, by virtue of a well-known matricial version of a theorem due to Riesz-
Herglotz (see, e.g., [11, Theorem 2.2.2]), there is a correspondence between nonnegative
Hermitian Borel measures on T and matrix-valued Carathéodory functions. Recall that a
q× q Carathéodory function (inD) is a matrix function Ω fromD into the set of complex
q× q matrices which is holomorphic in D and which has a nonnegative Hermitian real
part 
eΩ(w) for each w ∈D. In particular, if Ω is a q× q Carathéodory function, then
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there is a unique nonnegative Hermitian q× q Borel measure F on T such that

Ω(w)− i�mΩ(0)=
∫

T

z+w

z−w
F(dz), w ∈D, (6.5)

where �mΩ(0) stands for the imaginary part of the complex q× q matrix Ω(0), that is,
�mΩ(0) := (1/2i)(Ω(0)− (Ω(0))∗ ). This unique measure F is called the Riesz-Herglotz
measure associated with Ω.

In the following, the notation λ stands for the (ordinary) linear Lebesgue Borel mea-
sure on T (not normalized, i.e., λ(T)= 2π).

Theorem 6.3. Let [(Xj)nj=0, (Yj)nj=0] be the Szegö pair of rational matrix-valued func-
tions generated by [(αj)nj=0; (E�)n�=1;X0,Y0] for some nonnegative integer n, some sequence
(E�)n�=1 of strictly contractive q× q matrices, and some nonsingular complex q× q matrices
X0, Y0 fulfilling X∗

0 X0 = Y0Y∗0 . By the relation

Fn(A) := 1
2π

∫

A

1−∣∣αn
∣∣2

∣∣z−αn
∣∣2

(
Xn(z)

)−1
((
Xn(z)

)−1
)∗

λ(dz), A∈BT, (6.6)

a nonnegative Hermitian q× q Borel measure on T is well defined, whereby

Fn(A)= 1
2π

∫

A

1−∣∣αn
∣∣2

∣∣z−αn
∣∣2

((
Yn(z)

)−1
)∗(

Yn(z)
)−1

λ(dz), A∈BT, (6.7)

and [(Xj)nj=0,(Yj)nj=0] is a Szegö pair of orthonormal systems corresponding to (αj)nj=0 and
Fn. Further, if [(X#

j)
n
j=0,(Y#

j)
n
j=0] is the dual Szegö pair of [(Xj)nj=0,(Yj)nj=0], then

Ωn(w) := (X#
n

)[α,n]
(w)
(
X [α,n]
n (w)

)−1
, w ∈D, (6.8)

defines a q× q Carathéodory function, whereby

Ωn(w)=
(
Y [α,n]
n (w)

)−1(
Y #
n

)[α,n]
(w), w ∈D, (6.9)

and Fn is the Riesz-Herglotz measure associated with Ωn.

Proof. From Lemma 6.1 one can particularly see that the measure Fn is well defined and
that Fn admits also the second representation. Moreover, Corollary 3.2 implies that Ωn

is well defined and actually that Ωn is a q× q Carathéodory function. In combination
with Corollary 3.7 we obtain then the second description of Ωn. Since property (I) of

adjoint rational functions and Corollary 3.2 show that the function (X#
n)[α,n](X [α,n]

n )−1 is
holomorphic in a disk enclosing T, an application of Poisson’s formula yields

Ωn(w)= (X#
n

)[α,n]
(w)
(
X [α,n]
n (w)

)−1

= 1
2π

∫

T

1−|w|2
|z−w|2

(
X#
n

)[α,n]
(z)
(
X [α,n]
n (z)

)−1
λ(dz), w ∈D.

(6.10)
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Hence, from Lemma 6.1 and

1−|w|2
|z−w|2 =
e

[
z+w

z−w

]
, z ∈ T, (6.11)

it follows that


eΩn(w)= 1
2π

∫

T

1−|w|2
|z−w|2
e

[(
X#
n

)[α,n]
(z)
(
X [α,n]
n (z)

)−1]
λ(dz)

= 1
2π

∫

T

1−|w|2
|z−w|2

1−∣∣αn
∣∣2

∣∣z−αn
∣∣2

(
Xn(z)

)−1
((
Xn(z)

)−1
)∗

λ(dz)

= 1
2π

∫

T

e

[
z+w

z−w

]
1−∣∣αn

∣∣2

∣∣z−αn
∣∣2

(
Xn(z)

)−1
((
Xn(z)

)−1
)∗

λ(dz)

=
e

[
1

2π

∫

T

(
z+w

z−w

)
1−∣∣αn

∣∣2

∣∣z−αn
∣∣2

(
Xn(z)

)−1
((
Xn(z)

)−1
)∗

λ(dz)
]

=
e

[∫

T

z+w

z−w
Fn(dz)

]
, w ∈D.

