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1. Introduction

Many nonlinear problems in the physical and social sciences can be reduced to finding
critical points (minima, maxima, and minimax points) of functionals (real-valued func-
tions on various spaces). The first critical points to be studied were maxima and minima,
and much of the activity in the calculus of variations has been devoted to the finding of
such points. A more difficult problem is to find critical points that are neither maxima
nor minima.

It was discovered that there exist sets having the property that critical points can be
found when the sets separate a functional. This has led to the search for such sets. Specif-
ically, it is desired to find sets with the following properties.

Definition 1.1. Let A, B be subsets of a Banach space E. Say that A links B if the class of
G� C1

U(E;R) satisfying

a0 := sup
A
G < b0 := inf

B
G (1.1)

is nonempty, and for every such G, there are a sequence �uk� � E and a constant c such
that

b0 � c <�, (1.2)

G
(
uk
)
�� c, G�

(
uk
)
�� 0. (1.3)

(In this definition, as well as in the rest of the paper, we consider functionals of the
class CmU � Cm, i.e., functionals whose Fréchet derivatives up to the orderm are uniformly
continuous on bounded sets.)
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The importance of the concept of linking stems from the fact that in many applica-
tions, a sequence satisfying (1.3) (called a Palais-Smale sequence) leads to a critical point
of G. In particular, this is true if any sequence satisfying (1.3) has a convergent subse-
quence. (If this is the case, then G is said to satisfy the Palais-Smale condition.) Thus, a
useful method of finding critical points of G is to find two subsets A, B of E such that A
links B and (1.3) holds.

There are several sufficient conditions given in the literature which imply that a set A
links a set B in this sense (cf., e.g., [1, 3, 5–8, 11, 14, 15]). The most comprehensive is that
of [11].

In [11], our goal was to prove a theorem of the following form.

Theorem 1.2. Let G be a C1-functional on a Banach space E, and let A, B be subsets of E
such that A has a certain relationship to B. Assume that

a0 := sup
A
G < b0 := inf

B
G. (1.4)

Then there are a sequence �uk� � E and an a	 b0 such that

G
(
uk
)
�� a, G�

(
uk
)
�� 0. (1.5)

The reason for the requirement that A have a relationship to B is that the theorem
is obviously false if A and B are two arbitrary sets. The problem facing us was to find a
very general relationship that would make the theorem true. We defined a relationship
which indeed made the theorem true and was the most general known hypothesis that
did so. We termed this relationship “linking.” (Previous authors used this term to describe
more restrictive definitions.) We suspect that our definition of linking is the most general
possible definition.

In the present paper, we define two relationships which are close to each other. The
stronger one is sufficient for linking while the weaker one is necessary. We use the follow-
ing maps.

Definition 1.3. Say that a map ϕ : E� E is of class Λ, if it is a homeomorphism onto E,
and both ϕ, ϕ�1 are bounded on bounded sets. If, furthermore, ϕ,ϕ�1 � C1

U(E;E), say
that ϕ�ΛU .

Definition 1.4. Say that a bounded set A is chained to a set B if A
B = φ and

inf
x�B

∥
∥ϕ(x)

∥
∥� sup

x�A

∥
∥ϕ(x)

∥
∥, ϕ�ΛU. (1.6)

Definition 1.5. Say that a bounded A is strongly chained to B if A
B = φ and (1.6) holds
for every ϕ�Λ.

Definition 1.6. For A� E, define

�U(A)= {ϕ�1(BR
)

: ϕ�ΛU , ϕ(A)� BR
}

, (1.7)
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where

BR =
{
u� E : �u� < R

}
. (1.8)

Our main results are the following.

Theorem 1.7. If a bounded set A is strongly chained to B, then A links B.

Theorem 1.8. Let G be a (C2 
CU)-functional on E, and let A, B be nonempty subsets of
E such that A is bounded and chained to B and

a0 := sup
A
G� b0 := inf

B
G. (1.9)

Let

a := inf
K��U (A)

sup
K
G. (1.10)

Then there is a sequence �uk� � E such that

G
(
uk
)
�� a, G�

(
uk
)
�� 0. (1.11)

If a= b0, then it can be also required

d
(
uk,B

)
�� 0. (1.12)

Theorem 1.9. If E is a Hilbert space, and A links B, then it is chained to B.

