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The theory of generalized thermoelastic diffusion, based on the theory of Lord and Shul-
man, is used to study the thermoelastic-diffusion interactions in an infinitely long solid
cylinder subjected to a thermal shock on its surface which is in contact with a permeat-
ing substance. By means of the Laplace transform and numerical Laplace inversion the
problem is solved. Numerical results predict finite speeds of propagation for thermoe-
lastic and diffusive waves and the presence of a tensile stress region close to the cylinder
surface. The problem of generalized thermoelasticity has been reduced as a special case
of our problem.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Thermodiffusion in an elastic solid is due to coupling of the fields of temperature, mass
diffusion and that of strain. Heat and mass exchange with the environment during ther-
modiffusion in an elastic solid. These days, oil companies are interested in the process
of thermodiffusion for more efficient extraction of oil from oil deposits. Diffusion can
be defined as the random walk of an ensemble of particles from regions of high concen-
tration to regions of lower concentration. In integrated circuit fabrication, diffusion is
used to introduce “dopants” in controlled amounts into the semiconductor substrate. In
particular, diffusion is used to form the base and emitter in bipolar transistors, form inte-
grated resistors, form the source/drain regions in MOS transistors, and dope polysilicon
gates in MOS transistors. In most of theses applications, the concentration is calculated
using what is known as Fick’s law. This is a simple law that does not take into consid-
eration the mutual interaction between the introduced substance and the medium into
which it is introduced or the effect of the temperature on this interaction.

Nowacki [7–10] developed the theory of thermoelastic diffusion. In this theory, the
coupled thermoelastic model is used. This implies infinite speeds of propagation of ther-
moelastic waves. In the coupled theory of thermoelasticity the velocity of heat propaga-
tion is assumed to be infinitely large. To eliminate this paradox a generalized thermoe-
lasticity theory has been developed subsequently. The development of this theory was
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accelerated by the advent of the second sound effects observed experimentally in materi-
als at a very low temperature. In heat transfer problems involving very short time intervals
and/or very high heat fluxes, it has been revealed that the inclusion of the second sound
effects to the original theory yields results which are realistic and very much different
from those obtained with classical theory of elasticity. The first theory was developed
by Lord and Shulman [6]. In this theory a modified law of heat conduction including
both the heat flux and its time derivative replaces the conventional Fourier law. The heat
equation associated with this a hyperbolic one and, hence, automatically eliminates the
paradox of infinite speeds of propagation inherent in the coupled theory of thermoelas-
ticity.

Recently Sherief et al. [15] developed the theory of generalized thermoelastic diffusion
with one relaxation time, which allows the finite speeds of propagation of waves. This de-
velopment provides a chance to study the wave propagation in such an interesting media.
Sherief and Saleh [16] investigated the problem of a thermoelastic half-space in the con-
text of the theory of generalized thermoelastic diffusion with one relaxation time. Singh
[17] discussed the reflection phenomena of waves from free surface of an elastic solid
with generalized thermodiffusion. Aouadi studied in [2] the generalized thermoelastic
diffusion problem with variable electrical and thermal conductivity.

Great attention has been devoted to the study of thermoelastic interactions of an infin-
itely long electrically and thermally conducting annular cylinder. In the context of Lord-
Shulman theory, Sherief and Ezzat [14], Santawa and Roychoudhuri [12], Sherief [13],
and He et al. [4] studied magneto-thermoelastic interactions of an infinitely long cylinder
when the surface of the cylinder is subjected to different boundary conditions. Recently,
Aouadi [1] investigated discontinuities of solutions in an axisymmetric cylinder under
three thermoelastic theories.

The above investigations are concerned with elastic solid without considering the dif-
fusion phenomena. This paper is devoted to the study of the interaction between the pro-
cesses of elasticity, heat, and diffusion in an infinitely long solid cylinder in the context
of the theory of generalized thermoelastic diffusion with one relaxation time. Numerical
results predict finite speeds of propagation for thermoelastic and diffusive waves and the
presence of a tensile stress region close to the cylinder surface.

