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A magnetohydrodynamic system is investigated in both cases of the periodic domain T3

and the whole space R3. Existence and uniqueness of strong solution are proved. Asymp-
totic behavior of the solution when the Rossby number ε goes to zero is studied. The
proofs use the spectral properties of the penalization operator and involve Friedrich’s
method, Schochet’s methods, and product laws in Sobolev spaces of sufficiently large ex-
ponents.
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1. Introduction and summary of results

In this paper, we study the existence, the uniqueness, and the asymptotic behavior of
strong solutions of the following MHD system for a 3D incompressible ideal fluid:

∂tu− εΔu+u ·∇u− curlb× b+
1
ε

curlb× e2 +
1
ε
u× e3 =−∇p in R+×Ω,

∂tb− 1
ε
Δb+u.∇b− b ·∇u+

1
ε

curl
(
u× e2

)= 0 in R+×Ω,

divu= 0 in R+×Ω,

divb = 0 in R+×Ω,

(1.1)

where the velocity field u, the induced magnetic perturbation b, and the pressure p are
unknown functions of time t and space variables x = (x1,x2,x3), e2 and e3 are, respec-
tively, the second and the third vectors of the Cartesian coordinate system, Ω is either the
torus T3 or the whole space R3 and ε is a small positive parameter destined to go to zero.
The above system is a particular modelization of the MHD flow in the earth’s core which
is believed to support a self-excited dynamo process generating the earth’s magnetic field.
In a more general case, throughout their paper [7], Desjardins et al. have modelized this
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process by the following general formulation:

∂tu+u ·∇u+
∇p

ε
− E

ε
Δu+

e×u

ε
= Λ

ε
curlb× e′ +

Λθ

ε
curlb× b in R+×Ω,

∂tb+u ·∇b = b ·∇u+
curl(u× e′)

θ
+
Δb

θ
in R+×Ω,

divu= 0 in R+×Ω, divb = 0 in R+×Ω,

(1.2)

where E, ε, Λ, and θ represent, respectively, the Ekman number, the Rossby number, the
Elsasser number and the magnetic Reynolds number, e is a fixed vector axe of rotation
of the earth, and e′ is the time-independent component of the earth’s magnetic field B
defined in [7] by

B = e′ + θb. (1.3)

Here we take E = ε2, Λ = 1, θ = ε, e = −e3, and e′ = −e2. We believe that our choice
belongs to the parameter range relevant to the earth’s core as it satisfies the following
ordering (see [7, 8]):

ε −→ 0, Λ= �(1), εθ −→ 0, E ∼ ε2. (1.4)

Physically, according to [8], letting the Rossby number ε go to zero and consequently the
Ekman number means that inertial forces and viscous attraction-repulsion modelized,
respectively, by ∂tu + u · ∇u and εΔu are of neglected effects compared to the Coriolis
one due to rotation of the earth in the direction e3 with the high speed 1/ε. The aim of
this study is to find the limit system, when ε goes to zero, which physically corresponds to
the equations characterizing the magnetostrophic equilibrium. For more physical details,
we refer the readers to [7, 8].

We denote byP the L2 orthogonal projection on divergence-free vector fields. Applying
P to (1.1), one can see that U := (u,b) is a solution of the following abstract system:

∂tU +Q(U ,U) + aε2(D)U +Lε(U)= 0 in R+×Ω,

divu= divb= 0,
(�ε)

where, if we set U = (u,b), the quadratic term Q is defined by

Q(U ,U)= (P(u ·∇u)−P(curlb× b),u ·∇b− b ·∇u), (1.5)

the viscous term is

aε2(D)U =
(
− εΔu,−1

ε
Δb
)

(1.6)

and the linear perturbation Lε is given by

Lε(U)= 1
ε
L(U) := 1

ε

(
P
(
u× e3

)
+P

(
curl(b)× e2

)
, curl

(
u× e2

))
. (1.7)
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We note that Q(U ,V) = (AU · ∇V + AV · ∇U)/2, where A is a linear operator, aε2(D)
is elliptic, and Lε = (1/ε)L is a skew-symmetric linear operator. This skew-symmetry is
an important property for the existence result since the perturbation disappears in the
energy estimate.

Singular limits in systems such as (�ε) have been studied by several authors. In the hy-
perbolic case, Babin et al. [1] studied the incompressible rotating Euler equation on the
torus. Using the method introduced by Schochet in [18, 19], Gallagher studied, respec-
tively, in [9, 10] this problem in its abstract parabolic and hyperbolic form. In the case
of the incompressible rotating Navier-Stokes equation on the torus, it is shown in [1, 11]
that the solutions converge to a solution of a certain diffusion equation. Moreover, for a
special initial condition, there exists a sequence of solutions convergent to a solution of a
two-dimensional Navier-Stokes equation. MHD systems were investigated, respectively,
with the choice of parameters E = ε2, Λ = 1, θ = ε, and e = e′ = −e3 in [2] and E = ε2,
Λ= ε, θ = 1, and e = e′ = −e3 in [3]. We also refer to the results proved in [6, 12–14, 16].

