DIMENSIONS OF SUBSETS OF CANTOR-TYPE SETS

FANG-XIONG ZHEN

Received 15 March 2006; Accepted 9 July 2006

We define the Cantor-type set E first, and then the Besicovitch subset B_{p} of E. We mainly show the dimensions of subsets of Cantor-type set E in compatible case and incompatible case.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let $I=[0,1]$ be the unit interval on the real line and $m>1$ be an integer. Let $J=\{0,1, \ldots$, $m-1\}$. For every point $x \in I$, there is a unique base- m representation $x=\sum_{k=1}^{\infty} j_{k} m^{-k}$ with $j_{k} \in J$ except for countable many points. Since countable sets do not interfere with our work, we neglect them here.

For each $j \in J, x \in[0,1]$, and $n \in \mathbb{N}$, let $\tau_{j}(x, n)=\#\left\{k: i_{k}=j, 1 \leq k \leq n\right\}$, then the limit $\tau_{j}(x)=\lim _{n \rightarrow \infty}(1 / n) \tau_{j}(x, n)$ is called the frequency of number j in the base- m representation of x. Here and in the following context, the notation " $\# A$ " denotes the number of elements in set A.

A classical result of Borel [3] says that for Lebesgue almost every $x \in[0,1]$, we have $\tau_{j}(x)=1 / m$. As for another problem, for a given probability vector $\mathbf{p}=\left(p_{0}, p_{1}, \ldots, p_{m-1}\right)$ such that $\Sigma_{j \in J} p_{j}=1$, consider the set

$$
\begin{equation*}
\Lambda_{m}\left(p_{0}, p_{1}, \ldots, p_{m-1}\right)=\left\{x \in[0,1]: \tau_{j}(x)=p_{j}, \text { for } j \in J\right\} \tag{1.1}
\end{equation*}
$$

That is, the set $\Lambda_{m}\left(p_{0}, p_{1}, \ldots, p_{m-1}\right)$ is composed of the number in $[0,1]$ having a ratio p_{j} of digits equal to j in its base- m representation for each j. A precursor theory is due to Besicovitch, when he showed in [1] that if $p \in(0,1 / 2)$, then

$$
\begin{equation*}
\operatorname{dim} \Lambda_{2}(p, 1-p)=\frac{p \log p+(1-p) \log (1-p)}{-\log 2} \tag{1.2}
\end{equation*}
$$

2 Dimensions of subsets of cantor-type sets

Eggleston generalized this formula for $m>2$. He showed in [4] that

$$
\begin{equation*}
\operatorname{dim} \Lambda_{m}\left(p_{0}, p_{1}, \ldots, p_{m-1}\right)=-\frac{\Sigma_{j \in J} p_{j} \log p_{j}}{\log m} \tag{1.3}
\end{equation*}
$$

From then on, $\Lambda_{m}\left(p_{0}, p_{1}, \ldots, p_{m-1}\right)$ is called Besicovitch set. And later, Billingsley furthered their work and the related information can be found in his book [2].

The research developed in this paper is motivated by Morán and Rey's work, and some of the proofs are edified by the methods mentioned in their article [7]. Let $M=$ $\{1,2, \ldots, m\}$ and for any $j \in M, \omega=i_{1} i_{2} \cdots i_{n} \cdots \in M^{\infty}, n \in \mathbb{N}$, we define

$$
\begin{equation*}
\delta_{j}(\omega, n)=\#\left\{k: i_{k}=j, 1 \leq k \leq n\right\} . \tag{1.4}
\end{equation*}
$$

Whenever there exists the limit

$$
\begin{equation*}
\delta_{j}(\omega)=\lim _{n \rightarrow \infty} \frac{1}{n} \delta_{j}(\omega, n), \tag{1.5}
\end{equation*}
$$

it is called the frequency of number j in infinite length word ω. Then for a given probability vector $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$, we define the Besicovitch set $B_{\mathbf{p}}$ to be the subset of Cantor-type set E (see Section 2) given by

$$
\begin{equation*}
B_{\mathbf{p}}=\left\{\varphi(\omega): \delta_{j}(\omega)=p_{j}, \omega \in M^{\infty}, \text { for any } j \in M\right\} \tag{1.6}
\end{equation*}
$$

Here φ is a bijective between M^{∞} and the Cantor-type set E and M^{∞} is the set of all infinite length sequences consisted by M. A remark from [7] says that $B_{\mathbf{p}}$ is a Borel set. In this paper, we give the Hausdorff dimension of $B_{\mathbf{p}}$ for any given probability vector $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ with $p_{j}>0$ for $j \in M$ as the following theorem.