(6.12)

Therefore, because Ωn is holomorphic inD and also by

ΩFn(w) :=
∫

T

z+w

z−w
Fn(dz), w ∈D, (6.13)

a holomorphic function in D is defined (see, e.g., [11, Theorem 2.2.2]), the Cauchy-Rie-
mann differential equations imply that

Ωn(w)=ΩFn(w) + iH, w ∈D, (6.14)

for some Hermitian q× q matrix H, that is, Fn is the Riesz-Herglotz measure associated
with Ωn. By virtue of the definition of Fn (cf. [23, Example 5.4], [25, Corollary 4.4], and
[26, Remark 2.2]) there exists a Szegö pair of orthonormal systems [(X̃ j)nj=0, (Ỹ j)nj=0] cor-
responding to (αj)nj=0 and Fn. Let j ∈ {0,1, . . . ,n}. Since properties (I), (II) of adjoint ra-

tional matrix-valued functions and Corollary 3.2 show that the function (X [α,n]
n )−1X [α,n]

j

is holomorphic in a disk enclosing T and that the identity (X [α,n]
n )−1(αn)X [α,n]

j (αn)= δnjIq
is fulfilled, an application of Poisson’s formula yields

∫

T
Xn(z)Fn(dz)

(
Xj(z)

)∗

= 1
2π

∫

T

1−∣∣αn
∣∣2

∣∣z−αn
∣∣2 Xn(z)

(
Xn(z)

)−1
((
Xn(z)

)−1
)∗(

Xj(z)
)∗

λ(dz)

= 1
2π

∫

T

1−∣∣αn
∣∣2

∣∣z−αn
∣∣2

((
Xn

(
1
z

))−1
)∗(

Xj

(
1
z

))∗
λ(dz)

= 1
2π

∫

T

1−∣∣αn
∣∣2

∣∣z−αn
∣∣2

(
X [α,n]
n (z)

)−1
X [α,n]

j (z)λ(dz)= δnjIq.

(6.15)
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Similarly, using the second description of Fn and Poisson’s formula we obtain

∫

T

(
Yj(z)

)∗
Fn(dz)Yn(z)= δjnIq. (6.16)

Thus (cf. [25, Remark 3.1 and Lemma 3.2] and note Remark 3.4), there exist some unitary
q× q matrices U and V such that the equalities Xn=UX̃n and Yn= ỸnV are satisfied. Since
the choice of [(X̃ j)nj=0, (Ỹ j)nj=0] and Theorem 2.2 (note also [26, Remark 2.3]) imply that

[(UX̃ j)nj=0, (Ỹ jV)nj=0] is the Szegö pair of rational matrix-valued functions generated by

[(αj)nj=0; (UẼ�V)n�=1;UX̃0, Ỹ0V], where

Ẽ� :=η�η�−1

(
X̃ [α,�]
�

(
α�−1

))−1
Ỹ�
(
α�−1

)
, � ∈ {1,2, . . . ,n}, (6.17)

X̃0:=√1−|α0|2X̃0(α0), and Ỹ0:=√1−|α0|2Ỹ0(α0), from Lemma 6.2 we can conclude that
Xj =UX̃ j and Yj = Ỹ jV for each j ∈ {0,1, . . . ,n}. Hence,

∫

T
Xj(z)Fn(dz)

(
Xk(z)

)∗=U
(∫

T
X̃ j(z)Fn(dz)

(
X̃k(z)

)∗
)

U∗= δjkUU∗= δjkIq,

∫

T

(
Yj(z)

)∗
Fn(dz)Yk(z)=V∗

(∫

T

(
Ỹ j(z)

)∗
Fn(dz) Ỹk(z)

)
V= δjkV∗V= δjkIq

(6.18)

for each j,k ∈ {0,1, . . . ,n}. Finally, Corollary 3.3 yields that the matrices

η�η�−1

1−α�α�−1

(
X [α,�]
�

(
α�−1

))−1
X [α,�−1]
�−1

(
α�−1

)
,

η�η�−1

1−α�α�−1
Y [α,�−1]
�−1

(
α�−1

)(
Y [α,�]
�

(
α�−1

))−1

(6.19)

are positive Hermitian for each � ∈ {1,2, . . . ,n} such that [(Xj)nj=0, (Yj)nj=0] is actually a
Szegö pair of orthonormal systems corresponding to (αj)nj=0 and Fn. �

Note that Theorem 6.3 can be considered in a sense as an extension of [6, Theorem
4.2.6 and Lemma 8.1.3] to the matrix case. Furthermore, an alternative proof of a matri-
cial version of [6, Lemma 8.1.3] is given in [26, Theorem 3.5].