We specify in this paper to choose e′ to be equal to −e2. Physically, this choice deals
with the effect of the longitudinal component of the time-independent magnetic field B
on the dynamo process. The mathematical study in this case requires to use in a precise
way the structure and the spectral properties of the penalization operator to establish
the convergence results. Such structure, namely, the e2 dependence, allows us to put the
system in the appropriate form before applying Schochet’s method.

We begin by establishing an existence result which follows directly from the Friedrichs
method and the energy estimate. Precisely, we will prove in Section 2 local existence of
strong solutions on uniform time, namely, solutions given in the following theorem.

Theorem 1.1. Let s > 3/2 + 2 be an integer and U0 = (u0,b0) ∈Hs(Ω) such that divu0 =
divb0 = 0. Then, there exist T > 0 and a constant C > 0 such that, for all ε > 0, there exists a
unique solution Uε ∈�0([0,T],Hs(Ω))∩L2([0,T],Hs+1(Ω)) of the system (�ε) satisfying,
for all t ∈ [0,T],

∥
∥Uε(t)

∥
∥2
Hs(Ω) + 2ε

∫ t

0

∥
∥∇uε∥∥2

Hs(Ω) +
2
ε

∫ t

0

∥
∥∇bε∥∥2

Hs(Ω) ≤ 5
∥
∥U0

∥
∥2
Hs(Ω). (1.8)

Moreover, if ‖(u0,b0)‖Hs(Ω) ≤ cε, then the solution Uε is global.

Once the existence result is established, we turn to the asymptotic behavior of the
strong solution of (�ε) when ε goes to zero. Since ∂tUε is not a priori bounded in ε, the
classical proofs used, for example, in [15, 20] and based on taking the limit directly in the
system no longer work.

In the case of the torus T3, this difficulty will be avoided by writing the velocity field
uε in the following form:

uε = uεosc +uε, (1.9)

where

uε
(
t,x1,x3

)=
∫

T
uε
(
t,x1,x2,x3

)
dx2. (1.10)
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The asymptotic behavior of each term of uε will be investigated separately. For the oscillat-
ing part uεosc, spectral properties of Lε and Lebesgue’s convergence theorem allow to con-
clude in the case of low frequencies. For high frequencies, the nonlinear part will be inves-
tigated term by term; the convergence result is due to the energy estimate and the small-
ness of the nonlinearity. To study the nonoscillating component uε, we average the first
MHD equation in the second space variable to obtain a two-dimensional Navier-Stokes
equation singularly perturbed by the well-known linear operator L(u) := P(u× e3). Fol-
lowing the method introduced by Schochet in [19], we filter the system by the associated
group �(t) in order to look for the limit system (in the sense of distributions) satisfied
by the possible limit v of the filtered solution vε :=�(−t/ε)uε.

For the induction equation, we prove that the diffusion process vanishes as the Rossby
number goes to zero. The magnetic perturbation bε conserves its initial average on the
torus, but its oscillating component bεosc has the same behavior as uεosc. More precisely, we
prove the following convergence results.

Theorem 1.2. Let s > 3/2 + 2 be an integer and U0 = (u0,b0)∈Hs(T3) such that divu0 =
divb0 = 0. Let Uε = (uε,bε) be the family of solutions of (�ε) given by Theorem 1.1. Then

∇bε −→ 0 in L2([0,T], Hs(T3)
)
, (1.11)

∫

T3
bε(t,x)dx =

∫

T3
b0(x)dx ∀t ∈ [0,T], (1.12)

(
uεosc,bεosc

)−→ (0,0) in L∞loc

(
]0,T],Hs−1(T3)). (1.13)

Moreover, for all s′ < s, the family vε :=�(−t/ε)uε converges strongly in �0([0,T],Hs′(T3))
to the solution v of the following two-dimensional limit system:

∂tv+Q0(v,v)= 0 in [0,T]×T2,

∂1v1 + ∂3v3 = 0,

v|t=0 = u0,

(��)

where, Q0(v,v) := limε→0 �(−t/ε)P(�(t/ε)v ·∇�(t/ε)v), in the sense of distributions.

Theorem 1.2 deserves a few comments that will be summarized in the following re-
mark.

Remark 1.3. (1) Following the notation of Theorem 1.2, we note that �(t/ε)vε is the
noncompact part of uε.

(2) Results obtained about the magnetic perturbation are in accordance with physi-
cist’s suggestions. In fact, according to [8], the creation and diffusion of the earth’s mag-
netic field needed by a self-exited dynamo process necessitates a Reynolds number greater
than the unity.

(3) An explicit computation of the resonance set of the limit quadratic term Q0(v,v)
seems not to be an easy matter. For this reason, we will just give a particular example to
show that this set is not empty and then the considered torus is a resonant one.
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In the case of the whole space R3, we mention that the plane {ξ ∈R3, ξ2 = 0}, where
the resonance phenomenon is supposed to take place, is zero Lebesgue measure. That is
why the following theorem holds.