Theorem 1.1. Denote

$$
\begin{equation*}
s=\frac{\sum_{j \in M} p_{j} \log p_{j}}{\sum_{j \in M} p_{j} \log r_{j}}, \tag{1.7}
\end{equation*}
$$

$\operatorname{dim} B_{\mathbf{p}}=s$, and $s \leq \alpha$, where α is uniquely decided by $\Sigma_{j \in M} r_{j}^{\alpha}=1$. The equality is attained when \mathbf{p} coincides with $\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$.

Furthermore, we will show that there exists a subset B of Besicovitch set $B_{\mathbf{p}}$ such that B has full $\mu_{\mathbf{p}}$-measure (see Section 2) but zero Hausdorff measure when $\mathbf{p} \neq\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$, which is described as follows.

Theorem 1.2. There exists a Borel subset B of $B_{\mathbf{p}}$ such that $\mu_{\mathbf{p}}(B)=1$ and $\mathscr{H}^{s}(B)=0$ in the incompatible case, that is, $\mathbf{p} \neq\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$.

As a corollary of Theorem 1.2, we can easily have that $\mu_{\mathbf{p}}, \mathscr{H}^{\alpha}$, and \mathscr{P}^{α} are equivalent on E in the compatible case, that is, $\mathbf{p}=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$ (see Corollary 3.7). Furthermore, we can get another byproduct (see Corollary 3.8) that the set $E \backslash B_{\mathbf{p}}$ has zero \mathscr{H}^{α} and \mathscr{P}^{α}-measure when \mathbf{p} is substituted by $\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$.

If the gap condition (see Section 2) holds, we will see that not only B_{p} and the Cantortype set E have the same Hausdorff measure and packing measure, but also both of them
are α-sets in the case of $\mathbf{p}=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$ (see Corollary 3.11). This can be regarded as a corollary from Corollary 3.7. When it comes to the incompatible case, the Hausdorff measure of $B_{\mathbf{p}}$ is infinity (Proposition 3.12), and so is the packing measure.

From Corollary 3.8, we see that the complementary of B_{p} with respect to E has zero \mathscr{H}^{α}-measure in the compatible case, which implies that it is rather small from the viewpoint of measure theory.

The following section will give the basic definitions and notations of the paper, and the proofs of the above results are displayed in Section 3.

2. Definitions and notations

Let $I=[0,1]$ be the unit interval and $M=\{1,2, \ldots, m\}$. Let Ω_{n} be the set of all sequences of length n with each sequence consisting of letters in M and let $\Omega=\bigcup_{n=1}^{\infty} \Omega_{n}$. Suppose that a sequence of closed subsets $\left\{I_{\omega}: \omega \in \Omega_{n}\right\}$ of I satisfies
(1) $I_{\omega * i} \subset I_{\omega}$ for any $\omega \in \Omega$ and $i \in M$,
(2) $I_{\omega * i} \cap I_{\omega * j}=\phi$ for any $\omega \in \Omega$ and $i, j \in M$ with $i \neq j$,
(3) $\left|I_{\omega * i}\right| /\left|I_{\omega}\right|=r_{i}$ with $r_{i} \in(0,1)$ for any $\omega \in \Omega$ and $i \in M$.

Then the set $E=\bigcap_{n=1}^{\infty} \bigcup_{\omega \in \Omega_{n}} I_{\omega}$ is called a Cantor-type set.
Notice that $\bigcap_{n=1}^{\infty} I_{i_{1} i_{2} \cdots i_{n}}$ consists of a single point which we will denote by $\varphi(\omega)$ since $\omega \in \Omega_{n}$, and we write $I_{i_{1} i_{2} \cdots i_{n}}$ for I_{ω} sometimes. We can easily see that $\varphi: M^{\infty} \rightarrow E$ is 1-1 and onto.

We denote by ν_{p} the probability measure on M^{∞} defined by the infinite product $\mathbf{p} \times$ $\mathbf{p} \times \mathbf{p} \times \cdots$. Let $\mu_{\mathbf{p}}$ be the projected measure supported by E, that is, $\mu_{\mathbf{p}}=v_{\mathbf{p}} \circ \varphi^{-1}$, then for any n-level basic interval $I_{\omega}\left(\omega=i_{1} i_{1} \cdots i_{n} \in \Omega_{n}\right)$, we have $\mu_{\mathbf{p}}\left(I_{\omega}\right)=\Pi_{j=1}^{n} p_{i_{j}}$. By the strong law of large numbers, we see that $\mu_{\mathbf{p}}\left(B_{\mathbf{p}}\right)=1$ and since $B_{\mathbf{p}} \subset E$, thus $\mu_{\mathbf{p}}\left(B_{\mathbf{p}}\right)=$ $\mu_{\mathrm{p}}(E)=1$. Such a measure μ_{p} is called Bernoulli measure.