Example 6.4. If X̃n∈ �̆
q×q
α,n (resp., Ỹn∈ �̆

q×q
α,n ) fulfilling the condition det X̃ [α,n]

n (u) �= 0

(resp., det Ỹ [α,n]
n (u) �= 0) for each u ∈D∪T, then similar as performed in [27, Lemmas

4.1 and 4.2], there exists a left (resp., right) orthonormal system (Zj)nj=0 corresponding
to (αj)nj=0 and the nonnegative Hermitian q× q Borel measure on T which is given, for
each A∈BT, by the relation

FL(A) := 1
2π

∫

A

1−∣∣αn
∣∣2

∣∣z−αn
∣∣2

(
X̃n(z)

)−1((
X̃n(z)

)−1)∗
λ(dz)

⎛
⎝resp., FR(A) := 1

2π

∫

A

1−∣∣αn
∣∣2

∣∣z−αn
∣∣2

((
Ỹn(z)

)−1)∗(
Ỹn(z)

)−1
λ(dz)

⎞
⎠

(6.20)
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such that Zn = X̃n (resp., Zn = Ỹn). In particular, if for each z ∈ T the additional condition
(X̃n(z))∗X̃n(z)= Ỹn(z)(Ỹn(z))∗ is satisfied, then FL = FR and, in view of [26, Remarks 2.2
and 2.3], Theorem 2.2, and Lemma 6.2, there is exactly one Szegö pair [(Xj)nj=0, (Yj)nj=0]

generated by some [(αj)nj=0; (E�)n�=1;X0,Y0] such that Xn = X̃n and Yn = Ỹn. Moreover,
Theorem 6.3 implies that

Ω(w) :=
∫

T

z+w

z−w
FL(dz), w ∈D, (6.21)

defines a q× q Carathéodory function which is the restriction of a rational matrix-valued
function ontoD, where the elements X#

n and Y #
n of the dual Szegö pair [(X#

j )nj=0, (Y #
j )nj=0]

of [(Xj)nj=0, (Yj)nj=0] can be used to compute Ω or vice versa.

Due to Remark 2.1, from Theorem 6.3 one can conclude directly the following.

Corollary 6.5. Let [(Xj)nj=0, (Yj)nj=0] be the Szegö pair of rational matrix-valued functions
generated by [(αj)nj=0; (E�)n�=1;X0,Y0] for some nonnegative integer n, some sequence (E�)n�=1

of strictly contractive q× q matrices, and some nonsingular complex q× q matrices X0, Y0

fulfilling the condition X∗
0 X0 = Y0Y∗0 . Furthermore, let [(X#

j )nj=0, (Y #
j )nj=0] be the dual Szegö

pair of [(Xj)nj=0, (Yj)nj=0]. By

F#
n(A) := 1

2π

∫

A

1−∣∣αn
∣∣2

∣∣z−αn
∣∣2

(
X#
n(z)

)−1
((
X#
n(z)

)−1
)∗

λ(dz), A∈BT, (6.22)

a nonnegative Hermitian q× q Borel measure on T is well defined, whereby

F#
n(A)= 1

2π

∫

A

1−∣∣αn
∣∣2

∣∣z−αn
∣∣2

((
Y #
n (z)

)−1
)∗(

Y #
n (z)

)−1
λ(dz), A∈BT, (6.23)

and [(X#
j )nj=0, (Y #

j )nj=0] is a Szegö pair of orthonormal systems corresponding to (αj)nj=0 and
F#
n . Moreover,

Ω#
n(w) := X [α,n]

n (w)
((
X#
n

)[α,n]
(w)
)−1

, w ∈D, (6.24)

defines a q× q Carathéodory function, whereby

Ω#
n(w)=

((
Y #
n

)[α,n]
(w)
)−1

Y [α,n]
n (w), w ∈D, (6.25)

and F#
n is the Riesz-Herglotz measure associated with Ω#

n.