2. Formulation of the problem

Following, Sherief et al. [15, 16] are the governing equations for an isotropic, homoge-
nous elastic solid with generalized thermodiffusion at constant temperature T0 in the
absence of body forces:

(i) the constitutive equations:

σi j = 2μei j + δi j
[
λekk −β1

(
T −T0

)−β2C
]
, (2.1)

P =−β2ekk + bC− c
(
T −T0

)
; (2.2)

(ii) the equation of motion in the absence of external body forces:

σi j, j = ρ
∂2ui
∂t2

; (2.3)
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(iii) the equation of heat conduction:

(
∂

∂t
+ τ0

∂2

∂t2

)
(
ρcET +T0β1ekk + cT0C

)= kT,ii; (2.4)

(iv) the equation of mass diffusion:

Dβ2ekk,ii +DcT,ii +
(
∂

∂t
+ τ

∂2

∂t2

)
C =DbC,ii, (2.5)

where β1 = (3λ+ 2μ)αt and β2 = (3λ+ 2μ)αc, αt and αc are, respectively, the coefficients of
linear thermal and diffusion expansions, λ and μ are Lamé’s constants. T is the absolute
temperature of the medium, T0 is the reference uniform temperature of the body chosen
such that |(T −T0)/T0|� 1, k is the coefficient of thermal conductivity, cE is the specific
heat at constant strain. σi j are the components of the stress tensor, ei j are the components
of the strain tensor, P is the chemical potential, C is the concentration of the diffusive
material in the elastic body, D is the diffusion coefficient, ′c′ is a measure of thermodiffu-
sion effect, ′b′ is a measure of diffusive effect, and ρ is the mass density. τ0 is the thermal
relaxation time, which will ensure that the heat conduction equation will predict finite
speeds of heat propagation, and τ is the diffusion relaxation time, which will ensure that
the equation satisfied by the concentration C will also predict finite speeds of propagation
of matter from one medium to the other.

As the density is assumed to be a constant, the equation of motion (2.3) for this theory
remain the same as the one for the thermoelastic theory (see [2, 15–17]). The remaining
governing equations, namely, the equation of heat conduction and constitutive relations
are different from those for the thermoelastic theory by including mass diffusion terms.
The generalized thermoelastic problem can be reduced as a special case of the thermoe-
lastic diffusion theory.

We consider an infinitely long isotropic solid cylinder. (r,ϕ,z) are taken as the cylin-
drical coordinates with z-axis along the axial direction of the cylinder. The surface of the
cylinder which in contact with a permeating substance (such a gas) is subjected in a time
t = 0 to a thermal shock. We note that due to symmetries of the cylinder, the only non-
vanishing displacement component is the radial one ur = u(r, t). The strain tensor has
the following components:

err = ∂u

∂r
, eϕϕ = u

r
, erϕ = eϕz = erz = ezz = 0. (2.6)

The cubic dilatation e is thus given by

e = ∂u

∂r
+
u

r
= 1

r

∂(ru)
∂r

. (2.7)
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The stress-strain relations have the form

σrr = 2μ
∂u

∂r
+ λe−β1

(
T −T0

)−β2C,

σϕϕ = 2μ
u

r
+ λe−β1

(
T −T0

)−β2C,

σzz = λe−β1
(
T −T0

)−β2C.

(2.8)

The motion (2.3) then reduces to

σrr,r +
σrr − σϕϕ

r
= ρ

∂2u

∂t2
. (2.9)

Thus from (2.8)–(2.9), we obtain

(λ+ 2μ)
∂e

∂r
−β1

∂T

∂r
−β2

∂C

∂r
= ρ

∂2u

∂t2
. (2.10)

Applying the operator (1/r)(∂/∂r)(r) to both sides of the above equation, we obtain

(λ+ 2μ)∇2e−β1∇2T −β2∇2C = ρ
∂2e

∂t2
, (2.11)

where the Laplacian operator∇2 is given by

∇2 = ∂2

∂r2
+

1
r

∂

∂r
. (2.12)

The generalized equation of heat conduction (2.4) reduces to

k∇2T =
(
∂

∂t
+ τ0

∂2

∂t2

)(
ρcET +T0β1e+ cT0C

)
. (2.13)

The diffusion equation (2.5) takes the form

Db∇2C =Dβ2e+Dc∇2T +
(
∂

∂t
+ τ

∂2

∂t2

)
C. (2.14)

Now we introduce the following nondimensional variables:

r∗ = c1η0r, u∗ = c1η0u, θ = β1
(
T −T0

)

