A NEW PROOF OF A LEMMA BY PHELPS

ANTONIA E. CARDWELL

Received 7 December 2005; Revised 3 May 2006; Accepted 7 May 2006

We give a different proof of a lemma by Phelps (1960) which asserts, roughly speaking, that if two norm-one functionals f and g have their hyperplanes $f^{-1}(0)$ and $g^{-1}(0)$ sufficiently close together, then either ||f - g|| or ||f + g|| must be small. We also extend this result to a complex Banach space.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

In 1960 in [2], Phelps proved the following lemma.

LEMMA 1. Suppose that *E* is a real normed linear space and that $\epsilon > 0$. If $f,g \in S^*$ are such that $f^{-1}(0) \cap \mathcal{U} \subset g^{-1}[-\epsilon/2,\epsilon/2]$, then either $||f - g|| \le \epsilon$ or $||f + g|| \le \epsilon$. (Here, \mathcal{U} represents the unit ball of *E* and S^* is the unit sphere of E^* .)

This lemma was then used the following year as a crucial step in the proof of the well-known Bishop-Phelps theorem [1] that every Banach space is subreflexive; in other words, every functional on a Banach space E can be approximated by a norm-attaining functional on the same space. The original proof of this lemma uses the Hahn-Banach theorem and is therefore fairly abstract.

In this note, we present an alternate proof for Lemma 1 stated above. This proof gives a geometric argument while extending the lemma to a complex Banach space. Lemma 1 is shown to be a special case when the bound of ϵ on $||f \pm g||$ is replaced by 5ϵ . This replacement does not affect the fundamental conclusion of Lemma 1.

We now state the extended lemma.

LEMMA 2. Let X be a complex Banach space and let ϵ be such that $0 < \epsilon < 1/2$. Let $\varphi, \psi \in X^*$, $\|\varphi\| = \|\psi\| = 1$. Suppose that for all $x \in X$ with $\|x\| \le 1$ and $\varphi(x) = 0$, it holds that $|\psi(x)| \le \epsilon$. Then there is some complex number α such that $|\alpha| = 1$ and $\|\varphi - \alpha\psi\| \le 5\epsilon$.

It will be shown that if φ and ψ are real-valued functionals on a real Banach space *X*, then α will in fact be either 1 or -1, thus proving the amended original result.

We now prove Lemma 2.

2 A new proof of a lemma by Phelps

Proof. Let $e \in X$ be such that ||e|| = 1 and $|\varphi(e)| \ge 1 - \epsilon/4$. We will first show that $||\psi(e)| \ge 1 - (5/2)\epsilon$. To see this, let $f \in X$ such that ||f|| = 1 and $|\psi(f)| \ge 1 - \epsilon/4$. Let $k = 1 - \epsilon/4$ and let $t = \varphi(f)/\varphi(e)$. Then $0 \le |t| \le 1/(1 - \epsilon/4) = 1/k \le 8/7$ and if we take w = (k/(k+1))(f - te), then $||w|| \le (k/(k+1))(||f|| + |t|||e||) \le (k/(k+1))(1 + 1/k) = 1$. Moreover,

$$\varphi(w) = \frac{k}{k+1} \left(\varphi(f) - \frac{\varphi(f)}{\varphi(e)} \varphi(e) \right) = 0 \tag{1}$$

so we have

$$\epsilon \ge |\psi(w)| = \frac{k}{k+1} |\psi(f) - t\psi(e)|$$

$$\ge \frac{k}{k+1} ||\psi(f)| - |t| |\psi(e)||$$

$$\ge \frac{k}{k+1} (|\psi(f)| - |t| |\psi(e)|).$$

(2)

Thus

$$\frac{1}{k} |\psi(e)| \ge |t| |\psi(e)| \ge |\psi(f)| - \frac{k+1}{k} \epsilon \ge \left(1 - \frac{\epsilon}{4}\right) - \frac{k+1}{k} \epsilon = k - \frac{k+1}{k} \epsilon.$$
(3)

This gives

$$|\psi(e)| \ge k^2 - (k+1)\epsilon = \left(1 - \frac{\epsilon}{4}\right)^2 - \left(2 - \frac{\epsilon}{4}\right)\epsilon = 1 - \frac{\epsilon}{2} + \frac{\epsilon^2}{16} - 2\epsilon + \frac{\epsilon^2}{4} \ge 1 - \frac{5}{2}\epsilon$$

$$\tag{4}$$

as required. Notice that, if φ and ψ are real valued, the above still holds.

Now, there exist $\beta, \gamma \in \mathbb{C}$ such that $|\beta| = |\gamma| = 1$, $\beta \varphi(e) \in [1 - \epsilon/4, 1] \subset \mathbb{R}$, and $\gamma \psi(e) \in [1 - 5\epsilon/2, 1] \subset \mathbb{R}$; and so $|\beta \varphi(e) - \gamma \psi(e)| \le 5\epsilon/2$.

Let $x \in X$ be such that $||x|| \le 1$ and write $x = \lambda e + y$, where $\lambda = \varphi(x)/\varphi(e)$ and $y = x - \lambda e$. Then $|\lambda| \le |\varphi(x)|/|\varphi(e)| \le 1/(1 - \epsilon/4) \le 8/7$, $||y|| \le ||x|| + |\lambda|||e|| \le 15/7$, and $\varphi(y) = \varphi(x) - (\varphi(x)/\varphi(e))\varphi(e) = 0$. So, by hypothesis, $|\psi((7/15)y)| \le \epsilon$, that is, $|\psi(y)| \le (15/7)\epsilon$. Then, if we take $\alpha = \gamma/\beta$, we have $|\alpha| = 1$ and

$$\begin{aligned} \left| \varphi(x) - \alpha \psi(x) \right| &= \frac{1}{|\beta|} \left| \beta \varphi(x) - \gamma \psi(x) \right| = \left| \beta \lambda \varphi(e) + \beta \varphi(y) - \gamma \lambda \psi(e) - \gamma \psi(y) \right| \\ &\leq \left| \lambda \right| \left| \beta \varphi(e) - \gamma \psi(e) \right| + \left| \gamma \right| \left| \psi(y) \right| \leq \frac{8}{7} \cdot \frac{5}{2} \epsilon + 1 \cdot \frac{15}{7} \epsilon = 5\epsilon. \end{aligned}$$

$$\tag{5}$$

But *x* was an arbitrary element of the unit ball of *X*, so we have $\|\varphi - \alpha \psi\| \le 5\epsilon$.

Notice that if *X* is a real Banach space, the above argument still holds. Also, if φ and ψ are real valued, we can choose $e \in X$ such that $\varphi(e) \ge 1 - \epsilon/4$, giving $\beta = 1$, and then from the claim, either $\gamma = 1$ or $\gamma = -1$. So either $\alpha = 1$ or $\alpha = -1$, yielding Phelps' result, up to a constant.

References

- [1] E. Bishop and R. R. Phelps, *A proof that every Banach space is subreflexive*, Bulletin of the American Mathematical Society **67** (1961), 97–98.
- [2] R. R. Phelps, A representation theorem for bounded convex sets, Proceedings of the American Mathematical Society 11 (1960), no. 6, 976–983.

Antonia E. Cardwell: Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551-0302, USA *E-mail address*: antonia.cardwell@millersville.edu