Theorem 1.4. Let s > 3/2 + 2 be an integer and U0 = (u0,b0)∈Hs(R3) such that divu0 =
divb0 = 0. Let Uε = (uε,bε) be the family of solutions of (�ε) given by Theorem 1.1. Then

bε −→ 0 in L2
T

(
Ḣs+1(R3)),

(
uε,bε

)−→ (0,0) in L∞loc

(
]0,T],Hs−1(R3)).

(1.14)

This paper is organized as follow. In the next section, we present the proof of the ex-
istence result (Theorem 1.1). Section 3 is devoted to the proof of the convergence results
on the torus (Theorem 1.2). Finally, we turn to the convergence results in the case of the
whole space ( Theorem 1.4).

2. Existence result

In this section, we prove Theorem 1.1. Notice that this proof is similar to that of [2, 3,
Theorem 1.2]. We include it here for the convenience of the reader.

We begin by observing that by classical energy methods one can prove global existence
of the so-called “Leray’s solutions” for the system (�ε) and derive the following L2-energy
estimate:

∥
∥Uε(t)‖2

L2(Ω) + 2ε
∫ t

0

∥
∥∇uε(τ)

∥
∥2
L2(Ω)dτ +

2
ε

∫ t

0

∥
∥∇bε(τ)

∥
∥2
L2(Ω)dτ ≤

∥
∥U0

∥
∥2
L2(Ω). (2.1)

To study the existence and the regularity of strong solutions, we first approximate the
nonlinear part of MHD system by a family of nicer nonlinearities, for which we can apply
the classical theory of ODE in order to construct approximate solutions as in [4], for
example. Next, we obtain uniform estimates on the approximate solutions, by using the
conservation laws. Finally, we use these estimates to pass to the limit in the approximate
equation. Precisely, we introduce, for a strictly positive integer n, the Friedrichs operator
Jn defined by

Jnu=�−1(1B(0,n)û
)
. (2.2)

We consider the following approximate magnetohydrodynamic system (MHDn):

∂tun− εΔJnun + Jn div
(
Jnun⊗ Jnun

)− Jn div
(
Jnbn⊗ Jnbn

)
+

1
ε
∂2
(
Jnbn

)
+
Jnun× e3

ε

=∇Δ−1 div
(
Jn div

(
Jnun⊗ Jnun

)− Jn div
(
Jnbn⊗ Jnbn

)
+
Jnun× e3

ε

)
,

∂tbn− 1
ε
ΔJnbn + Jn div

(
Jnun⊗ Jnbn

)− Jn div
(
Jnbn⊗ Jnun

)
+

1
ε
∂2
(
Jnun

)= 0,

(
un|t=0,bn|t=0

)= (Jnu0, Jnb0
)
.

(2.3)
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The above system is an ODE and can be written in the following abstract form:

∂tUn = Fn
(
Un
)
, (2.4)

where Un = (un,bn) and the expression of Fn is given by the (MHDn) system. Since Fn
is a continuous function from Hσ(Ω) into Hσ(Ω) for all σ ∈ R, then (MHDn) has a
unique maximal solution Un in the space �1([0,T∗n (ε)[,Hs(Ω)). Since J2

n = Jn and divun
= divbn = 0, it follows by uniqueness that

∂tun− εΔun + Jn
(
un ·∇un

)− Jn
(
bn ·∇bn

)
+

1
ε
∂2bn +

1
ε
un× e3

=∇Δ−1 div
(
Jn div

(
un⊗un

)− Jn div
(
bn⊗ bn

)
+
un× e3

ε

)
,

∂tbn− 1
ε
Δbn + Jn

(
un ·∇bn)− Jn

(
bn ·∇un

)
+

1
ε
∂3un = 0,

(
un|t=0,bn|t=0

)= (Jnu0, Jnb0
)
.

(MHDn)

The following product law will be useful throughout this paper (see [3]).

Lemma 2.1. Let σ > 3/2 + 2 be an integer. There exists a constant C such that for all vector
fields a and b in Hσ(Ω) satisfying diva= 0,

∣
∣≺ a ·∇b,b �Hσ (Ω)

∣
∣

≤ C‖∇b‖Hσ−1(Ω)
(∥∥∇a∥∥Hσ−1(Ω)‖∇b‖Hσ−2(Ω) +‖∇a‖Hσ−2(Ω)‖∇b‖Hσ−1(Ω)

)
.

(2.5)

Moreover, if divb = 0, then
∣
∣≺ b ·∇a,b �Hσ (Ω) +≺ b ·∇b,a�Hσ (Ω)

∣
∣

≤ C‖∇b‖Hσ−1(Ω)
(‖∇a‖Hσ−1(Ω)‖∇b‖Hσ−2(Ω) +‖∇a‖Hσ−2(Ω)‖∇b‖Hσ−1(Ω)

)
.

