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1. Introduction

The birth and death processes are closely related to the orthogonal polynomials. The latter
allows determining the stochastic matrix associated with these processes.

Let us also note that these processes are stationary Markov processes whose state space
is the nonnegative integers.

Many authors treated the question of the existing relationship between the birth and
death processes and the orthogonal polynomials, in particular, in the works of Karlin and
McGregor [6] and Ismail et al. [5].

The properties of these processes and of the orthogonal polynomials were the subject
of other works, we can quote by the way of example Ismail et al. [3, 4], Maki [8], and
Letessier and Valent [7].

In this paper, we will consider not only the orthogonal polynomials, but the 2-or-
thogonal polynomials and we will try to establish a bond between the latter and certain
birth and death processes that will be called “generalized.” These processes will have like
transition probabilities

Pi j(t)= Pr
{
X(t+ s)= j/X(s)= i

}= Pr
{
X(t)= j, X(0)= i

}
(1.1)

which satisfy, when h→ 0,

Pı̈ j(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λih+ o(h), j = i+ 1,

1− (λi +μi +μi
)
h+ o(h), j = i,

μih+ o(h), j = i− 1,

μih+ o(h), j = i− 2,

o(h), j �= i− 2, i− 1, i, i+ 1,

(1.2)
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Pi j(0)= δi j , ∀i, j ∈N, (1.3)

where λi are the birth rates and μi and μi are the death rates. It is also assumed that

λi > 0, μi ≥ 0, μi+1 > 0; i≥ 0, μ0 ≥ 0. (1.4)

These processes being stationary, Pi j(t) does not depend on the way taken by the system
to reach the state j, but depends only on the states i and j and of the laps of time t taken
while going from state i towards state j. This is equivalent to

�(s+ t)=�(s)�(t). (1.5)

In this work, we start initially by giving some properties of the “generalized” birth
and death processes by determining the sequence of 2-orthogonal polynomials associated
with this type of processes. Then, the sufficient conditions are given, which allow giving
an integral representation of the transition probabilities from these processes.

We can quote as an example that this type of processes can be the modelling of prob-
lems met while studying the kinetics of enzymes, in particular, those which catalyze reac-
tions to a substrate in the presence of noncompetitive inhibitors.

We will treat this type of model in future, when we study the generalized linear pro-
cesses.

2. The generalized Chapman-Kolmogorov equations

Proposition 2.1. Let be a “generalized” birth and death process, where the transition prob-
abilities are given by (1.2), then these probabilities satisfy two systems of differential recur-
rence relations called “Chapman-Kolmogorov (or C-K) equations.” The forward C-K equa-
tions are

d

dt
Pi j(t)= μj+2Pi, j+2(t) +μj+1Pi, j+1(t) + λj−1Pi, j−1(t),

− (μj +μj + λj
)
Pi j(t).

(2.1)

The backward C-K equations are

d

dt
Pi j(t)= λiPi+1, j(t) +μiPi−1, j(t) +μiPi−2, j(t),

− (μi +μi + λi
)
Pi j(t).

(2.2)

Proof. Since the process is stationary, on one hand we can write

Pi j(t+ s)=
∑

k≥0

Pik(t)Pk j(s), s−→ 0, (2.3)
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it follows from (1.2) that

d

dt
Pi j(t)= lim

s→0

Pi j(t+ s)−Pi j(t)

s

= lim
s→0

∑
k≥0

(
Pik(t)Pk j(s)−Pi j(t)

)

s

= lim
s→0

[

μj+2Pi j+2(t) +μj+1Pi j+1(t) + λj−1Pi j−1(t)− (λj +μj +μj

)
Pi j(t) +

o(s)
s

]

,

(2.4)

then we have (2.1).
On the other hand, by applying the semigroup property, we have also

Pi j(s+ t)=
∑

k≥0

Pik(s)Pk j(t), s−→ 0, (2.5)

then from (1.2), we have

d

dt
Pi j(t)= lim

s→0

Pi j(t+ s)−Pi j(t)

s

= lim
s→0

[

λiPi+1 j(t) +μiPi−1 j(t) +μiPi−2 j(t)−
(
λi +μi +μi

)
Pi j(t) +

o(s)
s

]

.