λ+ 2μ
, C∗ = β2C

λ+ 2μ
,

σ∗i j =
σi j

λ+ 2μ
, P∗ = P

β2
, t∗ = c2

1η0t, τ∗0 = c2
1η0τ0, τ∗ = c2

1η0τ,

(2.15)
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where c2
1 = (λ+ 2μ)/ρ, η0 = ρc1/k. In terms of these nondimensional variables, (2.11)–

(2.14) take the following form (dropping the asterisks for convenience):

∂2e

∂t2
=∇2e−∇2θ−∇2C,

∇2θ =
(
∂

∂t
+ τ0

∂2

∂t2

)
(
θ + εe+ εα1C

)
,

α3∇2C = α2

(
∂

∂t
+ τ

∂2

∂t2

)
C+∇2e+α1∇2θ.

(2.16)

The constitutive equations reduce to

σrr = e− 2
β2

u

r
− θ−C, (2.17)

σϕϕ =− 2
β2

∂u

∂r
+ e− θ−C, (2.18)

σzz =
(

1− 2
β2

)

e− θ−C, (2.19)

P = α3C− e−α1θ, (2.20)

where

ε = T0β
2
1

ρ2cEc
2
1

, α1 = aρc2
1

β1β2
, α2 = μ

Dη
, α3 = bρc2

1

β2
2

, β2 = λ+ 2μ
μ

. (2.21)

In order to solve the problem, the surface of the cylinder is taken to be traction free
and subjected to a time dependent thermal shock. The chemical potential is also assumed
to be a known function of time on the surface of the cylinder. The homogeneous initial
conditions are supplemented by the following boundary conditions.

(1) The surface of the cylinder is traction free, this gives

σrr(a, t)= 0. (2.22)

This means that the surface of the cylinder is traction free, that is, nonmechanical loads
on the surface.

(2) The thermal boundary condition is that the surface of the cylinder is subjected to
a thermal shock:

θ(a, t)= θ0H(t), (2.23)

where H(t) is the Heaviside unit step function. This means that the heat is applied on the
surface of the cylinder to keep it at a constant temperature θ0 for t ≥ 0.

(3) The chemical potential is also assumed to be a known function of time at the
surface of the cylinder:

P(a, t)= P0H(t). (2.24)
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3. Solution in the Laplace transform domain

Introducing the Laplace transform defined by the formula

f̄ (x,s)= £
(
f (x, t)

)=
∫∞

0
f (x, t)e−stdt, �e(s) > 0, (3.1)

into (2.16) and using the homogeneous initial conditions, we obtain

s2e =∇2e−∇2θ−∇2C,

∇2θ = s
(
1 + τ0s

)(
θ + εe+ εα1C

)
,

α3∇2C = α2s(1 + τs)C+∇2e+α1∇2θ.

(3.2)

The above system of equations can be written in the form

(∇6− a1∇4 + a2∇2− a3
)
(ē, θ̄, C̄)= 0, (3.3)

where

a1 = s

α3− 1

[
α3s+

(
1 + τ0s

)[
α1ε
(
2 +α1

)
+α3(ε+ 1)− 1

]
+ (1 + τs)α2

]
,

a2 = s2

α3− 1

[(
1 + τ0s

)(
εα1s+α3s+α2(1 + τs)(ε+ 1)

)
+α2s(1 + τs)

]
,

a3 = s4α2

α3− 1

(
1 + τ0s

)
(1 + τs).

(3.4)

Equation (3.3) can be factorized as

(∇2− k2
1

)(∇2− k2
2

)(∇2− k2
3

)
(ē, θ̄, C̄)= 0, (3.5)

where k1, k2, and k3 are the roots with positive real parts of the characteristic equation

k6− a1k
4 + a2k

2− a3 = 0. (3.6)

The solution of (3.3), which is bounded as r → 0, is given by

θ̄(r,s)=
3∑

i=1

Ai(s)I0
(
kir
)
, ē(r,s)=

3∑

i=1

A′i (s)I0
(
kir
)
, C̄(r,s)=

3∑

i=1

A′′i (s)I0
(
kir
)
,

(3.7)

where the unknown functions Ai(s),A′i (s), andA′′ii (s) are to be determined below by using
the boundary conditions in (2.22)–(2.24), and I0 is the modified Bessel function of the
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first kind of order zero. Substituting from (3.7) into (3.2), we get

A′i(s)= k2
i

[
k2
i − s

(
1 + τ0s

)(
1− εα1

)]

εs
(
1 + τ0s

)[(
α1 + 1

)
k2
i −α1s2

]Ai(s),

A′′i(s)= k4
i − k2

i

[
s
(
1 + τ0s

)
(1 + ε) +αs2

]
+ s3

(
1 + τ0s

)

εs
(
1 + τ0s

)[(
α1 + 1

)
k2
i −α1s2

] Ai(s).