(2.6)

Here the symbol ≺ ·,· �Hσ (Ω) denotes the scalar product in Hσ(Ω).

To continue the proof of Theorem 1.1, we take the scalar product in Hs(Ω) and we use
the above lemma to obtain, for all t ∈ [0,T∗n (ε)[,

∥
∥Un(t)

∥
∥2
Hs(Ω) + 2ε

∫ t

0

∥
∥∇un(τ)

∥
∥2
Hs(Ω)dτ +

2
ε

∫ t

0

∥
∥∇bn(τ)

∥
∥2
Hs(Ω)dτ

≤ ∥∥U0
∥
∥2
Hs(Ω) +C

∫ t

0

∥
∥∇Un(τ)

∥
∥
Hs−2(Ω)

∥
∥∇Un(τ)

∥
∥2
Hs−1(Ω)dτ.

(2.7)

Set

T(n,ε) := sup
{

0≤ t < T∗n (ε); ∀τ ∈ [0, t]
∥
∥Un(τ)

∥
∥
Hs(Ω) ≤ 2

∥
∥U0

∥
∥
Hs(Ω)

}
. (2.8)

Using (2.7) and Gronwall’s lemma, we obtain, for all t ∈ [0,T(n,ε)[,

∥
∥Un(t)

∥
∥2
Hs(Ω) ≤

∥
∥U0

∥
∥2
Hs(Ω) exp

(
2Ct

∥
∥U0

∥
∥
Hs(Ω)

)
. (2.9)
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Thus

T(n,ε) > T := log(
√

3)
2C
∥
∥U0

∥
∥
Hs(Ω)

> 0. (2.10)

Moreover, for all t ∈ [0,T],

∥
∥Un(t)

∥
∥2
Hs(Ω) + 2ε

∫ t

0

∥
∥∇un(τ)

∥
∥2
Hs(Ω)dτ +

2
ε

∫ t

0

∥
∥∇bn(τ)

∥
∥2
Hs(Ω)dτ ≤ 5

∥
∥U0

∥
∥2
Hs(Ω). (2.11)

Using Ascoli’s theorem, the Cantor diagonal process, and the estimate (2.11), for n tends
to infinity, we obtain a solution that satisfies the following estimate:

∥
∥Uε(t)

∥
∥2
Hs(Ω) + 2ε

∫ t

0

∥
∥∇uε(τ)

∥
∥2
Hs(Ω)dτ +

2
ε

∫ t

0

∥
∥∇bε(τ)

∥
∥2
Hs(Ω)dτ

≤ 5
∥
∥U0

∥
∥2
Hs(Ω), ∀t ∈ [0,T].

(2.12)

This regularity implies in a standard way the uniqueness.
It remains to prove the global existence when the initial data is small enough. We now

assume that ‖U0‖Hs(Ω) ≤ cε, (c = 1/C), and we set

Tn(ε) := sup
{

0≤ t < T∗n (ε); ∀τ ∈ [0, t],
∥
∥Un(τ)

∥
∥
Hs(Ω) ≤ cε

}
. (2.13)

By (2.11), we have d/dt‖Un‖2
Hs(Ω)(0) < 0, then there exists tn > 0 such that ‖Un(tn)‖Hs(Ω)

< cε. Finally, since ‖Un(t)‖Hs(Ω) is a decreasing time function on [tn,T∗n (ε)[, one con-
cludes that Tn(ε)= T∗n (ε).

3. Study of the periodic case

In this section, we will prove Theorem 1.2 stated in the introduction. The assertion (1.11)
is obvious and follows directly from the energy estimate. For the equality (1.12), it suffices
to integrate the second MHD equation in the space variable x over the torus T3. To prove
(1.13), we start by writing ‖uosc‖Hσ (T3) in terms of the Fourier expansion

∥
∥uosc

∥
∥2
Hσ (T3) =

∑

k=(k1,k2,k3)
k2 �=0

(
1 + |k|2)σ∣∣û(k)

∣
∣2
. (3.1)

Then we have just to estimate |ûε(t,k)| for k2 �= 0. To do so, we observe that for k2 �= 0,
ûε(·,k) is a solution of an ordinary differential equation. First of all, we rewrite the system
(�ε) in the following form:

∂tU
ε +

1
ε

�
(
Uε
)= Fε, (3.2)

where

�
(
Uε
)

:= (− ∂2b
ε +P

(
uε× e3

)
,−∂2u

ε−Δbε
)
,

Fε = (εΔuε−P(uε ·∇uε)+P
(
bε ·∇bε),bε ·∇uε−uε ·∇bε)= (Fε

1,Fε
2

)
.