Theorem 1.9 with additional assumptions is due to the authors elsewhere [12]. There
it was proved that in a Hilbert space a compact set links another set if and only if it is
chained to it.

2. The strong case

Definition 2.1. For A� E, define

Λ(A)= {ϕ�Λ : ϕ(u)= u, u�A
}

,

ΛU(A)= {ϕ�ΛU : ϕ(u)= u, u� A
}
.

(2.1)

Lemma 2.2. One has

ϕ1,ϕ2 �Λ=� ϕ1 Æϕ2 �Λ,

ϕ1,ϕ2 �ΛU =� ϕ1 Æϕ2 �ΛU ,

ϕ1,ϕ2 �Λ(A)=� ϕ1 Æϕ2 �Λ(A),

ϕ1,ϕ2 �ΛU(A)=� ϕ1 Æϕ2 �ΛU(A).

(2.2)
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Lemma 2.3. One has

ϕ�Λ iff ϕ�1 �Λ,

ϕ�ΛU iff ϕ�1 �ΛU ,

ϕ�Λ(A) iff ϕ�1 �Λ(A),

ϕ�ΛU(A) iff ϕ�1 �ΛU(A).

(2.3)

Definition 2.4. For A� E, define

�(A)= {ϕ�1(BR
)

: ϕ�Λ, ϕ(A)� BR
}
. (2.4)

Lemma 2.5. If A is strongly chained to B and K ��(A), then K 
B = φ.

Proof. There is a ϕ�Λ such thatK = ϕ�1(BR) with ϕ(A)� BR. SinceA is strongly chained
to B, we have

inf
x�B

∥
∥ϕ(x)

∥
∥� sup

x�A

∥
∥ϕ(x)

∥
∥ < R. (2.5)

Hence, there is a v � B such that ϕ(v)� BR. Hence, v = ϕ�1ϕ(v)� ϕ�1(BR). �

Lemma 2.6. If K ��(A) and σ �Λ(A), then σ(K)��(A).

Proof. There is a ϕ�Λ such that K = ϕ�1(BR) with ϕ(A)� BR. Let

ϕ̃= ϕÆ σ�1. (2.6)

Then ϕ̃�Λ (Lemma 2.2). Now,

ϕ̃�1 = σ Æϕ�1. (2.7)

Hence,

σ(K)= σ[ϕ�1(BR
)]= ϕ̃�1(BR

)
. (2.8)

Moreover,

ϕ̃(u)= ϕ(u), u�A. (2.9)

Hence,

sup
x�A

∥
∥ϕ̃(x)

∥
∥= sup

x�A

∥
∥ϕ(x)

∥
∥ < R. (2.10)

Therefore, σ(K)��(A). �

We can now give the proof of Theorem 1.7.
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Proof. Let G be a (C1
CU)-functional on E, and let A, B be nonempty subsets of E such
that A is strongly chained to B and (1.9) holds. Then

a := inf
K��(A)

sup
K
G (2.11)

is finite. By Lemma 2.5, K 
 B = φ for all K � �(A). Hence, a 	 b0. Assume first that
b0 < a. If (1.11) were false, there would exist a positive constant δ such that 3δ < a� b0

and

∥
∥G�(u)

∥
∥	 3δ (2.12)

whenever

u�Q = {u� E :
∣
∣G(u)� a

∣
∣� 3δ

}
. (2.13)

Since G� C1(E,R), there is a locally Lipschitz continuous mapping Y(u) of Ê = �u� E :
G�(u) = 0� into E such that

∥
∥Y(u)

∥
∥� 1, u� Ê, (2.14)

(
G�(u),Y(u)

)
	 2δ (2.15)

whenever u satisfies (2.13). Let

Q0 =
{
u� E :

∣
∣G(u)� a

∣
∣� 2δ

}
,

Q1 =
{
u� E :

∣
∣G(u)� a

∣
∣� δ

}
,

Q2 = E �Q0,

η(u)= d
(
u,Q2

)

[
d
(
u,Q1

)
+d
(
u,Q2

)] .