(3.8)

We thus have

ē(r,s)=
3∑

i=1

k2
i

[
k2
i − s

(
1 + τ0s

)(
1− εα1

)]

εs
(
1 + τ0s

)[(
α1 + 1

)
k2
i −α1s2

]Ai(s)I0
(
kir
)
,

C̄(r,s)=
3∑

i=1

k4
i − k2

i

[
s
(
1 + τ0s

)
(1 + ε) + s2

]
+ s3

(
1 + τ0s

)

εs
(
1 + τ0s

)[(
α1 + 1

)
k2
i −α1s2

] Ai(s)I0
(
kir
)
.

(3.9)

In the Laplace transform domain, from (2.7) and (3.9), we get

ū(r,s)=
3∑

i=1

ki
[
k2
i − s

(
1 + τ0s

)(
1− εα1

)]

εs
(
1 + τ0s

)[(
α1 + 1

)
k2
i −α1s2

]Ai(s)I1
(
kir
)
. (3.10)

Thus, from (2.17), (2.20), (3.1), and (3.9)–(3.10) it can be obtained that

σ̄rr(r,s)= 1
β2εs

(
1 + τ0s

)
3∑

i=1

k2
i − s

(
1 + τ0s

)(
1− εα1

)

(
α1 + 1

)
k2
i −α1s2

(
β2s2I0

(
kir
)− 2ki

r
I1
(
kir
)
)
Ai(s),

P̄(r,s)= α2(1 + τs)
ε
(
1 + τ0s

)
3∑

i=1

k4
i − k2

i

[
s
(
1 + τ0s

)
(1 + ε) +αs2

]
+αs3

(
1 + τ0s

)

k2
i

[(
α1 + 1

)
k2
i −αα1s2

] Ai(s)I0
(
kir
)
.

(3.11)

Making Laplace transform of both sides of boundary conditions (2.22)–(2.24), we thus
arrive at the following set of linear equations:

3∑

i=1

k2
i − s

(
1 + τ0s

)(
1− εα1

)

(
α1 + 1

)
k2
i −α1s2

(
β2s2I0

(
kia
)− 2ki

a
I1
(
kia
)
)
Ai(s)= 0,

3∑

i=1

Ai(s)I0
(
kia
)= θ0

s
,

3∑

i=1

k4
i − k2

i

[
s
(
1 + τ0s

)
(1 + ε) +αs2

]
+αs3

(
1 + τ0s

)

k2
i

[(
α1 + 1

)
k2
i −αα1s2

] Ai = P0

s

ε
(
1 + τ0s

)

α2
(
1 + τs

) .

(3.12)

Solving the linear system of (3.12) we can obtain the parameters A1, A2, and A3. This
completes the solution of the problem in the Laplace transform domain.
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Particular case. If we neglect the diffusion effect by eliminating (2.2) and (2.5), and by
putting β2 = c = 0 in (2.1) and (2.4), the expressions for temperature, displacement, and
stress in a generalized thermoelastic medium are given by

θ̄(r,s)=
2∑

i=1

εs
(
1 + τ0s

)

k2
i − s

(
1 + τ0s

)Ai(s)I0(kir), ū(r,s)=
2∑

i=1

1
ki
Ai(s)I1

(
kir
)
,

σ̄rr(r,s)=
2∑

i=1

([
β2− εs

(
1 + τ0s

)

k2
i − s

(
1 + τ0s

)
]
I0
(
kir
)− 2

kir
I1
(
kir
)
)
Ai(s),

(3.13)

where

Ai(s)= (−1)i
f3−iθ0

sΔ
, i= 1,2,

fi =
[
β2− εs

(
1 + τ0s

)
λ1

k2
i − s

(
1 + τ0s

)
]
I0
(
kia
)− 2

kia
I1
(
kia
)
,

Δ= f1n2− f2n1, ni = εs
(
1 + τ0s

)

k2
i − s

(
1 + τ0s

) I0
(
kia
)
,

(3.14)

where k1 and k2 are the roots with positive real parts of the characteristic equation

k4− k2[s2 + s
(
1 + τ0s

)
(1 + ε)