(2.6)

So, we get (2.2). �

Definition 2.2. The matrix �= (ai j)i, j∈N defined by

ai j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λi if j = i+ 1,

μi if j = i− 1,

μi if j = i− 2,

−(λi +μi +μi
)

if j = i,

0 otherwise,

(2.7)

is called the infinitesimal generator of the process.

Lemma 2.3. A generalized birth and death process has the following properties:
(i) �′(t)=�(t)�,

(ii) �′(t)=��(t),
(iii) �(0)= I = (δi j

)
i, j∈IN ,

(iv) Pi j(t)≥ 0,
(v)

∑
j≥0Pi j(t)≤ 1; i≥ 0, t ≥ 0,

(vi) �(t+ s)=�(t)�(s),
where �(t)= (Pi j(t))i, j∈N is the transition matrix.
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Now, we will seek a solution of the Chapman-Kolmogorov equations, by using the
method of separation of variables. So if we put

Pi j(t)= f (t)FiQj , (2.8)

we will get the following lemma.

Lemma 2.4. If the transition probabilities satisfy (1.2), then

f (t)= exp(−xt), (2.9)

F0(x)= 1; F−2(x)≡ F−1(x)≡ 0,

−xFi(x)= λiFi+1(x) +μiFi−1(x) +μiFi−2(x)

− (μi +μi + λi
)
Fi(x), i≥ 0,

(2.10)

Q−1(x)≡ 0; Q0(x)= 1; Q1(x)=−μ0

μ1

;

−xQj(x)= μj+2Qj+2(x) +μj+1Qj+1(x) + λj−1Qj−1(x)

− (μj +μj + λj
)
Qj(x), j ≥ 0.

(2.11)

Proof. By differentiating with respect to t and taking into account that Fi and Qj cannot
vanish identically, we get

f ′(t)
f (t)

= 1
Qj

[
μj+2Qj+2 +μj+1Qj+1 + λj−1Qj−1−

(
λj +μj +μj

)
Qj
]=−x,

f ′(t)
f (t)

= 1
Fi

[
λiFi+1 +μiFi−1 +μiFi−2−

(
λi +μi +μi

)
Fi
]=−x,

(2.12)

where x is a separation constant. As P00(0)= 1, we get (2.9), (2.10), and (2.11). �

Remark 2.5. (a) We have written Fi(x) and Qj(x) to exhibit the dependence of Fi and Qj

on the constant x.
(b) It is easy to see that the functions Fi(x) and Qj(x) defined, respectively, by the re-

currence formulas (2.10) and (2.11) are polynomials. Moreover, let us note that degFk =
k for all k ∈N.

To characterize the sequence of polynomials {Fi(x)}i∈N, we will introduce d-orth-
ogonality notion.

3. d-orthogonality

Definition 3.1. Let {Bn(x)}n≥0 be a monic sequence of polynomials and {�n}n≥0 a se-
quence of linear forms. {�n}n≥0 is called the dual sequence of {Bn(x)}n≥0 if and only
if

�n
(
Bm
)= 〈�n,Bm

〉= δmn; n,m≥ 0. (3.1)
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Definition 3.2 [2, 9]. Let Γ= (Γ1,Γ2, . . . ,Γd)T be the d linear forms (d ≥ 1). A sequence of
polynomials {Bn(x)}n≥0 is said to be d-orthogonal with respect to Γ if it fulfills

Γσ
(
xmBn

)= 0; n≥md+ σ , m≥ 0,

Γσ
(
xmBdm+σ−1

) �= 0; m≥ 0, 1≤ σ ≤ d.
(3.2)

Proposition 3.3 [2, 9]. Let {Bn(x)}n≥0 be a monic sequence of polynomials, then the fol-
lowing statements are equivalent.