For the use in next section, we give some notations here.
Let $\mathscr{F}=\left\{I_{\omega}: \omega \in \Omega\right\}$, we define

$$
\begin{gather*}
\mathscr{H}_{\delta, \mathscr{F}}^{s}(E)=\inf \left\{\Sigma\left|I_{\omega}^{j}\right|^{s}:\left\{I_{\omega}^{j}\right\} \subset \mathscr{F},\left|I_{\omega}^{j}\right| \leq \delta, E \subset \bigcup_{j} I_{\omega}^{j}\right\}, \tag{2.1}\\
\mathscr{H}_{\mathscr{F}}^{s}(E)=\lim _{\delta \rightarrow 0} \mathscr{H}_{\delta, \mathscr{F}}^{s}(E) .
\end{gather*}
$$

Similar to the definition of Hausdorff dimension, we define

$$
\begin{align*}
\operatorname{dim}_{\mathscr{F} E} & =\sup \left\{s \geq 0: \mathscr{H}_{\mathscr{F}}^{s}(E)=\infty\right\} \\
& =\inf \left\{s \geq 0: \mathscr{H}_{\mathscr{F}}^{s}(E)=0\right\} . \tag{2.2}
\end{align*}
$$

Now, we would like to define μ_{p}^{s}-measure as follows:

$$
\begin{gather*}
\mu_{\mathbf{p}}^{s}(E, \delta)=\inf \left\{\Sigma \mu_{\mathbf{p}}\left(U_{i}\right)^{s}: \mu_{\mathbf{p}}\left(U_{i}\right) \leq \delta, E \subset \bigcup_{i} U_{i}\right\}, \tag{2.3}\\
\mu_{\mathbf{p}}^{s}(E)=\lim _{\delta \rightarrow 0} \mu_{\mathbf{p}}^{s}(E, \delta)
\end{gather*}
$$

4 Dimensions of subsets of cantor-type sets

then the μ_{p}-dimension of E is given by

$$
\begin{align*}
\operatorname{dim}_{\mu_{\mathrm{p}}} E & =\sup \left\{s \geq 0: \mu_{\mathbf{p}}^{s}(E)=\infty\right\} \\
& =\inf \left\{s \geq 0: \mu_{\mathbf{p}}^{s}(E)=0\right\} \tag{2.4}
\end{align*}
$$

We see that if $\mu_{\mathbf{p}}(E)>0$, then $\operatorname{dim}_{\mu_{\mathbf{p}}} E=1$.

3. Proofs

Now we set to prove the results displayed in Section 1. First, let us look at some lemmas. Lemma 3.1 [5]. Suppose that $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ is a probability vector with $\Sigma_{j \in M} p_{j}=1$ and $p_{j}>0$. For any $q_{1}, \ldots, q_{m} \in \mathbb{R}$,

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i}\left(-\log p_{i}+q_{i}\right) \leq \log \sum_{i=1}^{m} e^{q_{i}} . \tag{3.1}
\end{equation*}
$$

The equality is attained if and only if $p_{i}=e^{q_{i}}\left(\sum_{i=1}^{m} e^{q_{i}}\right)^{-1}$ for $i \in M$.
Lemma 3.2. For any subset $F \subset E, \alpha \geq 0$, there exists a constant $c>0$ such that $c \mathcal{H}_{\mathscr{F}}^{\alpha}(F) \leq$ $\mathscr{H}^{\alpha} \leq \mathcal{H}_{\mathscr{F}}^{\alpha}(F)$.

