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The thermal instability of a rotating Rivlin-Ericksen viscoelastic fluid in the presence
of uniform vertical magnetic field is considered. For the case of stationary convection,
Rivlin-Ericksen viscoelastic fluid behaves like a Newtonian fluid. It is found that rotation
has a stabilizing effect, whereas the magnetic field has both stabilizing and destabilizing
effects. Graphs have been plotted by giving numerical values to the parameters, to de-
pict the stability characteristics. The rotation and magnetic field are found to introduce
oscillatory modes in the system which were nonexistent in their absence.
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1. Introduction

The thermal instability of a fluid layer with maintained adverse temperature gradient
by heating the underside plays an important role in geophysics, interior of the Earth,
oceanography, and the atmospheric physics, and so forth, and has been investigated by
several authors (e.g., Bénard [1], Rayleigh [8], Jeffreys [6]) under different conditions.

A detailed account of the theoretical and experimental study of thermal instability
(Bénard convection) in Newtonian fluids, under varying assumptions of hydrodynamics
and hydromagnetics, has been given by Chandrasekhar [4]. The use of Boussinesq ap-
proximation has been made throughout, which states that the density may be treated as a
constant in all the terms in the equations of motion except the external force term. Bhatia
and Steiner [2] have considered the effect of a uniform rotation on the thermal instability
of a viscoelastic (Maxwell) fluid and have found that rotation has a destabilizing influ-
ence in contrast to the stabilizing effect on Newtonian fluid. The thermal instability of a
Maxwell fluid in hydromagnetics has been studied by Bhatia and Steiner [3]. They have
found that the magnetic field stabilizes a viscoelastic (Maxwell) fluid just as the Newto-
nian fluid. Sharma [10] has studied the thermal instability of a layer of viscoelastic (Ol-
droydian) fluid acted on by a uniform rotation and found that rotation has destabilizing
as well as stabilizing effects under certain conditions in contrast to that of a Maxwell fluid
where it has a destabilizing effect. In another study, Sharma [9] has studied the stability
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of a layer of an electrically conducting Oldroyd fluid [7] in the presence of a magnetic
field and has found that the magnetic field has a stabilizing influence.

There are many elastico-viscous fluids that cannot be characterized by Maxwell’s con-
stitutive relations or Oldroyd’s [7] constitutive relations. One such class of elastico-
viscous fluids is Rivlin-Ericksen fluid. Srivastava and Singh [13] have studied the unsteady
flow of a dusty elastico-viscous Rivlin-Ericksen fluid through channels of different cross-
sections in the presence of a time-dependent pressure gradient. In another study, Garg et
al. [5] have studied the rectilinear oscillations of a sphere along its diameter in a conduct-
ing dusty Rivlin-Ericksen fluid in the presence of a uniform magnetic field. Sharma and
Kumar [11] have studied the effect of rotation on thermal instability in Rivlin-Ericksen
elastico-viscous fluid and found that rotation has a stabilizing effect and introduces os-
cillatory modes in the system. A layer of such fluid heated from below under the action
of magnetic field and rotation may find applications in geophysics, interior of the Earth,
oceanography, and the atmospheric physics.

Keeping in mind the importance of non-Newtonian fluids, convection in fluid layer
heated from below, magnetic field, and rotation, the present paper attempts to study the
effect of uniform vertical magnetic field on Rivlin-Ericksen viscoelastic fluid heated from
below in the presence of a uniform rotation.

2. Formulation of the problem and perturbation equations

Consider an infinite, horizontal, incompressible electrically conducting Rivlin-Ericksen
viscoelastic fluid layer of thickness d, heated from below so that the temperatures and
densities at the bottom surface z = 0 are T0 and ρ0 and at the upper surface z = d are
Td and ρd, respectively, and that a uniform temperature gradient β(= |dT/dz|) is main-

tained. The gravity field �g(0,0,−g), a uniform vertical magnetic field �H(0,0,H), and a

uniform vertical rotation �Ω(0,0,Ω) act on the system.
The equations of motion, continuity, heat conduction, and Maxwell’s equations gov-

erning the flow of Rivlin-Ericksen viscoelastic fluid in the presence of magnetic field and
rotation are

∂�v
∂t

+
(
�v ·∇)�v =−∇

(
p

ρ0
− 1

2

∣
∣�Ω×�r∣∣2

)
+�g
(

1 +
δρ

ρ0

)
+
(
υ+ υ′

∂

∂t

)
∇2�v

+
μe

4πρ0

(∇× �H)× �H + 2
(
�v× �Ω),

(2.1)