(3.3)
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The energy estimate implies that the family (Fε) is bounded in L2([0,T],Hs−1(T3)). If
we apply the operator “curl” to the first equation, by the partial Fourier transform with
respect to the space variable, we get

∂t
(
iM(k)ûε(t,k)

)
+ i

k3

ε
ûε(t,k)− k2

ε
M(k)b̂ε(t,k)= iM(k)F̂ε

1(t,k),

∂tb̂ε(t,k) + i
k2

ε
ûε(t,k) +

|k|2
ε

b̂ε(t,k)= F̂ε
2(t,k),

(3.4)

where

M(k)=

⎛

⎜
⎜
⎜
⎝

0 −k3 k2

k3 0 −k1

−k2 k1 0

⎞

⎟
⎟
⎟
⎠
. (3.5)

We recall that the eigenvalues of M(k) are ±i|k|, 0 and the corresponding eigenvectors
are ν(k)± and k/|k| which is not divergence-free. In this eigenbase, the velocity field uε

and the magnetic perturbation bε can be written as follow:

ûε(t,k)= ûε
+

(t,k)ν(k)+ + ûε
−

(t,k)ν(k)−,

b̂ε(t,k)= b̂ε
+

(t,k)ν(k)+ + b̂ε
−

(t,k)ν(k)−.
(3.6)

In terms of variables ûε
+

, ûε
−

, b̂ε
+

, and b̂ε
−

, (3.4) splits into four equations which can be
summarized in

∂tÛε
±

(t,k) +
1
ε
A±(k)Ûε

±
(t,k)= F̂ε

±
(t,k), (3.7)

where

A±(k)=
⎛

⎜
⎝
∓i k3

|k| ik2

ik2 |k|2

⎞

⎟
⎠ . (3.8)

With a direct computation, one can prove the following lemma.

Lemma 3.1. Let λ±j (k), j = 1, 2, be the eigenvalues of A±(k). Then

λ±1 (k)= 1
2

[
(|k|2 +α(k)

)± i
(
β(k)− k3

|k|
)]

,

λ±2 (k)= 1
2

[
(|k|2−α(k)

)± i
(
β(k) +

k3

|k|
)]

,

(3.9)

where

(
α(k) + iβ(k)

)2 = |k|4− k2
3

|k|2 − 4k2
2 + 2ik3|k|, α(k)≥ 0. (3.10)
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Moreover, if we denote by ω±j (k) the real part of λ±j (k), it holds that

ω±j (k) > 0⇐⇒ k2 �= 0. (3.11)

By Duhamel’s formula, we have

Ûε
±

(t,k)= exp
(
− t

ε
A±(k)

)
Û0

±
(k) +

∫ t

0
exp

(
− t− τ

ε
A±(k)

)
F̂ε
±

(τ,k)dτ. (3.12)

Let ω(k) :=Min(ω±j (k)). Using the Cauchy-Schwarz inequality, we obtain, for k2 �= 0,

∣
∣Ûε(t,k)

∣
∣2≤ 2exp

(
− 2t

ε
ω(k)

)∣
∣Û0(k)

∣
∣2

+
ε

ω(k)

(
1− exp

(
− T

ε
ω(k)

))∫ t

0

∣
∣F̂ε(τ,k)

∣
∣2
dτ.

(3.13)

For the case of low frequencies, since (Fε) is bounded in L2([0,T],Hs−1), then for all
δ ∈]0,T] we have

∀k ∈ Z3; k2 �= 0 sup
δ≤t≤T

∣
∣Ûε(t,k)

∣
∣2 −→ 0 as ε−→ 0. (3.14)

Now, we have to study the high frequencies. Let n ∈ N∗ and k ∈ Z3 with |k| ≥ n. For
t ∈ [0,T], the MHD system gives

∣
∣ûε(t,k)

∣
∣2−∣∣û0(k)

∣
∣2

+
∣
∣b̂ε(t,k)

∣
∣2−∣∣b̂0(k)

∣
∣2

+ ε
∫ t

0
|k|2∣∣ûε(τ,k)

∣
∣2
dτ

+
2
ε

∫ t

0
|k|2∣∣b̂ε(τ,k)

∣
∣2
dτ +

2
ε

∫ t

0

(
�∂3bε(τ,k)ûε(τ,k) +�∂3uε(τ,k)b̂ε(τ,k)

)
dτ

=
∫ t

0

̂bε ·∇bε(τ,k)ûε(τ,k) + ̂uε ·∇bε(τ,k)b̂ε(τ,k) + ̂bε ·∇uε(τ,k)b̂ε(τ,k)dτ

−
∫ t

0

̂uε ·∇uε(τ,k)ûε(τ,k)dτ.

(3.15)

First, the energy estimate and the condition s > 3/2 + 1 imply that

∣
∣
∣
∣
∣
∣

∑

|k|≥n

∫ t

0

(
̂bε ·∇bε(τ,k)ûε(τ,k)+ ̂uε ·∇bε(τ,k)b̂ε(τ,k)+ ̂bε ·∇uε(τ,k)b̂ε(τ,k)

)
dτ

∣
∣
∣
∣
∣
∣
≤Cε1/2.