Proof. Denote $r=\min _{1 \leq i \leq m}\left\{r_{i}\right\}, A_{r}^{(n)}=\left\{I_{\omega}: r^{n}<\left|I_{\omega}\right| \leq r^{n-1}\right\}$. For any δ-covering $\left\{U_{i}\right\}$ of F, for any U_{i}, there exists n_{i} such that $r^{n_{i}}<\left|U_{i}\right| \leq r^{n_{i}-1}$. For any $x \in U_{i}, F \cap U_{i} \subset$ $\bigcup_{I_{\omega} \in A_{r}^{n_{i}} I_{\omega} \cap U_{i} \neq \phi} I_{\omega} \subset B\left(x, 2 r^{n_{i}-1}\right)$, then we have $\#\left\{I_{\omega}: I_{\omega} \in A_{r}^{n_{i}} I_{\omega} \cap U_{i} \neq \phi\right\} \leq 4 r^{n_{i}-1} / r^{n_{i}}=$ $4 / r$, so for this U_{i}, there exists a sequence $\left\{I_{i j}^{n_{i}}\right\}_{i=1,2, \ldots .}^{j=1, \ldots, l_{i}} \subset A_{r}^{n_{i}}$ such that $F \cap U_{i} \subset \bigcup_{j=1}^{l_{i}} I_{i j}^{\left(n_{i}\right)}$, $l_{i} \leq 4 / r$. Since $\left|U_{i}\right| \geq r^{n_{i}} \geq r\left|I_{i j}^{\left(n_{i}\right)}\right|$ for $j=1,2, \ldots, l_{i}$, then $l_{i}\left|U_{i}\right|^{\alpha} \geq \sum_{j=1}^{l_{i}} r^{\alpha}\left|I_{i j}^{\left(n_{i}\right)}\right|^{\alpha}$, we further get $(4 / r) \Sigma_{i=1}^{\infty}\left|U_{i}\right|^{\alpha} \geq r^{\alpha} \Sigma_{i=1}^{\infty} \Sigma_{j=1}^{l_{j}}\left|I_{i j}^{\left(n_{i}\right)}\right|^{\alpha}$, thus we get $\mathscr{H}^{\alpha}(F) \geq\left(r^{\alpha+1} / 4\right) \mathscr{H}_{\mathscr{F}}^{\alpha}(F)$. Letting $c=r^{\alpha+1} / 4$, we have $c \mathcal{H}_{\mathscr{F}}^{\alpha}(F) \leq \mathscr{H}^{\alpha} \leq \mathscr{H}_{\mathscr{F}}^{\alpha}(F)$.

To prove Theorem 1.1, we need another lemma.
Lemma 3.3. If

$$
\begin{equation*}
E \subset\left\{\varphi(\omega): \lim _{|\omega| \rightarrow \infty} \frac{\log \mu_{\mathbf{p}}\left(I_{\omega}\right)}{\log \left|I_{\omega}\right|}=\delta\right\}, \tag{3.2}
\end{equation*}
$$

then $\operatorname{dim} E=\delta \operatorname{dim}_{\mu_{\mathrm{p}}} E$.
Proof. With Lemma 3.2, we can get the same dimension result if we use the basic intervals to cover E, so we first prove that if

$$
\begin{equation*}
E \subset\left\{\varphi(\omega): \liminf _{|\omega| \rightarrow \infty} \frac{\log \mu_{\mathbf{p}}\left(I_{\omega}\right)}{\log \left|I_{\omega}\right|} \geq \delta\right\}, \tag{3.3}
\end{equation*}
$$

then $\operatorname{dim} E \geq \delta \operatorname{dim}_{\mu_{\mathrm{p}}} E$.
If $\varphi(\omega) \in E$, then for any $\varepsilon>0$, there exists $N>0$ such that for any $n>N$, we have $\mu_{\mathbf{p}}\left(I_{\omega}\right) \leq\left|I_{\omega}\right|^{\delta-\varepsilon}$. Thus there are only many finite ω such that I_{ω} does not satisfy the above
inequality. Let

$$
\begin{equation*}
E_{k}=\left\{\varphi(\omega) \in E:\left|I_{\omega}\right|>\frac{1}{k} \text { or } \mu_{\mathbf{p}}\left(I_{\omega}\right) \leq\left|I_{\omega}\right|^{\delta-\varepsilon}\right\} . \tag{3.4}
\end{equation*}
$$

We see that E_{k} is increasing. On the other hand, since we have $\mu_{\mathbf{p}}\left(I_{\omega}\right)>0$ for any $\omega \in \Omega$, then there exists k such that $\left|I_{\omega}\right|>1 / k$ for any given $\omega \in \Omega$, which implies that $\varphi(\omega) \in E_{k}$. Thus we have $E=\bigcup_{k} E_{k}$.