(a) The sequence {Bn(x)}n≥0 satisfies a recurrence relation with four terms:

B0(x)= 1; B1(x)= x−β0; B2(x)= (x−β1)B1(x)− γ1;

Bn+3(x)= (x−βn+2
)
Bn+2(x)− γn+2Bn+1(x)− δn+1Bn(x), n≥ 0,

(3.3)

where δn+1 �= 0 for all n∈N.
(b) The sequence {Bn(x)}n≥0 is 2-orthogonal with respect to Γ= (Γ1,Γ2)T or with respect

to �= (�0,�1)T , because

Γσ =
α−1∑

k≥0

ασk�k,
(
ασσ−1 �= 0

)
equivalently �k =

k∑

σ=1

ξkσΓ
σ ,

(
ξkk �= 0

)
. (3.4)

(c) For any couple (n,σ), σ = 0,1, and n≥ 0, there exist two polynomials Λμ(n,σ), μ=
0,1, such that

�2n+σ =Λ0(n,σ)�0 +Λ1(n,σ)�1 for σ = 0,1, n∈N, (3.5)

and satisfying degΛμ(n,μ) = n for μ = 0,1, degΛ0(n,1) ≤ n for n ≥ 0, and degΛ1(n,0) ≤
n− 1 for n≥ 1.

Remark 3.4. From this proposition, we deduce that the sequence of polynomials {Fn}n∈N
is 2-orthogonal with respect to �= (�0,�1)T .

4. Integral representation

In this section, we try to give an integral representation of the Pi j(t), which are the solu-
tions of the Chapman-Kolmogov equations. First, we give the following lemma.

Lemma 4.1. Let there be a generalized birth and death process, where the transition proba-
bilities are given by (1.2), then the sequence {Fn}n≥0 given by (2.10) satisfies the following
properties.

(A) Putting Fn(x)=∑k≥0 an,kxk for all n≥ 0, then

a0,0 = 1, an,n = (−1)n
n−1∏

i=0

λi; n≥ 1. (4.1)
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The moments of the two orthogonality forms cσn =�σ(xn), n≥ 0, and σ = 0,1 are given by

c0
0 = 1, c1

0 = λ0 +μ0 +μ0, c0
n+2 =

1
an+2,n+2

n+1∑

i=0

an+2,ic
0
i , n≥ 0.

c1
0 = 0, c1

1 =−λ0, c1
n+2 =

1
an+2,n+2

n+1∑

i=0

an+2,ic
1
i , n≥ 0.

(4.2)

(B) The following equation holds:

e−xtFn(x)=
∑

j≥0

Pnj(t)Fj(x), x ∈R, n∈N. (4.3)

(C) The sequence {Fn(0)}n≥0 is a nondecreasing sequence and Fn(0)≥ 1 (n≥ 0).

Proof. (A) If we put Fn(x)=∑n
k=0 an,kxk, n≥ 0, then from (2.10) we will deduce that

an+1,n+1 =− 1
λn

an,n, (4.4)

where

a0,0 = 1. (4.5)

So, we get (4.1). From the definition of the dual sequence we find (4.2).
(B) Let { fn}n∈N be a sequence of functions defined by

fn(x, t)=
∑

j≥0

Pnj(t)Fj(x), n∈N, (4.6)

or f (x, t)=�(t)�(x), where f (x, t)= ( fn(x, t))n∈N and �(x)= (Fn(x))n∈N, then

∂

∂t
f (x, t)=�′(t)�(x)=�(t)��(x). (4.7)

From (2.10), we have −x�(x)=��(x). So,

∂

∂t
fn(x, t)=−x fn(x, t),

fn(x,0)= Fn(x), n∈N.
(4.8)