]
+ s3(1 + τ0s

)= 0. (3.15)

4. Inversion of the transforms

We will now outline the numerical inversion method to obtain the solution of the prob-
lem in the physical domain. Following Honig and Hirdes [5], the Laplace transformed
function can be inverted as follows:

f (r, t)= £−1[ f̄ (r,s)
]= 1

2πi

∫ v+i∞

v−i∞
est f̄ (r,s)ds. (4.1)

Let s= v+ iw(v, w ∈R), the above formulation can be written as

f (r, t)= evt

2π

∫∞

−∞
eiwt f̄ (r,v+ iw)dw. (4.2)

Expanding the function h(r, t) = e−vt f (r, t) in a Fourier series in the interval [0,2T],
Durbin [3] derived the approximation formula

f (r, t)= evt

T

[
− 1

2
�e
{
f̄ (r,v)

}
+

∞∑

k=0

�e
[
f̄
(
r,v+ i

kπ

T

)]
cos
(
kπ

T
t
)

−
∞∑

k=0

�m
[
f̄
(
r,v+ i

kπ

T

)]
sin
(
kπ

T
t
)]
−F1(r,v, t,T),

(4.3)
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Table 5.1. Values of the constants.

αc = 1.98(10)−4 m3/kg ρ = 8954 kg/m3 αt = 1.78(10)−5 K−1

cE = 383.1 J/(kg K) μ= 3.86(10)10 kg/(m s2) λ= 7.76(10)10 kg/(m s2)

ρ = 8954 kg/m3 k = 386 W/(m K) D = 0.85(10)−8 kg s/m3

c = 1.2(10)4 m2/(K s2) b = 0.9(10)6 m5/(kg s2) η0 = 8886.73 s/m2

T0 = 293 K τ0 = 0.02 s τ = 0.2 s

where F1(r,v, t,T) is the discretization error. It can be made arbitrarily small if the free
parameter vT is large (see [5]). As the infinite series in (4.3) can only be summed up to
an infinite number N of terms, hence the approximation value for f (r, t) is

fN (r, t)= evt

T

[
− 1

2
�e
{
f̄ (r,v)

}
+

N∑

k=0

[
�e
{
f̄
(
r,v+ i

kπ

T

)}
cos
(
kπ

T
t
)

−�m
{
f̄
(
r,v+ i

kπ

T

)}
sin
(
kπ

T
t
)]]

.

(4.4)

Two methods are used to reduce the total error. First, the Korrecktur method is used
to reduce the discretization error. Next, the ε-algorithm is used to reduce the truncation
error and hence to accelerate convergence. The details can be seen in [5].

It should be noted that a good choice of the free parameters N and vT is not only
important for the accuracy of the results but also for the application of the Korrecktur
method and the methods for the acceleration of convergence. The values of v and T are
chosen according to the criteria outlined in [5].

5. Numerical results

The copper material was used and chosen for purposes of numerical evaluations. The
materials constants of the problem are thus given in Table 5.1 in SI units [18].

Using these values, it was found that

ε= 0.0168, β2 = 4, α1 = 5.43, α2 = 0.533, α3 = 36.240. (5.1)

It should be noted that a unit of nondimensional time corresponds to 6.5(10)−12 s,
while a unit of nondimensional length corresponds to 2.7(10)−8 m.

The numerical technique outlined above was used to obtain the temperature, radial
displacement, radial stress, and concentration as well as the chemical potential distribu-
tions inside the cylinder (a= 2). These distributions are shown in Figures 5.1–5.5, respec-
tively. The computation was carried out for three values of time, namely, t = 0.1, t = 0.15,
and t = 0.2. For the sake of brevity some computational results are not being presented
here.

Figures 5.1, 5.2(a), and 5.3(a) show the temperature (θ0 = 1), radial displacement, and
radial stress distributions, respectively. In these figures, the solid line represents the so-
lution corresponding to using the generalized equation of heat conduction due to Lord
and Shulman (LS theory: τ0 = 0.02 s), while the dotted line represents the solution corre-
sponding to the usage of the classical coupled equation of heat conduction (CT theory:
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r

0

0.2

0.4
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1

θ

LS
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t = 0.2 t = 0.15
t = 0.1

Figure 5.1. Temperature distribution.