For any $(1 / k>) \rho>0, \varepsilon_{1}>0, \varepsilon_{2}>0$, there exists a sequence of intervals $\left\{I_{\omega}^{j}\right\} \subset \mathscr{F}$ such that $\left|I_{\omega}^{j}\right| \leq \rho, I_{\omega}^{j} \cap E_{k} \neq \phi$, and $E_{k} \subset \bigcup_{j} I_{\omega}^{j}$. Since $\operatorname{dim} \mathscr{F} E=\operatorname{dim} E$ and $E_{k} \subset E$, we have $\mathscr{H}_{\rho}^{\operatorname{dim} E+\varepsilon_{2}}\left(E_{k}\right)<\varepsilon_{1}$, that is, $\Sigma\left|I_{\omega}^{j}\right|^{\operatorname{dim} E+\varepsilon_{2}}<\varepsilon_{1}$, which follows $\Sigma\left(\mu_{\mathbf{p}}\left(I_{\omega}^{j}\right)\right)^{\left(\operatorname{dim} E+\varepsilon_{2}\right) /(\delta-\varepsilon)}<\varepsilon_{1}$. Thus we have $\operatorname{dim}_{\mu_{\mathrm{p}}} E_{k} \leq\left(\operatorname{dim} E+\varepsilon_{2}\right) /(\delta-\varepsilon)$. Since ε and ε_{2} are arbitrary small, we have $\operatorname{dim} E \geq \delta \operatorname{dim}_{\mu_{\mathrm{p}}} E_{k}$, which further implies $\operatorname{dim} E \geq \delta \operatorname{dim}_{\mu_{\mathrm{p}}} E$.

With the same method we can prove that if

$$
\begin{equation*}
E \subset\left\{\varphi(\omega): \limsup _{|\omega| \rightarrow \infty} \frac{\log \mu_{\mathbf{p}}\left(I_{\omega}\right)}{\log \left|I_{\omega}\right|} \leq \delta\right\}, \tag{3.5}
\end{equation*}
$$

then $\operatorname{dim} E \leq \delta \operatorname{dim}_{\mu_{\mathrm{p}}} E$.
With the above arguments, we complete the proof.
Proof of Theorem 1.1. For any $\omega \in \Omega$,

$$
\begin{align*}
\lim _{|\omega| \rightarrow \infty} \frac{\log \mu_{\mathbf{p}}\left(I_{\omega}\right)}{\log \left|I_{\omega}\right|} & =\lim _{|\omega| \rightarrow \infty} \frac{\sum_{j=1}^{n} \log p_{i_{j}}}{\sum_{j=1}^{n} \log r_{i_{j}}} \\
& =\lim _{|\omega| \rightarrow \infty} \frac{\sum_{j \in M} \delta_{j}(\omega, n) \log p_{j}}{\sum_{j \in M} \delta_{j}(\omega, n) \log r_{j}} \tag{3.6}\\
& =\frac{\sum_{j \in M} p_{j} \log p_{j}}{\sum_{j \in M} p_{j} \log r_{j}}=s .
\end{align*}
$$

Since $\mu_{\mathbf{p}}\left(B_{\mathbf{p}}\right)=1$, by Lemma 3.3 we have $\operatorname{dim} B_{\mathbf{p}}=s$.
Put $q_{i}=\log r_{i}^{\alpha}$ in Lemma 3.1, we get $s \leq \alpha$. Furthermore, if we put

$$
\begin{equation*}
p_{i}=e^{\log r_{i}^{\alpha}}\left(\sum_{i=1}^{m} e^{\log r_{i}^{\alpha}}\right)^{-1}=r_{i}^{\alpha}, \tag{3.7}
\end{equation*}
$$

we have $s=\alpha$.
Lemma 3.4 (law of iterated logarithm (Hartman-Winter)). Suppose that $\left\{X_{n}: n \geq 1\right\}$ is a sequence of independent, identically distributed random variables (i.i.d.r.v.) satisfying $\mathbf{E}\left(X_{n}\right)=0$ and $\mathbf{E}\left(X_{n}^{2}\right)=\sigma^{2} \in(0,+\infty)$, then

$$
\begin{align*}
& \limsup _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} X_{i}}{\sqrt{2 n \sigma^{2} \log \log n \sigma^{2}}}=1, \quad \text { p a.e., } \tag{3.8}\\
& \liminf _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} X_{i}}{\sqrt{2 n \sigma^{2} \log \log n \sigma^{2}}}=-1 \quad \text { p a.e. }
\end{align*}
$$

Remark 3.5. We suppose that \mathbf{E} denotes the mathematical expectation and \mathbf{V} denotes the mean variance here and in the following context.

Proof of Theorem 1.2. Put $p=\mu_{\mathbf{p}} \circ \varphi, X_{i}=\log p_{i}-s \log r_{i}, i \in M$, then $\left\{X_{i}\right\}$ is a sequence of i.i.d.r.v. with respect to p. We see that $\mathbf{E}\left(X_{i}\right)=\sum_{i=1}^{m} p_{i}\left(\log p_{i}-s \log r_{i}\right)=0$. Suppose that $\mathbf{p} \neq\left(r_{1}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$, then

$$
\begin{equation*}
0<\mathbf{E}\left(X_{i}^{2}\right)=\sum_{i=1}^{m} p_{i}\left(\log p_{i}-s \log r_{i}\right)^{2}=: \sigma^{2}<\infty . \tag{3.9}
\end{equation*}
$$