(2.16)

It is easily checked that η(u) is locally Lipschitz continuous on E and satisfies

η(u)= 1, u�Q1; η(u)= 0, u� Q̄2; 0 < η(u) < 1, otherwise. (2.17)

Consider the differential equation

σ �(t)=W(σ(t)
)
, t �R, σ(0)= u, (2.18)

where

W(u)=�η(u)Y(u). (2.19)

The mapping W is locally Lipschitz continuous on the whole of E and is bounded in
norm by 1. Hence by a well-known existence theorem for ordinary differential equations
in a Banach space, (2.18) has a unique solution for all t � R. Let us denote the solution
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of (2.18) by σ(t)u. The mapping σ(t) is in C(E�R,E) and is called the flow generated by
(2.19). Note that

dG
(
σ(t)u

)

dt
= (G�(σ(t)u

)
,σ �(t)u

)

=�η(σ(t)u
)(
G�
(
σ(t)u

)
,Y
(
σ(t)u

))

��2δη
(
σ(t)u

)
.

(2.20)

Thus,

G
(
σ(t)u

)
�G(u), t 	 0,

G
(
σ(t)u

)
� a0, u�A, t 	 0,

σ(t)u= u, u� A, t 	 0.

(2.21)

This follows from the fact that

G
(
σ(t)u

)
� a0 � b0 < a� 3δ, u� A, t 	 0. (2.22)

Hence, η(σ(t)u)= 0 for u�A, t 	 0. This means that

σ �(t)u= 0, u� A, t 	 0,

σ(t)u= σ(0)u= u, u� A, t 	 0.
(2.23)

Let

Eα =
{
u� E :G(u)� α

}
. (2.24)

There is a T > 0 such that

σ(T)Ea+δ � Ea�δ. (2.25)

In fact, we can take T = 1. Let u be any element in Ea+δ . If there is a t1 � [0,T] such that
σ(t1)u /�Q1, then

G
(
σ(T)u

)
�G

(
σ
(
t1
)
u
)
< a� δ (2.26)

by (2.20). Hence σ(T)u � Ea�δ . On the other hand, if σ(t)u � Q1 for all t � [0,T], then
η(σ(t)u)= 1 for all t, and (2.20) yields

G
(
σ(T)u

)
�G(u)� 2δT � a� δ. (2.27)

Hence (2.25) holds. Now by (2.11), there is a K ��(A) such that

K � Ea+δ. (2.28)



M. Schechter and K. Tintarev 7

Note that σ(T)�Λ(A). Let K̃ = σ(T)(K). Then K̃ ��(A) by Lemma 2.6. But

sup
K̃

G= sup
u�K

G
(
σ(T)u

)
< a� δ, (2.29)

which contradicts (2.11), proving the theorem for the case b0 < a.
Now assume b0 = a. If there did not exist a sequence satisfying both (1.11)-(1.12), then

there would be positive numbers ε, δ, T such that δ < εT and (2.12) holds whenever

u�Q = {u� E : d(u,B)� 4T ,
∣
∣G(u)� a

∣
∣� 3δ

}
. (2.30)

Let

Q0 =
{
u� E : d(u,B)� 3T ,

∣
∣G(u)� a

∣
∣� 2δ

}
,

Q1 =
{
u� E : d(u,B)� 2T ,

∣
∣G(u)� a

∣
∣� δ

}
.