(3.16)

On the other hand, we remark that

∑

|k|≥n

∫ t

0

(
�∂3bε(τ,k)ûε(τ,k) +�∂3uε(τ,k)b̂ε(τ,k)

)
dτ = 0. (3.17)
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It remains to study the following cubic term:

∑

|k|≥n

∫ t

0

̂uε ·∇uε(τ,k)ûε(τ,k)dτ. (3.18)

As in [2], we begin by mentioning that for |k| ≥ n we have

∣
∣ ̂uε ·∇uε(τ,k)

∣
∣≤

∑

|p|≤|k|/2

∣
∣ûε(τ, p)

∣
∣
∣
∣∇̂uε(τ,k− p)

∣
∣+

∑

|p|≥|k|/2

∣
∣ûε(τ, p)

∣
∣
∣
∣∇̂uε(τ,k− p)

∣
∣.

(3.19)

The Cauchy-Schwarz inequality yields

∣
∣ ̂uε ·∇uε(τ,k)

∣
∣≤ ∥∥uε(τ)

∥
∥
L2(T3)

⎛

⎝
∑

|p|≤|k|/2

∣
∣∇̂uε(τ,k− p)

∣
∣2

⎞

⎠

1/2

+
∥
∥∇uε(τ)

∥
∥
L2(T3)

⎛

⎝
∑

|p|≥|k|/2

∣
∣ûε(τ, p)

∣
∣2

⎞

⎠

1/2

≤ 2
∥
∥uε(τ)

∥
∥
H1(T3)

∥
∥uεk(τ)

∥
∥
H1(T3),

(3.20)

where

∥
∥uεk(τ)

∥
∥2
H1(T3) :=

∑

|p|≥|k|/2
|p|2∣∣ûε(τ, p)

∣
∣2
. (3.21)

Using the energy estimate (1.8), we obtain

∣
∣
∣
∣
∣
∣

∑

|k|≥n
̂uε ·∇uε(τ,k)ûε(τ,k)

∣
∣
∣
∣
∣
∣
≤ C

∑

|k|≥n

∥
∥uεk(τ)

∥
∥
H1(T3)

∣
∣ûε(τ,k)

∣
∣

≤ C

⎛

⎝
∑

|k|≥n

∥
∥uεk(τ)

∥
∥2
H1(T3) +

∑

|k|≥n

∣
∣ûε(τ,k)

∣
∣2

⎞

⎠ .

(3.22)

Note that, for α∈]3/2,s− 1], we have

∑

|k|≥n

∥
∥uεk(τ)

∥
∥2
H1(T3) =

∑

|k|≥n

∑

|p|≥|k|/2
|p|2∣∣ûε(τ, p)

∣
∣2

≤ 22α
∑

|k|≥n

1
|k|2α

∑

|p|≥|k|/2
|p|2(α+1)

∣
∣ûε(τ, p)

∣
∣2 ≤ C

∑

|k|≥n

1
|k|2α .

(3.23)

If we denote ηn := C
∑
|k|≥n 1/|k|2α, then ηn −−−−→

n→+∞ 0.
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The above inequality, together with (3.16), (3.22), and (3.23), gives

∑

|k|≥n

∣
∣ûε(t,k)

∣
∣2 ≤ Cε1/2 +Tηn + rn +

∫ t

0

∑

|k|≥n

∣
∣ûε(τ,k)

∣
∣2
dτ, (3.24)

where rn =
∑
|k|≥n(|û0(k)|2 + |b̂0(k)|2).

The Gronwall lemma implies that, for all t ∈ [0,T],
∑

|k|≥n

∣
∣ûε(t,k)

∣
∣2 ≤ (Cε1/2 +Tηn + rn

)
exp(T). (3.25)

It follows that

limsup
ε→0

∥
∥uεosc

∥
∥
L∞([0,T],L2(T3)) ≤

(
Tηn + rn

)
exp(T). (3.26)

By interpolation argument, we complete the proof of (1.13).
Now we turn to study the average case (k2 = 0). We integrate the first equation of MHD

system with respect to the second space variable x2. We obtain an average equation, in
which the term P(curl(b)× e2) disappears and the penalization operator becomes L(v)=
P(v× e3). If we denote gε = εΔuε +P(bε ·∇bε), we obtain

∂tuε +P
(
uε ·∇uε)+

1
ε
P
(
uε× e3

)= gε in [0,T]×T2

∂1u
ε
1 + ∂3u

ε
3 = 0, uε|t=0 = u0.

(3.27)

The energy estimate implies that

gε −→ 0 in L2([0,T], Hs−1(T2)). (3.28)

Using the decomposition uε = uε +uεosc, by a direct Fourier computation, one proves that
the attraction between “slow” waves uε and “fast” ones uεosc has no resultant; that is uε ·
∇uεosc = uεosc ·∇uε = 0. However, “fast” waves interfere to create additional ones given by
uεosc ·∇uεosc.