τ0 = 0). It was found that near the surface of the cylinder where the boundary condi-
tions dominate, the coupled and the generalized theories give very close results. Inside
the cylinder, the solution is markedly different. This is due to the fact that thermal waves
in the coupled theory travel with an infinite speed of propagation as opposed to a finite
speed in the generalized case. In the coupled case, the solution fills the whole cylinder im-
mediately. Thus, the solution is not identically zero (though it may be very small) for any
small value of time. The solution obtained using the equations of generalized thermoe-
lasticity, however, exhibits the behavior of finite speeds of wave propagation. For small
values of time the solution is localized in a finite region of spaces surrounding the sur-
face of the cylinder and is identically zero outside this region. This region grows with
increasing time until it fills the hole cylinder. Its edge is the location of the wavefront. For
large values of time, both theories give almost identical results. This is due to the short
duration of the second sound effects.

Figure 5.2(b) shows that the medium adjacent to the cylinder surface undergoes ex-
pansion deformation because of thermal shock while the others undergo compressive
deformation. The deformation is a dynamic process. With the passage of time, the ex-
pansion region moves insides gradually and becomes larger and larger. Thus the radial
displacement becomes larger and larger. At a given instant, the nonzero region of radial
displacement is finite, which is due to the wave effect of heat. It indicates that heat trans-
fers into the deep of the medium with a finite velocity with the time passing. The more
the considered instant, the more the thermal disturbed region and the radial displace-
ment correspondingly.

In Figure 5.3(b), the radial stress at the cylinder surface is always zero, which agrees
with the boundary condition prescribed. This coincided with the mechanical boundary
condition that the cylinder surface is traction free. The medium close to the cylinder sur-
face suffers from tensile stress which becomes larger with the time passing. The presence
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Figure 5.2. (a) Radial displacement distribution for t = 0.1. (b) Radial displacement distribution.

of tensile stress close to the cylinder surface may be due to the influences of cross effects
arising from the coupling of the fields of temperature, mass diffusion, and strain. Due to
these cross effects, the thermal excitation results in that an additional mass concentration
generates the additional field of thermal stresses.

Due to these cross effects described above, the concentration of the diffusive material
is prominent in the medium close to the cylinder surface, as shown in Figure 5.4. The
concentration increases to a maximum value at some distance from the cylinder surface
and then gradually decrease to a zero value at r = 0, which indicate that the equation
satisfied by the concentration C predicts finite speed of propagation.
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Figure 5.3. (a) Radial stress distribution for t = 0.1. (b) Radial stress distribution.

Figure 5.5 shows the chemical potential distribution (P0 = 1). From the boundary of
the cylinder surface, the chemical potential increases from unity value to a maximum
value at some distance from the cylinder surface and then gradually decrease to a zero
value at r = 0, which confirm that the thermoelastic and diffusive waves propagate with
finite speeds.

6. Concluding remarks

(1) Due to the complicated nature of the governing equations for the generalized ther-
moelastic diffusion theory, the work done in this field is unfortunately limited in num-
ber. The method used in this study provides a quite successfully approach in dealing with
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Figure 5.5. Chemical potential distribution.

such problems. This approach gives exact solutions in the Laplace domain without any
assumed restrictions on the actual physical quantities that appear in the governing equa-
tions of the problem considered.

(2) The phenomenon of finite speeds of propagation is manifested in all theses figures.
For the smallest values of time considered we see that the heat effects of the surround-
ing media are localized in a region adjacent to the walls. This region expands with the
passage of time to fill the whole of the cylinder for the largest value of time. This region



14 A generalized thermoelastic diffusion problem

corresponds to the propagation of wavefronts from the surfaces of the cylinder. This is
not the case for the coupled theory where thermal effects extends to the whole cylinder
immediately.

(3) The results presented in this paper should prove useful for researchers in material
science, designers of new materials, low-temperature physicists, as well as for those work-
ing on the development of a theory of hyperbolic thermodiffusion. Cross effects of heat
and mass diffusion exchange with the environment arising from and inside nuclear reac-
tors influence their design and operations [11]. Study of the phenomenon of diffusion is
also used to improve the conditions of oil extractions (seeking ways of more efficiently
recovering deposits) [17].
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