(2.31)

Since a = b0, we see that Q1 = φ. Define Q2 and η(u) as before and let σ(t) be the flow
generated by the mapping (2.19) with everything now with respect to the new setsQj . Let
u be any element in Ea+δ . If there is a t1 � T such that σ(t1)u /�Q1, then either

G
(
σ
(
t1
)
u
)
< a� δ (2.32)

or

d
(
σ
(
t1
)
u,B

)
> 2T. (2.33)

Since

∥
∥σ(t)u� σ(t�)u

∥
∥� �t� t�� (2.34)

by (2.14), (2.33) implies that

d
(
σ(t)u,B

)
> T , 0� t � T. (2.35)

On the other hand, if σ(t)u�Q1 for all t � [0,T], then

G
(
σ(T)u

)
�G(u)� 2εT � a+ δ� 2δ = a� δ. (2.36)

Thus we have either

G
(
σ(T)u

)
< a� δ (2.37)

or (2.35) holds. Since b0 = a, this shows that

σ(T)Ea+δ 
B = φ. (2.38)

We also note that

σ(t)A
B = φ, 0� t � T. (2.39)
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We have by (2.20) that

G
(
σ(t)u

)
� a0� 2ε

∫ t

0
η
(
σ(τ)u

)
dτ, u�A. (2.40)

If σ(t)u� B, we must have G(σ(t)u)	 b0 	 a0. The only way this can happen is when

η
(
σ(τ)u

)
� 0, 0� τ � t. (2.41)

But this implies σ(τ)u� Q̄2 for such τ, and this in turn implies either

G
(
σ(τ)u

)
< a� δ, 0� τ � t, (2.42)

or

d
(
σ(τ)u,B

)
> 2T , 0� τ � t. (2.43)

In either case, we cannot have σ(t)u� B. Thus (2.39) holds. Let K ��(A) satisfy (2.28),
and let K̃ = σ(T)K . Then K̃ ��(A). But (2.38) and (2.39) imply that K̃ 
B = φ, contra-
dicting the fact that A is strongly chained to B. This completes the proof of the theorem.

�

3. The remaining proofs

Lemma 3.1. If A is chained to B and K ��U(A), then K 
B = φ.

Proof. There is a ϕ�ΛU such that K = ϕ�1(BR) with ϕ(A)� BR. Since A is chained to B,
we have

inf
x�B

∥
∥ϕ(x)

∥
∥� sup

x�A

∥
∥ϕ(x)

∥
∥ < R. (3.1)

Hence, there is a v � B such that ϕ(v)� BR. Hence, v = ϕ�1ϕ(v)� ϕ�1(BR). �

Lemma 3.2. If K ��U(A) and σ �ΛU(A), then σ(K)��U(A).

We can now give the proof of Theorem 1.8.

Proof. Let G be a (C2
CU)-functional on E, and let A, B be nonempty subsets of E such
that A is chained to B and (1.9) holds. Then a given by (1.10) is finite. By Lemma 3.1,
K 
B = φ for all K ��U(A). Hence, a	 b0. Assume first that b0 < a. If (1.11) were false,
there would exist a positive constant δ such that 3δ < a� b0 and

∥
∥G�(u)

∥
∥	 3δ (3.2)

whenever

u�Q = {u� E :
∣
∣G(u)� a

∣
∣� 3δ

}
. (3.3)
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Let

Q0 =
{
u� E :

∣
∣G(u)� a

∣
∣� 2δ

}
,

Q1 =
{
u� E :

∣
∣G(u)� a

∣
∣� δ

}
,

Q2 = E �Q0,

η(u)= d
(
u,Q2

)

[
d
(
u,Q1

)
+d
(
u,Q2

)] .

(3.4)

It is easily checked that η(u) is locally Lipschitz continuous on E and satisfies

η(u)= 1, u�Q1; η(u)= 0, u� Q̄2; 0 < η(u) < 1, otherwise. (3.5)

Consider the differential equation

σ �(t)=W(σ(t)
)
, t �R, σ(0)= u, (3.6)

where

W(u)= �η(u)G�(u)
∥
∥G�(u)

∥
∥ . (3.7)

Since G � C2(E,R), the mapping W is locally Lipschitz continuous on the whole of E
and is bounded in norm by 1. Hence by a well-known existence theorem for ordinary
differential equations in a Banach space, (3.6) has a unique solution for all t �R. Let us
denote the solution of (3.6) by σ(t)u. The mapping σ(t) is in C1

U(E�R,E) and is called
the flow generated by (3.7). Note that

dG
(
σ(t)u

)

dt
= (G�(σ(t)u

)
,σ �(t)u

)

=�η(σ(t)u
)∥∥G�

(
σ(t)u

)∥∥

��2δη
(
σ(t)u

)
.