Denote Gε = gε−P(uεosc ·∇uεosc). System (3.27) becomes

∂tuε +P
(
uε ·∇uε)+

1
ε
P
(
uε× e3

)=Gε in [0,T]×T2,

∂1u
ε
1 + ∂3u

ε
3 = 0, uε|t=0 = u0.

(3.29)

The idea is to filter the average system (3.29) by the group �(t) associated to L= P(u×
e3). Although the operator L is well known in the literature, we recall in the following
lemma some of its properties which are useful in our purpose.

Lemma 3.2. The wave equation

∂tu+L(u)= 0 in R×T2,

∂1u1 + ∂3u3 = 0, u(0)= u0

(3.30)
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has a global solution denoted by u(t) = �(t)u0, satisfying for all s ∈ R and for all u0 in
Hs(T2),

∥
∥�(t)u0

∥
∥
Hs(T2) =

∥
∥u0

∥
∥
Hs(T2),

∥
∥t�(t)u0

∥
∥
Hs(T2) =

∥
∥u0

∥
∥
Hs(T2).

(3.31)

Proof. A classical computation leads to

û(t,k)= exp
(
iω(k)t

)(
û0(k)/ν(k)+)ν(k)+ + exp

(− iω(k)t
)(
û0(k)/ν(k)−

)
ν(k)−,

(3.32)

where

ω(k)= k3
(
k2

1 + k2
3

)1/2 ,

ν(k)+ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(

1,−i k3∣
∣k3

∣
∣ ,0

)

if k1 = 0,

(
α(k),β(k),γ(k)

)

(∣
∣α(k)

∣
∣2

+
∣
∣β(k)

∣
∣2

+
∣
∣γ(k)

∣
∣2
)1/2 if k1 �= 0,

(
α(k),β(k),γ(k)

)=
(
− k1k3, ik1

(
k2

1 + k2
3

)1/2
,k2

1

)
,

ν(k)− = ν(k)+.

(3.33)

�

Denote vε(t) :=�(−t/ε)uε(t). System (3.29) becomes

∂tv
ε + �

(
− t

ε

)
P
(

�
(
t

ε

)
vε ·∇�

(
t

ε

)
vε
)
= Kε in [0,T]×T2,

∂1v
ε
1 + ∂3v

ε
3 = 0, vε|t=0 = u0,

(3.34)

where Kε =�(−t/ε)Gε.
System (3.34) can be rewritten as follows:

∂tv
ε +Qε

(
vε,vε

)= Kεin [0,T]×T2,

∂1v
ε
1 + ∂3v

ε
3 = 0,

vε|t=0 = u0,

(�̃ε)

where the filtered quadratic form is given by

Qε(v,v)=�
(
− t

ε

)
P
(

�
(
t

ε

)
v ·∇�

(
t

ε

)
v
)
. (3.35)
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Let Q0 = limε→0Qε in the sense of distributions. We obtain formally the following Euler-
type limit system:

∂tv+Q0(v,v)= 0 in [0,T]×T2,

∂1v1 + ∂3v3 = 0,

v|t=0 = u0,

(��)

for which we establish the following theorem.

Theorem 3.3. Let s > 2/2 + 2 be an integer and U0 = (u0,b0)∈Hs(T3) a pair of divergence-
free fields. Then, there exist T > 0 and a unique solution v of (��) in the space �0([0,T],
Hs(T2)) with initial data u0 satisfying

‖v‖2
Hs(T2) ≤ ‖u0‖2

Hs(T2). (3.36)

Proof. We have to estimate the term |∫ t0 ≺Q0(vn,vn),vn �Hs(T2) |, where vn is the solution
of the approximate limit system. Since limε→0

∫ t
0 ≺Qε(vn,vn),vn �Hs(T2)=

∫ t
0 ≺Q0(vn,vn),

vn �Hs(T2), it holds as in the proof of the existence result that

∣
∣
∣
∣

∫ t

0
≺Q0(vn,vn

)
,vn �Hs(T2)

∣
∣
∣
∣≤ C

∫ t

0

∥
∥∇vn(τ)

∥
∥
Hs−2(T2)

∥
∥∇vn(τ)

∥
∥2
Hs−1(T2) dτ. (3.37)

�

Remark 3.4. There are many papers dealing with the possible relation between the life
span of the solution of the considered system (such as (�ε)) and the life span of the
solution of the corresponding limit system (such as (��)), especially how to recuperate
global well-posedness or uniform local well-posedness of the considered system from the
limit one, at least for ε small enough (see, e.g., [5, 9, 10, 17]). However, since we will
focus on justifying the convergence result, any uniform time of existence of both (�ε)
and (��), denoted also by T , do the job.