Set

$$
\begin{equation*}
B^{\prime}=\left\{\varphi(\omega): \limsup _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} X_{i}}{\sqrt{2 n \sigma^{2} \log \log n \sigma^{2}}}=1\right\} \tag{3.10}
\end{equation*}
$$

then $\mu_{\mathbf{p}}\left(B^{\prime}\right)=1$ by Lemma 3.4. Since $\mu_{\mathbf{p}}\left(B_{\mathbf{p}}\right)=1$. Let $B=B^{\prime} \cap B_{\mathbf{p}}$, we get $\mu_{\mathbf{p}}(B)=1$.
With the above arguments, we see that $\sum_{j=1}^{\infty} X_{i_{j}}=\infty$ a.e., that is,

$$
\begin{equation*}
\log \frac{\prod_{j=1}^{n} p_{i_{j}}}{\prod_{j=1}^{n} r_{i_{j}}^{s}} \longrightarrow \infty, \quad \text { as } n \longrightarrow \infty \tag{3.11}
\end{equation*}
$$

from which we also have

$$
\begin{equation*}
\frac{\mu_{\mathbf{p}}\left(I_{\omega}\right)}{\left|I_{\omega}\right|^{s}} \longrightarrow \infty, \quad \text { as }|\omega| \longrightarrow \infty \tag{3.12}
\end{equation*}
$$

Let $\mathscr{F}_{n}^{k}=\left\{I_{\omega}: \mu_{\mathbf{p}}\left(I_{\omega}\right) /\left|I_{\omega}\right|^{s}>k\right.$, for $\left.\omega \in \Omega_{n}\right\}, \mathscr{F}^{k}=\bigcup_{n=1}^{\infty} \mathscr{F}_{n}^{k}$. For any $\delta>0, k>0$, choose $\left\{I_{j}^{k}\right\} \subset \mathscr{g}^{k}$ such that $B \subset \bigcup_{j} I_{j}^{k},\left|I_{j}^{k}\right| \leq \delta$, and $I_{i}^{k} \cap I_{j}^{k}=\phi(i \neq j)$. By the definition of \mathscr{g}^{k}, we have

$$
\begin{equation*}
\frac{\mu_{\mathbf{p}}\left(I_{j}^{k}\right)}{\left|I_{j}^{k}\right|^{s}}>k, \quad \forall j . \tag{3.13}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathscr{H}_{\delta}^{s}(B) \leq \Sigma\left|I_{j}^{k}\right|^{s} \leq \frac{1}{k} \Sigma \mu_{\mathbf{p}}\left(I_{j}^{k}\right) \leq \frac{1}{k} . \tag{3.14}
\end{equation*}
$$

Letting $k \rightarrow \infty$, we have $\mathscr{H}_{\delta}^{s}(B)=0$, from which it follows that $\mathscr{H}^{s}(B)=0$.
Lemma 3.6 [6]. Suppose that μ is a finite Borel measure such that

$$
\begin{equation*}
0<\limsup _{|\omega| \rightarrow \infty} \frac{\mu\left(I_{\omega}\right)}{\left|I_{\omega}\right|^{\alpha}}<\infty, \quad 0<\liminf _{|\omega| \rightarrow \infty} \frac{\mu\left(I_{\omega}\right)}{\left|I_{\omega}\right|^{\alpha}}<\infty, \quad \text { for any } \omega \in \Omega, \tag{3.15}
\end{equation*}
$$

then $\mu \sim \mathscr{H}^{\alpha} \sim \mathscr{P}^{\alpha}$ on E.
Corollary 3.7. $\mu_{\mathbf{p}} \sim \mathscr{H}^{\alpha} \sim \mathscr{P}^{\alpha}$ on E in case of $\mathbf{p}=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$.

Proof. Since $\mu_{\mathbf{p}}\left(I_{\omega}\right)=\Pi_{j=1}^{n} p_{i_{j}}$, for $\omega=i_{1} i_{2} \cdots i_{n} \in \Omega_{n}$, then

$$
\begin{equation*}
\frac{\mu_{\mathbf{p}}\left(I_{\omega}\right)}{\left|I_{\omega}\right|^{\alpha}}=\frac{\Pi_{j=1}^{n} p_{i_{j}}}{\prod_{j=1}^{n} r_{i_{j}}^{\alpha}}=1, \quad \text { when } \mathbf{p}=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right) \tag{3.16}
\end{equation*}
$$