Then, we get (4.3).
(C) We show by induction that {Fn(0)}n≥0 is a nondecreasing sequence.
Indeed, we have F1(0)= 1 + (μ0 +μ0)/λ0 ≥ F0(0).
Assume that Fn+1(0)≥ Fn(0)≥ 1 for all 0≤ n≤ k− 1, then from (2.10) we get

λk
(
Fk+1(0)−Fk(0)

)= μk
(
Fk(0)−Fk−1(0)

)
+μk

(
Fk(0)−Fk−2(0)

)≥ 0. (4.9)
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So,

Fn+1(0)≥ Fn(0)≥ 1; n≥ 0. (4.10)

�

Theorem 4.2 [1, Boas’s theorem]. Let {αn}n≥0 be a real sequence, then there exists a
bounded variation function α(x) defined on [0,+∞[ such that

∫ +∞

0
xndα(x)= αn, n∈N. (4.11)

Remark 4.3. For any element �m of the dual sequence, there exists a bounded variation
function Ψm, such that

�m
(
xn
)=

∫ +∞

0
xndΨm; n,m∈N. (4.12)

Theorem 4.4. Let �(t)= (Pi j(t))i, j∈N be a solution of (1.3), (2.1), and (2.2), then if

m∑

j=0

∣
∣Fj(x)

∣
∣≤ gσ(x) ∀x ∈R+, ∀m∈N, σ = 0,1, (4.13)

where gσ (σ = 0,1) is an integrable function with respect to Ψσ , the following integral repre-
sentation holds:

Pmn(t)=
∫ +∞

0
e−xtFm(x)dΨn n,m∈N, (4.14)

where Ψn, n≥ 0 is the bounded variation function given in Remark 4.3.

Proof. From (4.3), we deduce that {Pni(t)Fi(x)}i≥0 is a bounded sequence for all n ∈ N
and x, t ≥ 0. In particular, there exists a sequence of functions Mn(t) such that

∣
∣Pni(t)

∣
∣≤ Mn(t)

Fn(0)
≤Mn(t) ∀i∈N, (4.15)

then we have

∣
∣
∣
∣
∣

m∑

i=0

Pni(t)Fi(x)

∣
∣
∣
∣
∣≤

m∑

i=0

∣
∣Pni(t)Fi(x)

∣
∣≤Mn(t)

m∑

i=0

∣
∣Fi(x)

∣
∣. (4.16)
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Hence {∑m
i=0Pni(t)Fi(x)}m≥0 is dominated by an integrable function with respect to

Ψσ(σ = 0,1). Then, we can write

∫ +∞

0
e−xtFmdΨn(x)=

∑

j≥0

Pmj(t)
∫ +∞

0
FjdΨn(x)

= Pmn(t)
∫ +∞

0
FndΨn(x)= Pmn(t).

(4.17)

�

Corollary 4.5. Let �(t) = (Pi j(t))i, j∈N be a solution of (1.3), (2.1), and (2.2). Then the
Pi j(t) given by relation (4.14) can be written in the following form:

Pnσ(t)=
∫ +∞

0
e−xtFn(x)dΨσ(x); n≥ 0, σ = 0,1,

Pn,2k+σ(t)= 1
∏k

j=1μ2 j+σ

[∫ +∞

0
(−x)ke−xtFn(x)dΨσ(x)

−
2k+σ−1∑

j=0

Pnj(t)
∫ +∞

0
(−x)kFj(x)dΨσ(x)

]
; k≥0, n≥ 0, σ = 0,1.

(4.18)

Proof. We have for t ≥ 0 and σ = 0,1
∫ +∞

0
(−x)me−xtFn(x)dΨσ(x)=

∑

j≥0

Pn,2 j(t)
∫ +∞

0
(−x)mPnj(t)Fj(x)dΨσ(x)

+
∑

j≥0

Pn,2 j+1(t)
∫ +∞

0
(−x)mPnj(t)Fj(x)dΨσ(x),

(4.19)

taking into account that

�0
(
(−x)mF2 j+1(x)

)= 0, j ≥m,

�0
(
(−x)mF2 j(x)

)= 0, j ≥m+ 1,

�1
(
(−x)mF2 j+1(x)

)= 0, j ≥m+ 1,

�1
(
(−x)mF2 j(x)

)= 0, j ≥m+ 1.