∇·�v = 0, (2.2)

∂T

∂t
+
(
�v ·∇)T = χ∇2T , (2.3)

∇· �H = 0, (2.4)

∂�H
∂t
= (�H ·∇)�v+η∇2 �H , (2.5)

where �v(u,v,w), p, ρ, T , υ, and υ′ denote the velocity, pressure, density, temperature,

kinematic viscosity, and kinematic viscoelasticity, respectively, and
⇀
r (x, y,z).
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The equation of state for the fluid is

ρ= ρ0
[
1−α

(
T −T0

)]
, (2.6)

where ρ0, T0 are, respectively, the density and temperature of the fluid at the reference
level z = 0 and α is the coefficient of thermal expansion. In writing (2.1), we made use
of the Boussinesq approximation, which states that the density variations are ignored
in all terms in the equations of motion except the external force term. The magnetic
permeability μe, thermal diffusivity χ, and electrical resistivity η are all assumed to be
constant.

The initial state is one in which the velocity, density, pressure, and temperature at any
point in the fluid are, respectively, given by

�v = (0,0,0), ρ= ρ(z), p = p(z), T = T(z). (2.7)

Let�v(u,v,w), δp, δρ, θ, and�h(hx,hy ,hz) denote, respectively, the perturbations in velocity

�v (initially zero), pressure p, density ρ, temperature T , and the magnetic field �H(0,0,H).
The change in density δρ, caused by the perturbation θ in temperature, is given by

ρ+ δρ= ρ0
[
1−α

(
T + θ−T0

)]= ρ−αρ0θ, i.e., δρ =−αρ0θ. (2.8)

Then the linearized perturbation equations are

∂�v
∂t
=− 1

ρ0
(∇δp)−�gαθ +

(
υ+ υ′

∂

∂t

)
∇2�v+

μe
4πρ0

(∇×�h)× �H + 2
(
�v× �Ω),

∇·�v = 0,

∂θ

∂t
= βw+ χ∇2θ,

∇·�h= 0,

∂�h
∂t
= (�H ·∇)�v+η∇2�h.

(2.9)

Within the framework of Boussinesq approximation, (2.9) become
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where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 and ζ = ∂v/∂x− ∂u/∂y; ξ = ∂hy/∂x− ∂hx/∂y stand
for the z-components of vorticity and current density, respectively.

3. Dispersion relation

We now analyze the disturbances into normal modes, assuming that the perturbation
quantities are of the form

[
w,θ,hz,ζ ,ξ

]= [W(z),Θ(z),K(z),Z(z),X(z)
]

exp
(
ikxx+ iky y +nt

)
, (3.1)

where kx, ky are the wave numbers along x- and y-directions, respectively, k = (k2
x + k2

y)1/2

is the resultant wave number, and n is the growth rate which is, in general, a complex
constant.

Using expression (3.1), (2.10) in nondimensional form transform to

[
σ
(
D2− a2)W +

(
gαd2

υ

)
a2Θ+

2Ωd3

υ
DZ− μeHd

4πρ0υ

(
D2− a2)DK

]

= [1 +Fσ]
(
D2− a2)2

W ,

(3.2)

[{1 +Fσ}(D2− a2)− σ
]
Z =−

(
2Ωd

υ

)
DW −

(
μeHd

4πρ0υ

)
DX , (3.3)

[
D2− a2− p1σ

]
Θ=−

(
βd2

χ

)
W , (3.4)

[
D2− a2− p2σ

]
K =−

(
Hd

η

)
DW , (3.5)

[
D2− a2− p2σ

]
X =−

(
Hd

η

)
DZ, (3.6)

where we have introduced new coordinates (x′, y′,z′) = (x/d, y/d,z/d) in new units of
length d and D = d/dz′. For convenience, the dashes are dropped hereafter. Also we have
put a= kd, σ = nd2/υ, F = υ′/d2; p1 = υ/χ is the Prandtl number and p2 = υ/η is the
magnetic Prandtl number.