(3.8)

Thus,

G
(
σ(t)u

)
�G(u), t 	 0,

G
(
σ(t)u

)
� a0, u�A, t 	 0,

σ(t)u= u, u� A, t 	 0.

(3.9)

Again, this follows from the fact that

G
(
σ(t)u

)
� a0 � b0 < a� 3δ, u� A, t 	 0. (3.10)

Hence, η(σ(t)u)= 0 for u�A, t 	 0. This means that

σ �(t)u= 0, u� A, t 	 0,

σ(t)u= σ(0)u= u, u� A, t 	 0.
(3.11)
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Let

Eα =
{
u� E :G(u)� α

}
. (3.12)

We note that there is a T > 0 such that

σ(T)Ea+δ � Ea�δ. (3.13)

(In fact, we can take T = 1.) Let u be any element in Ea+δ . If there is a t1 � [0,T] such that
σ(t1)u /�Q1, then

G
(
σ(T)u

)
�G

(
σ
(
t1
)
u
)
< a� δ (3.14)

by (3.8). Hence σ(T)u � Ea�δ . On the other hand, if σ(t)u � Q1 for all t � [0,T], then
η(σ(t)u)= 1 for all t, and (3.8) yields

G
(
σ(T)u

)
�G(u)� 2δT � a� δ. (3.15)

Hence (3.13) holds. Now by (1.10), there is a K ��U(A) such that

K � Ea+δ. (3.16)

Note that σ(T)�ΛU(A). Let K̃ = σ(T)(K). Then K̃ ��U(A) by Lemma 3.2. But

sup
K̃

G= sup
u�K

G
(
σ(T)u

)
< a� δ, (3.17)

which contradicts (1.10), proving the theorem for the case b0 < a.
Now assume that b0 = a. If there did not exist a sequence satisfying both (1.11) and

(1.12), then there would be positive numbers ε, δ, T such that δ < εT and (2.12) holds
whenever

u�Q = {u� E : d(u,B)� 4T ,
∣
∣G(u)� a

∣
∣� 3δ

}
. (3.18)

Let

Q0 =
{
u� E : d(u,B)� 3T ,

∣
∣G(u)� a

∣
∣� 2δ

}
,

Q1 =
{
u� E : d(u,B)� 2T ,

∣
∣G(u)� a

∣
∣� δ

}
.

(3.19)

Since a = b0, we see that Q1 = φ. Define Q2 and η(u) as before and let σ(t) be the flow
generated by the mapping (3.7) with everything now with respect to the new sets Qj . Let
u be any element in Ea+δ . If there is a t1 � T such that σ(t1)u /�Q1, then either

G
(
σ
(
t1
)
u
)
< a� δ (3.20)

or

d
(
σ
(
t1
)
u,B

)
> 2T. (3.21)
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Since

∥
∥σ(t)u� σ(t�)u

∥
∥� �t� t��, (3.22)

(3.21) implies that

d
(
σ(t)u,B

)
> T , 0� t � T. (3.23)

On the other hand, if σ(t)u�Q1 for all t � [0,T], then

G
(
σ(T)u

)
�G(u)� 2εT � a+ δ� 2δ = a� δ. (3.24)

Thus we have either

G
(
σ(T)u

)
< a� δ (3.25)

or (3.23) holds. Since b0 = a, this shows that

σ(T)Ea+δ 
B = φ. (3.26)

We also note that

σ(t)A
B = φ, 0� t � T. (3.27)

We have by (3.8) that

G
(
σ(t)u

)
� a0� 2ε

∫ t

0
η
(
σ(τ)u

)
dτ, u�A. (3.28)

If σ(t)u� B, we must have G(σ(t)u)	 b0 	 a0. The only way this can happen is when