Remark 6.6. The interrelation between the q× q Carathéodory functions occurring in
Theorem 6.3 and Corollary 6.5 is given by the equalityΩ#

n(w)=(Ωn(w))−1, w∈D. Hence,
in view of the notion given in [11, Definition 3.6.10], the nonnegative Hermitian q× q
Borel measure F#

n defined in Corollary 6.5 is the reciprocal measure corresponding to
the measure Fn defined in Theorem 6.3 if and only if the Hermitian q× q matrix H that
appears in the proof of Theorem 6.3 is equal to the zero matrix 0q. In particular, if α0 = 0,
then Corollary 3.10 yields H= 0q.
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By using some well-known results on weak convergence of nonnegative Hermitian
q× q Borel measures (see, e.g., [20]) we study now a little the case of Szegö pairs of infinite
sequences of rational matrix-valued functions. Note that one says that a sequence (Fn)∞n=0

of nonnegative Hermitian q× q Borel measures on T converges weakly to a nonnegative
Hermitian q× q Borel measure F on T if

lim
n→∞

∫

T
hFn(dz)=

∫

T
hF(dz) (6.26)

for each bounded, continuous, and real-valued function h on T.

Theorem 6.7. Let [(Xj)∞j=0, (Yj)∞j=0] be the Szegö pair of rational matrix-valued functions
generated by [(αj)∞j=0; (E�)∞�=1;X0,Y0] and let [(X#

j )∞j=0, (Y #
j )∞j=0] be the dual Szegö pair of

[(Xj)∞j=0, (Yj)∞j=0] for some sequence (E�)∞�=1 of strictly contractive q× q matrices and non-
singular complex q× q matrices X0, Y0 fulfilling X∗

0 X0 = Y0Y∗0 . If Fn, Ωn and F#
n , Ω#

n are
given as in Theorem 6.3 and Corollary 6.5 for each nonnegative integer n, then there exist a
subsequence (Fnm)∞m=0 of (Fn)∞n=0, a subsequence (F#

nm)∞m=0 of (F#
n)∞n=0, and some nonnegative

Hermitian q× q Borel measures F, F# so that (Fnm)∞m=0 converges weakly to F and (F#
nm)∞m=0

converges weakly to F#. In particular, [(Xj)∞j=0, (Yj)∞j=0] is a Szegö pair of orthonormal sys-
tems corresponding to (αj)∞j=0 and F, [(X#

j )∞j=0, (Y #
j )∞j=0] is a Szegö pair of orthonormal sys-

tems corresponding to (αj)∞j=0 and F#, and

Ω(w) := lim
m→∞Ωnm(w), Ω#(w) := lim

m→∞Ω
#
nm(w), w ∈D, (6.27)

define q× q Carathéodory functions, whereby

Ω#(w)= (Ω(w)
)−1

, w ∈D, (6.28)

F is the Riesz-Herglotz measure associated with Ω, and F# is the Riesz-Herglotz measure
associated with Ω#.

Proof. Let n be a nonnegative integer. Since

1−∣∣α0
∣∣

1 +
∣∣α0
∣∣ ≤

1−∣∣α0
∣∣2

∣∣z−α0
∣∣2 =
e

[
z+α0

z−α0

]
, z ∈ T, (6.29)

and since Theorem 6.3, Corollaries 3.10 and 6.5 imply

∫

T

e

[
z+α0

z−α0

]
Fn(dz)=
eΩn(α0)=Ωn(α0)= (X∗

0 X0)−1,

∫

T

e

[
z+α0

z−α0

]
F#
n(dz)=
eΩ#

n(α0)= (Ωn(α0)
)−1 =X∗

0 X0,

(6.30)

it follows that the sets {F0(T),F1(T),F2(T), . . .} and {F#
0 (T),F#

1 (T),F#
2 (T), . . .} are

bounded. Therefore, a twofold application of a theorem due to Helly-Prohorov according
to [11, Lemma 2.2.1] (see also [20, Satz 9]) provides the existence of some nonnegative
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Hermitian q× q Borel measures F, F#, a subsequence (Fnm)∞m=0 of (Fn)∞n=0 which con-
verges weakly to F, and a subsequence (F#

nm)∞m=0 of (F#
n)∞n=0 which converges weakly to

F#.
Theorem 6.3 yields that [(Xj)nj=0, (Yj)nj=0] is a Szegö pair of orthonormal systems cor-

responding to (αj)nj=0 and Fn. Applying [20, Satz 3] we obtain for all nonnegative integers
j, k the equality

∫

T
Xj(z)F(dz)

(
Xk(z)

)∗ = lim
m→∞

∫

T
Xj(z)Fnm(dz)

(
Xk(z)

)∗ = δjkIq,

∫

T

(
Yj(z)