We now consider the case where both the boundaries are free as well as perfect con-
ductors of heat, while the adjoining medium is also perfectly conducting. The case of two
free boundaries is slightly artificial, except in stellar atmospheres (see Spiegel [12]) and in
certain geophysical situations where it is most appropriate. However, the case of two free
boundaries allows us to obtain analytical solution without affecting the essential features
of the problem. The appropriate boundary conditions, with respect to which (3.2)–(3.6)
must be solved, are

W =D2W = 0, DZ = 0, Θ= 0 at z = 0, z = 1,

DX = 0, K = 0,
(3.7)

on a perfectly conducting boundary.
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Using the above boundary conditions, it can be shown that all the even-order deriva-
tives of W must vanish for z = 0 and z = 1, and hence the proper solution of W charac-
terizing the lowest mode is

W =W0 sinπz, (3.8)

where W0 is a constant.
Eliminating Θ, K , Z, and X between (3.2)–(3.6) and substituting (3.8) in the resultant

equation, we obtain the dispersion relation

R1 =
(

1 + x

x

)[{(
1 + iF1σ1π2

)
(1 + x) + iσ1

}{
1 + x+ iσ1p2

}
+Q1

][
1 + x+ iσ1p1

]

(
1 + x+ iσ1p2

)

+
T1
(
1 + x+ iσ1p2

)(
1 + x+ iσ1p1

)

{
x[
{(

1 + iF1σ1π2
)
(1 + x) + iσ1

}{
1 + x+ iσ1p2

}
+Q1

]} ,

(3.9)

where R=gαβd4/υχ, Q=μeH2d2/4πρ0υη, TA=4Ω2d4/υ2 stand for the Rayleigh-number,
the Chandrasekhar number, the Taylor number, respectively, and we have also put

x = a2

π2
, R1 = R

π4
, iσ1 = σ

π2
, F1 = π2F,

T1 = TA

π4
, Q1 = Q

π2
, i=√−1.

(3.10)

4. The stationary convection

When the instability sets in as stationary convection, the marginal state will be character-
ized by σ = 0. Putting σ = 0, the dispersion relation (3.9) reduces to

R1 =
(

1 + x

x

)
[
(1 + x)2 +Q1

]
+

T1(1 + x)2

x
[
(1 + x)2 +Q1

] , (4.1)

a result given by Chandrasekhar [4, equation (59), page 202].
We thus find that for the stationary convection, the viscoelasticity parameter F van-

ishes with σ and Rivlin-Ericksen viscoelastic fluid behaves like an ordinary Newtonian
fluid.

To study the effects of rotation and magnetic field, we examine the natures of dR1/dT1

and dR1/dQ1 analytically.
Equation (4.1) yields

dR1

dT1
= (1 + x)2

x
[
(1 + x)2 +Q1

] , (4.2)

dR1

dQ1
= (1 + x)

x
− T1(1 + x)2

x
[
(1 + x)2 +Q1

]2 . (4.3)

It is evident from (4.2) that for a stationary convection, dR1/dT1 is always positive,
thus, the rotation has a stabilizing effect on the system. It is also clear from (4.3) that for
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Figure 4.1. The variation of R1 with T1 for fixed values of Q1 = 100 and x = 0.2,1.
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Figure 4.2. The variation of R1 with Q1 for fixed values of T1 = 100 and x = 3,4.

a stationary convection, dR1/dQ1 may be positive as well as negative, thus, the magnetic
field has both stabilizing and destabilizing effects on the system.

The dispersion relation (4.1) is also analyzed numerically. In Figure 4.1, R1 is plotted
against T1, for fixed value of Q1 = 100 and wave numbers x = 0.2,1. The Rayleigh number
R1 increases with increase in rotation parameter T1 showing its stabilizing effect on the
system. Figure 4.2 shows the variation of R1 with respect to Q1, for fixed value of T1 = 100
and wave numbers x = 3,4. It clearly depicts both the stabilizing and destabilizing effects
of the magnetic field on the system.

5. Stability of the system and oscillatory modes

Multiplying (3.2) by W∗, the complex conjugate of W , integrating the resulting equation
over the range of z and using (3.3)–(3.6), together with the boundary conditions (3.7),
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we obtain

− σI1 +
gαχa2

υβ

(
I2 + p1σ

∗I3
)−d2(1 +Fσ∗

)
I4−d2σ∗I5

− μed2η

4πρ0υ

(
I6 + p2σI7

)− μeη

4πρ0υ

(
I8 + p2σ

∗I9
)= (1 +Fσ)I10,

(5.1)

where

I1 =
∫ 1

0

(|DW|2 + a2|W|2)dz, I2 =
∫ 1

0

(|DΘ|2 + a2|Θ|2)dz,

I3 =
∫ 1

0

(|Θ|2)dz, I4 =
∫ 1

0

(|DZ|2 + a2|Z|2)dz,

I5 =
∫ 1

0

(|Z|2)dz, I6 =
∫ 1

0

(|DX|2 + a2|X|2)dz,

I7 =
∫ 1

0

(|X|2)dz, I8 =
∫ 1

0

(∣∣D2K
∣
∣2

+ 2a2|DK|2 + a4|K|2)dz,

I9 =
∫ 1

0

(|DK|2 + a2|K|2)dz, I10 =
∫ 1

0

(∣∣D2W
∣
∣2

+ 2a2|DW|2 + a4|W|2)dz,

(5.2)

and σ∗ is the complex conjugate of σ . The integrals I1, . . .,I10 are all positive definite.
Putting σ = σr + iσi, where σr , σi are real and equating the real and imaginary parts of
(5.1), we obtain