η
(
σ(τ)u

)
� 0, 0� τ � t. (3.29)

But this implies σ(τ)u� Q̄2 for such τ, and this in turn implies either

G
(
σ(τ)u

)
< a� δ, 0� τ � t, (3.30)

or

d
(
σ(τ)u,B

)
> 2T , 0� τ � t. (3.31)

In either case, we cannot have σ(t)u� B. Thus (3.27) holds. LetK ��U(A) satisfy (3.16),
and let K̃ = σ(T)K . Then K̃ ��U(A). But (3.26) and (3.27) imply that K̃ 
B = φ, con-
tradicting the fact that A is chained to B. This completes the proof of the theorem. �

Now we give the proof of Theorem 1.9.

Proof. Assume that ϕ � ΛU does not satisfy (1.6), and let G(u) = �ϕ(u)�2. Then by the
definition of the class ΛU , G� C1

U(E,R), supG(A) < infG(B), and G has no critical level
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c 	 infx�B G(x) > 0. To show the latter, assume that there is a sequence uk satisfying (1.3).
Then we have for any bounded sequence vk � E,

(
ϕ�
(
uk
)
vk,ϕ

(
uk
))
�� 0. (3.32)

Let vk := (ϕ�(uk))�1(ϕ(uk)). Then (ϕ�(uk)vk,ϕ(uk))= G(uk)� c. However, the sequence
vk is bounded: G(uk)� c implies that ϕ(uk) is bounded, which implies that uk, and con-
sequently that (ϕ�(uk))�1, and vk are also bounded. Hence,G�(uk)� 0 impliesG(uk)� 0,
showing that c = 0. Thus, A does not link B. �

4. Equivalent linking conditions

In this section, we relate our present definition of linking to the one of [11].
Let A,B � E be disjoint sets and assume that A is bounded. Let Φ be a set of all maps

ψ � CU([0,1]�E;E) such that ψ(0,�)= idE and that there exists a point ξ � E such that
ψ(t,�) converges to ξ as t� 1 uniformly on bounded sets. Let Ψ�Φ. We will say that A
is Ψ-chained to B if for every ψ �Ψ,

ψ
(
A, [0,1]

)

B =�. (4.1)

Proposition 4.1. If A is Φ-chained to B, then A is strongly chained to B.

Proof. Assume that A is not strongly chained to B. Then there are a map ϕ � Λ and an
R > 0 such that ϕ(A) � BR(0) and ϕ(B)
 BR(0) =�. Let ψ(t,u) = (1� t)u. Then ψ �
Φ and [ψ(t,�) Æϕ](A) � BR(0). Therefore [ψ(t,�) Æϕ](A)
ϕ(B)=�. This implies that
[ϕ�1 Æ ψ(t,�) Æ ϕ](A)
 B =�. Since ϕ�1 Æ ψ(t,�) Æ ϕ � Φ, this means that A is not Φ-
chained to B, a contradiction. �

Corollary 4.2. If A is Φ-chained to B, then A links B.

Let

Φ0 := {ψ �Φ : ψ(t,�)� C1
U and �t � (0,1) �εt > 0 :

∥
∥ψ�(t,�)

∥
∥	 εt

}
. (4.2)

Proposition 4.3. If E is a Hilbert space and A links B, then A is Φ0-chained to B.

Proof. Assume that A is not Φ0-chained to B. Then there are a map ψ �Φ0 and a point
ξ � E such that ψ(t,�)�t�1 ξ and ψ([0,1],A)
B =�. Since A is bounded, ψ(t,�) con-
verges to ξ uniformly on A. Then there are a τ � (0,1) and an r > 0 such that ψ(τ,A) �
Br(ξ) and B2r(ξ)
B =�. LetG(u)= �ψ(τ,u)� ξ�. The functionalG is in C1

U and it does
not have a critical level c > r since �ψ�(τ,�)� is bounded away from zero. Thus, A does
not link B. �

Corollary 4.4. If E is a Hilbert space, A is strongly chained to B, d(A,B) > 0, then A is
Φ0-chained to B.
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