So by Lemma 3.6, we have $\mu_{\mathrm{p}} \sim \mathcal{H}^{\alpha} \sim \mathscr{P}^{\alpha}$ on E in case of $\mathbf{p}=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$.
Corollary 3.8. $\mathscr{H}^{\alpha}\left(E \backslash B_{\mathbf{p}}\right)=\mathscr{P}^{\alpha}\left(E \backslash B_{\mathbf{p}}\right)=0$, $\mathscr{C}^{\alpha}(E)=\mathscr{H}^{\alpha}\left(B_{\mathbf{p}}\right)$, and $\mathscr{P}^{\alpha}(E)=\mathscr{P}^{\alpha}\left(B_{\mathbf{p}}\right)$ in case of $\mathbf{p}=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$.
Proof. By the definition of equivalence, $\mu_{\mathbf{p}} \sim \mathscr{H}^{\alpha}$ on $E \Leftrightarrow$ for any $F \subset E, \mu_{\mathbf{p}}(F)=0 \Leftrightarrow$ $\mathscr{H}^{\alpha}(F)=0$. It is clear that $B_{\mathbf{p}}$ is the subset of E with $\mu_{\mathbf{p}}(E)=\mu_{\mathbf{p}}\left(B_{\mathbf{p}}\right)=1$, then we get immediately $\mu_{\mathbf{p}}\left(E \backslash B_{\mathbf{p}}\right)=0$, which further implies $\mathscr{H}^{\alpha}\left(E \backslash B_{\mathbf{p}}\right)=0$ by Corollary 3.7. Furthermore, $\mathscr{H}^{\alpha}\left(B_{\mathbf{p}}\right) \leq \mathscr{H}^{\alpha}(E) \leq \mathscr{H}^{\alpha}\left(B_{\mathbf{p}}\right)+\mathscr{H}^{\alpha}\left(E \backslash B_{\mathbf{p}}\right)=\mathscr{H}^{\alpha}\left(B_{\mathbf{p}}\right)$, we have $\mathscr{H}^{\alpha}(E)=\mathscr{H}^{\alpha}\left(B_{\mathbf{p}}\right)$.

Similar arguments will prove that $\mathscr{P}^{\alpha}\left(E \backslash B_{\mathbf{p}}\right)=0$ and $\mathscr{P}^{\alpha}(E)=\mathscr{P}^{\alpha}\left(B_{\mathbf{p}}\right)$.
For the simplicity of proof of the following results, we would like to make a hypothesis here.

We say that the Cantor-type set E satisfies the gap condition if there exists a constant $\delta>0$ such that

$$
\begin{equation*}
\operatorname{dist}\left(I_{i_{1} i_{2} \cdots i_{n}}, I_{i_{1} i_{2} \cdots i_{n}^{\prime}}\right) \geq \delta \max \left\{\left|I_{i_{1} i_{2} \cdots i_{n}}\right|,\left|I_{i_{1} i_{2} \cdots i_{n}^{\prime}}\right|\right\} \tag{3.17}
\end{equation*}
$$

for any $n \in \mathbb{N}$ and $i_{n} \neq i_{n}^{\prime}$.
Lemma 3.9 [6]. If the gap condition holds, then for any $\omega \in \Omega$ and finite Borel measure μ, the following inequalities hold:

$$
\begin{align*}
& (a \delta)^{\alpha} \liminf _{|\omega| \rightarrow \infty} \frac{\left|I_{\omega}\right|^{\alpha}}{\mu\left(I_{\omega}\right)} \leq \liminf _{r \rightarrow 0} \frac{r^{\alpha}}{\mu(B(\varphi(\omega), r))} \leq a^{-\alpha} \liminf _{|\omega| \rightarrow \infty} \frac{\left|I_{\omega}\right|^{\alpha}}{\mu\left(I_{\omega}\right)}, \tag{3.18}\\
& (a \delta)^{\alpha} \limsup \frac{\left|I_{\omega}\right|^{\alpha}}{\mu\left(I_{\omega}\right)} \leq \limsup _{r \rightarrow 0} \frac{r^{\alpha}}{\mu(B(\varphi(\omega), r))} \leq a^{-\alpha} \limsup _{|\omega| \rightarrow \infty} \frac{\left|I_{\omega}\right|^{\alpha}}{\mu\left(I_{\omega}\right)},
\end{align*}
$$

where $a=\min _{i \in M}\left\{r_{i}\right\}$.
Lemma 3.10 [8]. For finite Borel measure μ, there exists constants $c_{1}, c_{2}, c_{3}, c_{4}$ such that

$$
\begin{align*}
& c_{1} \mu(E) \inf _{x \in E} \liminf _{r \rightarrow 0} \frac{r^{\alpha}}{\mu(B(x, r))} \leq \mathscr{H}^{\alpha}(E) \leq c_{2} \mu(\mathbb{R}) \sup _{x \in E} \liminf _{r \rightarrow 0} \frac{r^{\alpha}}{\mu(B(x, r))}, \tag{3.19}\\
& c_{3} \mu(E) \inf _{x \in E} \limsup _{r \rightarrow 0} \frac{r^{\alpha}}{\mu(B(x, r))} \leq \mathscr{P}^{\alpha}(E) \leq c_{4} \mu(\mathbb{R}) \sup _{x \in E} \limsup _{r \rightarrow 0} \frac{r^{\alpha}}{\mu(B(x, r))} .
\end{align*}
$$