(4.20)

It follows that

m∑

j=0

Pn,2 j(t)�0
(
(−x)mF2 j(x)

)
+

m−1∑

j=0

Pn,2 j+1(t)�0
(
(−x)mF2 j+1(x)

)=�0
(
(−x)me−xtFn

)
,

m∑

j=0

Pn,2 j(t)�1
(
(−x)mF2 j(x)

)
+

m∑

j=0

Pn,2 j+1(t)�1
(
(−x)mF2 j+1(x)

)=�1
(
(−x)me−xtFn

)
,

(4.21)
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for all n andm∈N, which is a system with lower triangular matrix of the form �m�n(t)=
Qnm, where �m = (bi, j)2m+1

i, j=0 and Qnm = (qn,i)2m+1
i=0 such that

bσ ,σ =�σ
(
Fσ
)= 1, b10 = b01 = 0, σ = 0,1,

b2i+σ , j =�σ
(
(−x)iF j

)
, i= 0,m; j = 0,2i+ σ σ = 0,1,

qn,2i+σ = qn2i+σ(t)=�σ
(
(−x)ie−xtFn

)
i= 0,m σ = 0,1,

(4.22)

where the determinant of �m is

Δm =
m∏

j=1

�0((−x) jF2 j)�1
(
(−x) jF2 j+1

)
> 0, (4.23)

because

�σ
(
(−x) jF2 j

)=
j∏

i=1

μ2i+σ > 0, j ≥ 1 σ = 0,1. (4.24)

So, this system admits a unique solution given by (4.18) for all n≥ 0 and σ = 0,1. �

Now, we give the sufficient conditions so that the Pi j(t) given by the integral represen-
tation (4.14) is indeed a transition probability.

First, we give the following lemma.

Lemma 4.6. Let there be a system with a lower triangular matrix of the form MnXn = Cn,
where

Mn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m00 0 0 ··· 0
m10 m11 0 ··· 0
m20 m21 m22 ··· 0

...
...

...
. . .

...
mn0 mn1 mn2 ··· mnn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Xn =
(
xi
)n
i=0, Cn =

(
ci
)n
i=0.

(4.25)

Then the following properties are equivalent.
(A)

∑n
i=0 xi ≤ 1.

(B) detDn and detMn have the same sign, where Dn is the matrix defined by

Dn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 ··· 1
c0 m00 0 0 ··· 0
c1 m10 m11 0 ··· 0
c2 m20 m21 m22 ··· 0
...

...
...

...
. . .

...
cn mn0 mn1 mn2 ··· mnn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.26)
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Proof. Using Cramer’s rule, on one hand we can get

xi = 1
det Mn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

m00 0 ··· 0 c0 ··· 0 0
m10 m11 ··· 0 c1 ··· 0 0

...
...

. . .
...

...
...

...
...

mi−10 mi−11 ··· mi−1i−1 ci−1 ··· 0 0
mi0 mi1 ··· mii−1 ci ··· 0 0

...
...

...
...

...
. . .

...
...

mn−10 mn−11 ··· mn−1i−1 cn−1 ··· mn−1n−1 0
mn0 mn1 ··· mni−1 cn ··· ···mnn−1 mnn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)i

det Mn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c0 m00 0 ··· 0 ··· 0 0
c1 m10 m11 ··· 0 ··· 0 0
...

...
. . .

...
...

...
...

...

ci−1 mi−10 mi−11
. . . mi−1i−1 ··· 0 0

ci mi0 mi1 ··· mii−1 ··· 0 0
...

...
...

...
...

. . .
...