)∗
F(dz)Yk(z)= lim

m→∞

∫

T

(
Yj(z)

)∗
Fnm(dz)Yk(z)= δjkIq,

(6.31)

that is, [(Xj)∞j=0, (Yj)∞j=0] is a pair of orthonormal systems corresponding to (αj)∞j=0 and
F. Corollary 3.3 yields that [(Xj)∞j=0, (Yj)∞j=0] is actually a Szegö pair of orthonormal sys-
tems corresponding to (αj)∞j=0 and F. Similarly, from Corollary 6.5, [20, Satz 3], and
Corollary 3.3 one can conclude that [(X#

j )∞j=0, (Y #
j )∞j=0] is a Szegö pair of orthonormal

systems corresponding to (αj)∞j=0 and F#.
Now let w ∈D. Because

hw(z) := z+w

z−w
, z ∈ T, (6.32)

defines a bounded, continuous, and complex-valued function onT, we get from Theorem
6.3, Corollary 3.10, and the choice of F particularly

lim
m→∞ i�mΩnm(0)= lim

m→∞Ωnm

(
α0
)− lim

m→∞

∫

T

z+α0

z−α0
Fnm(dz)= (X∗

0 X0
)−1−

∫

T

z+α0

z−α0
F(dz),

(6.33)

and hence

Ω(w)= lim
m→∞Ωnm(w)= lim

m→∞

∫

T

z+w

z−w
Fnm(dz) + lim

m→∞ i�mΩnm(0)=
∫

T

z+w

z−w
F(dz) + iH

(6.34)

for some Hermitian q× q matrix H. Similarly, it follows that

Ω#(w)=
∫

T

z+w

z−w
F#(dz) + iH# (6.35)

for some Hermitian q× q matrix H#. Consequently, Ω and Ω# are q× q Carathéodory
functions, whereby F is the Riesz-Herglotz measure associated with Ω and F# is the Riesz-
Herglotz measure associated with Ω#. Finally, Corollary 3.10 provides


eΩ
(
α0
)= lim

m→∞
eΩnm

(
α0
)= lim

m→∞Ωnm

(
α0
)= (X∗

0 X0
)−1

(6.36)

such that [11, Proposition 2.1.3 (c) and Lemma 1.1.13 (c)] yield that the matrix Ω(w) is
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nonsingular, whereby in view of Remark 6.6 it follows that

Ω#(w)= lim
m→∞Ω

#
nm(w)= lim

m→∞
(
Ωnm(w)

)−1 = (Ω(w)
)−1

. (6.37)
�

Example 6.8. If [(Xj)nj=0, (Yj)nj=0] is the Szegö pair of rational matrix-valued functions
generated by [(αj)nj=0; (E�)n�=1;X0,Y0] and if [(X#

j )nj=0, (Y #
j )nj=0] stands for its dual Szegö

pair as in Theorem 6.3, then there is an obvious choice for parameters En+1,En+2, . . . such
that [(Xj)∞j=0, (Yj)∞j=0] is the Szegö pair of rational matrix-valued functions generated by
[(αj)∞j=0; (E�)∞�=1;X0,Y0] and [(X#

j )∞j=0, (Y #
j )∞j=0] is the dual Szegö pair of [(Xj)∞j=0, (Yj)∞j=0],

namely E� = 0q for each integer � with � > n (cf. Example 2.3). For this special situ-
ation, the construction of nonnegative Hermitian q × q Borel measures according to
Theorem 6.3 and Corollary 6.5 implies the equalities F� = Fn and F#

� = F#
n for each integer

� > n (cf. [26, Corollary 3.6]). Hence, Theorem 6.7 yields that [(Xj)∞j=0, (Yj)∞j=0] is a Szegö
pair of orthonormal systems corresponding to (αj)∞j=0 and Fn as well as [(X#

j )∞j=0, (Y #
j )∞j=0]

is a Szegö pair of orthonormal systems corresponding to (αj)∞j=0 and F#
n in that case.

Finally, we remark that in opposition to the particular case of matrix polynomials on
T (see, e.g., [11, Theorem 3.6.2]) a nonnegative Hermitian q× q Borel measure F for
which a Szegö pair [(Xj)∞j=0, (Yj)∞j=0] of rational matrix-valued functions forms a Szegö
pair of orthonormal systems corresponding to (αj)∞j=0 and F is not uniquely determined
by [(Xj)∞j=0, (Yj)∞j=0] in general. This phenomenon already arises in the case of complex-
valued functions (see [6, Chapters 6–8] for details).
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