σr

[
−I1 +

gαχa2

υβ
p1I3−d2FI4−d2I5− μed2η

4πρ0υ
p2I7− μeη

4πρ0υ
p2I9−FI10

]

=−gαχa2

υβ
I2 +d2I4 +

μed2η

4πρ0υ
I6 +

μeη

4πρ0υ
I8 + I10,

(5.3)

σi

[
I1 +

gαχa2

υβ
p1I3−d2FI4−d2I5 +

μed2η

4πρ0υ
p2I7− μeη

4πρ0υ
p2I9 +FI10

]
= 0. (5.4)

6. Discussion

From (5.4), it is clear that σi is zero when the quantity multiplying it is not zero and
arbitrary when this quantity is zero.

If σi �= 0, then (5.4) gives

gαχa2

υβ
p1I3−d2FI4−d2I5− μeη

4πρ0υ
p2I9 =−I1− μed2η

4πρ0υ
p2I7−FI10. (6.1)

Substituting in (5.3), we have

I10 +
μeη

4πρ0υ
I8 +

μed2η

4πρ0υ
I6 +d2I4 + 2σr

[
I1 +

μed2η

4πρ0υ
p2I7 +FI10

]
= gαχa2

υβ
I2. (6.2)
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Equation (6.2) on using Rayleigh-Ritz inequality gives

(
π2 + a2

)3

a2

∫ 1

0
|W|2dz+

(
π2 + a2

)

a2

×
{

μeη

4πρ0υ
I8 +

μed2η

4πρ0υ
I6 +d2I4 + 2σr

[
I1 +

μed2η

4πρ0ν
p2I7 +FI10

]}

≤ gαχ

νβ

∫ 1

0
|W|2dz.

(6.3)

Therefore, it follows from (6.3) that

[
27π4

4
− gαχ

νβ

]∫ 1

0
|W|2dz+

(
π2 + a2

)

a2

×
{

μeη

4πρ0υ
I8 +

μed2η

4πρ0υ
I6 +d2I4 + 2σr

[
I1 +

μed2η

4πρ0ν
p2I7 +FI10

]}
≤ 0,

(6.4)

since minimum value of (π2 + a2)3/a2 with respect to a2 is 27π4/4.
Now, let σr ≥ 0, we necessarily have from (6.4) that

gαχ

νβ
>

27π4

4
. (6.5)

Hence, if

gαχ

νβ
≤ 27π4

4
, (6.6)

then σr < 0. Therefore, the system is stable.
Therefore, under condition (6.6), the system is stable and under condition (6.5) the

system becomes unstable.
In the absence of rotation and magnetic field, (5.4) reduces to

σi

[
I1 +

gαχa2

υβ
p1I3 +FI10

]
= 0, (6.7)

and the terms in brackets are positive definite. Thus, σi = 0, which means that oscillatory
modes are not allowed and the principle of exchange of stabilities is satisfied for Rivlin-
Ericksen viscoelastic fluid heated from below.
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Nomenclature

d Depth of layer
T Temperature
g Acceleration due to gravity
�g Gravity field
�H(0,0,H) Uniform vertical magnetic field
�Ω(0,0,Ω) Uniform vertical rotation field
�v Filter velocity
p Fluid pressure
�r(x, y,z) Space coordinates
δp Perturbation in pressure
�h(hx,hy ,hz) Perturbation in magnetic filed
kx, ky Wave numbers in x- and y-directions
k Resultant wave number
n Growth rate
p1 Prandtl number
p2 Magnetic Prandtl number
R Rayleigh number
Q Chandrasekhar number
a Dimensionless wave number
F Dimensionless kinematic viscoelasticity

Greek letters
μ Fluid viscosity
μ′ Fluid viscoelasticity
ρ Density
β Uniform temperature gradient
ν Kinematic viscosity
ν′ Kinematic viscoelasticity
μe Magnetic permeability
α Coefficient of thermal expansion
χ Thermal diffusivity
η Electrical resistivity
δρ Perturbation in density
θ Perturbation in temperature
σ z-component of vorticity
ξ z-component of current density
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