...
cn−1 mn−10 mn−11 ··· mn−1i−1 ··· mn−1n−1 0
cn mn0 mn1 ··· mni−1 ··· mnn−1 mnn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

(4.27)

and on the other hand, we have

det Dn = det Mn

−
n∑

i=0

(−1)i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c0 m00 0 ··· 0 ··· 0 0
c1 m10 m11 ··· 0 ··· 0 0
...

...
. . .

...
...

...
...

...

ci−1 mi−10 mi−11
. . . mi−1i−1 ··· 0 0

ci mi0 mi1 ··· mii−1 ··· 0 0
...

...
...

...
...

. . .
...

...
cn−1 mn−10 mn−11 ··· mn−1i−1 ··· mn−1n−1 0
cn mn0 mn1 ··· mni−1 ··· mnn−1 mnn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(4.28)

So, detDn = detMn(1−∑n
i=0 xi) with detMn �= 0, consequently we deduce that (A) and

(B) are equivalent. �

From Corollary 4.5 and Lemma 4.1, we have the following result.

Theorem 4.7. Let �(t)= (Pi j(t))i, j∈N be a solution of (1.3), (2.1), and (2.2). If the follow-
ing conditions are satisfied:

(i)
∫ +∞

0 e−xtFn(x) dΨσ ≥ 0, for all n∈N and σ = 0,1,
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(ii) det�nm ≥ 0 for all n,m∈N, where �nm is the following matrix:

Dnm =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 ··· 1
qn0 b00 0 0 ··· 0
qn1 b10 b11 0 ··· 0
qn2 b20 b21 b22 ··· 0

...
...

...
...

. . .
...

qn2m+1 b2m+10 b2m+11 b2m+12 ··· b2m+12m+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.29)

where qnj and bi j are given by (4.22),
(iii)

∫ +∞

0
(−x)k Fj(x)dΨσ ≤

∫ +∞

0
(−x)ke−xtFn(x)dΨσ ; j = 0,2k+ σ − 1 (4.30)

for all n∈N, k ∈N∗ and t > 0, then

Pnm(t)≥ 0; n,m≥ 0,
m∑

i=0

Pni(t)≤ 1 ∀n,m∈N, t ≥ 0. (4.31)

Proof. If condition (ii) is satisfied, we deduce from Lemma 4.1 that

m∑

i=0

Pni(t)≤ 1 ∀n,m∈N, t ≥ 0. (4.32)

From (4.14), we can get Pnm(0)= δnm.
As (t > 0)

Pn,2k+σ(t)= 1
∏k

j=1μ2 j+σ

[∫ +∞

0
(−x)ke−xtFn(x)dΨσ

−
2k+σ−1∑

j=0

Pnj(t)
∫ +∞

0
(−x)kFj(x)dΨσ

]

, k ≥ 1,

(4.33)

then Pn,2k+σ(t)≥ 0, that is,

∫ +∞

0
(−x)ke−xtFn(x)dΨσ ≥

2k+σ−1∑

j=0

Pnj(t)
∫ +∞

0
(−x)kFj(x)dΨσ ∀k ≥ 1. (4.34)

We will show by induction on m that Pnm(t)≥ 0 for all n≥ 0. From (i) we have Pn,0(t)≥ 0
and Pn1(t)≥ 0.

Assume that

Pnm(t)≥ 0; 0≤m≤ j. (4.35)
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For any j, there exists k such that j = 2k+ σ − 1, it follows that

2k+σ−1∑

m=0

Pnm(t)
∫ +∞

0
(−x)kFm(x)dΨσ ≤ max

0≤m≤2k+σ−1

{∫ +∞

0
(−x)kFm(x)dΨσ

}2k+σ−1∑

m=0

Pnm(t)

≤ max
0≤m≤2k+σ−1

{∫ +∞

0
(−x)kFm(x)dΨσ

}
.

(4.36)

Since (iii) is satisfied, we obtain Pn, j+1(t)≥ 0.
Hence, we get Pnm(t)≥ 0 for all n and m≥ 0. �
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