Corollary 3.11. If E is the Cantor-type set satisfying gap condition and B_{p} is the Besicovitch set defined in Section 1, then $0<\mathscr{H}^{\alpha}(E)=\mathscr{H}^{\alpha}\left(B_{\mathbf{p}}\right)<\infty$ and $0<\mathscr{P}^{\alpha}(E)=\mathscr{P}^{\alpha}\left(B_{\mathbf{p}}\right)<\infty$, when $\mathbf{p}=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right)$.

Proof. From Lemma 3.10, we see that the density of balls is comparable with that of intervals. So we have

$$
\begin{equation*}
c_{1}^{\prime} \mu(E) \inf _{x \in E} \liminf _{|\omega| \rightarrow \infty} \frac{\left|I_{\omega}\right|^{\alpha}}{\mu\left(I_{\omega}\right)} \leq \mathscr{H}^{\alpha}(E) \leq c_{2}^{\prime} \mu(\mathbb{R}) \sup _{x \in E} \liminf _{|\omega| \rightarrow \infty} \frac{\left|I_{\omega}\right|^{\alpha}}{\mu\left(I_{\omega}\right)} \tag{3.20}
\end{equation*}
$$

together with Lemmas 3.9 and 3.10.
Since

$$
\begin{equation*}
\frac{\mu_{\mathbf{p}}\left(I_{\omega}\right)}{\left|I_{\omega}\right|^{\alpha}}=1, \quad \text { in case of } \mathbf{p}=\left(r_{1}^{\alpha}, r_{2}^{\alpha}, \ldots, r_{m}^{\alpha}\right) \tag{3.21}
\end{equation*}
$$

so we get $c_{1}^{\prime} \leq \mathscr{H}^{\alpha}(E) \leq c_{2}^{\prime}$ by substituting μ with μ_{p} in (3.20), which implies that $0<$ $\mathscr{H}^{\alpha}(E)<\infty$. Since we have proved in Corollary 3.8 that $\mathscr{H}^{\alpha}(E)=\mathscr{H}^{\alpha}\left(B_{\mathbf{p}}\right)$, we have $0<$ $\mathscr{H}^{\alpha}(E)=\mathscr{H}^{\alpha}\left(B_{\mathbf{p}}\right)<\infty$.

Analogously, we can prove $0<\mathscr{P}^{\alpha}(E)=\mathscr{P}^{\alpha}\left(B_{\mathbf{p}}\right)<\infty$.
Remark 3.12. Corollary 3.11 reinforces the assertion in Theorem 1.1.

Acknowledgment

The author expresses his deep appreciation to Dr. Wu Ya-hao for his helpful suggestions.

References

[1] A. S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Mathematische Annalen 110 (1935), no. 1, 321-330.
[2] P. Billingsley, Ergodic Theory and Information, John Wiley \& Sons, New York, 1965.
[3] E. Borel, Sur les probabilites denombrables et leurs applications arithmetiques, Rendiconti del Circolo Matematico di Palermo 26 (1909), 247-271.
[4] H. G. Eggleston, The fractional dimension of a set defined by decimal properties, The Quarterly Journal of Mathematics. Oxford. Second Series 20 (1949), 31-36.
[5] K. Falconer, Techniques in Fractal Geometry, John Wiley \& Sons, Chichester, 1997.
[6] S. Ikeda and M. Nakamura, Dimensions of measures on perturbed Cantor sets, Topology and Its Applications 122 (2002), no. 1-2, 223-236.
[7] M. Morán and J.-M. Rey, Singularity of self-similar measures with respect to Hausdorff measures, Transactions of the American Mathematical Society 350 (1998), no. 6, 2297-2310.
[8] S. J. Taylor and C. Tricot, Packing measure, and its evaluation for a Brownian path, Transactions of the American Mathematical Society 288 (1985), no. 2, 679-699.

Fang-Xiong Zhen: Department of Mathematics, Xianning College, Xianning, Hubei 437005, China E-mail address: cookie4993@sina.com