Let us now turn to the proof of the convergence result. Denote Wε = vε− v. We obtain

∂tW
ε +Qε

(
Wε,Wε + 2v

)= Kε−Rε
osc in [0,T]×T2,

∂1W
ε
1 + ∂3W

ε
3 = 0, Wε|t=0 = 0,

(3.38)

where

Rε
osc =Qε(v,v)−Q0(v,v). (3.39)

By the nonstationary phases theorem, we get

R̂ε
osc(t,n)=

∑

σ∈{±}3

∑

k+m=n
n3 �=0

ωn,k,m �=0

e−i(t/ε)ωn,k,m
(
v̂σ1 (t,k) · ∇̂vσ2

(t,m)
)σ3 (n), (3.40)
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where

σ = (σ1,σ2,σ3
)
,

ωn,k,m = σ1
n3

|n| − σ2
k3

|k| − σ3
m3

|m| ,
(3.41)

and, for any vector X ,

X±(n)= (X/ν±(n)
)
ν±(n). (3.42)

The right-hand side of the above system will be composed of two terms. The first is Kε,
which tends to zero in L2([0,T],Hs−2(T2)) when ε→ 0. The second is the oscillating term
Rε

osc, which converges weakly to zero but not strongly. The method we use here to deal
with Rε

osc is inspired from the ideas introduced by Schochet in [19] and applied by Gal-
lagher in [9, 10]. The idea consists in dividing Rε

osc into high-frequency term Rε,N
osc and

low-frequency term Rε
osc,N defined, respectively, for any arbitrary cutoff integer N ≥ 1, by

Rε,N
osc = Rε

osc−Rε
osc,N ,

̂Rε
osc,N (t,n)= 1{|n|≤N}

∑

σ∈{±}3

∑

k+m=n,n3 �=0
ωn,k,m �=0

|k|,|m|≤N

e−i(t/ε)ωn,k,m
(
v̂σ1 (t,k) · ∇̂vσ2

(t,m)
)σ3 (n). (3.43)

In a first time, we consider the case of high frequencies. We recall the following lemma
(see [10]).

Lemma 3.5. Let s∈R. For any a∈�0([0,T],Hs(T2)), the high-frequency part aN , defined

by âN = 1[N ,+∞[â, tends to zero in �0([0,T],Hs(T2)) when N tends to infinity.

This lemma leads to the following proposition.

Proposition 3.6. The high-frequency term Rε,N
osc tends to zero in �0([0,T],Hs−2(T2)), uni-

formly in ε, when N tends to infinity.

To absorb the low-frequency term, we adopt the following change of function:

ϕε
N =Wε + εR̃ε

osc,N , (3.44)

where

̂R̃ε
osc,N = 1{|n|≤N}

∑

σ∈{±}3

∑

k+m=n,n3 �=0
ωn,k,m �=0

|k|,|m|≤N

e−i(t/ε)ωn,k,m

ωn,k,m

(
v̂σ1 (t,k) · ∇̂vσ2

(t,m)
)σ3 (n). (3.45)

It is easy to see that ϕε
N satisfies the following equation:

∂tϕ
ε
N +Qε

(
ϕε
N ,ϕε

N − 2εR̃ε
osc,N + 2v

)= Kε−Rε,N
osc + εrεosc,N , (3.46)
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where

εrεosc,N =
(
Rε

osc,N + ε∂tR̃
ε
osc,N

)
+ εQε

(
R̃ε

osc,N ,εR̃ε
osc,N + 2v

)
. (3.47)

We note that the equation satisfied by ϕε
N has the advantage that the low-frequency terms

have disappeared up to an ε. To show that low-frequency terms are �(ε), we recall the
following product law (see [3]).

Lemma 3.7. Let σ > 2/2 be an integer. A constant C exists such that for all f ∈Hσ(T2) and
g ∈Hσ+1(T2) with div f = divg = 0,

∣
∣
∣≺Qε( f ,g), f �Hσ (T2)

∣
∣
∣≤ C‖ f ‖2

Hσ (T2)‖g‖Hσ+1(T2),

∣
∣
∣≺Qε( f , f ), f �Hσ (T2)

∣
∣
∣≤ C‖ f ‖3

Hσ (T2).
(3.48)

The following proposition holds.

Proposition 3.8. There exists a constant CN (T) which depends only on T and N such that

∥
∥R̃ε

osc,N

∥
∥

�0([0,T],Hs−2(T2))∩L2([0,T],Hs−1(T2)) ≤ CN (T),

∥
∥rεosc,N

∥
∥
L2([0,T],Hs−2(T2)) ≤ CN (T).

(3.49)

Proof. Recall that all the functions considered here are truncated in low frequencies.
Hence, the result is simply due to the fact that v ∈ �0([0,T],Hs(T2)), ∂tv ∈ �0([0,T],
Hs−2(T2)) and Lemma 3.7 (see, e.g., [10]).

By the scalar product in Hs−2(T2), (3.46) gives

1
2
d

dt

∥
∥ϕε

N

∥
∥2
Hs−2(T2) + 2≺Qε

(
ϕε
N ,v− εR̃ε

osc,N

)
,ϕε

N �Hs−2(T2)

≤
∣
∣
∣≺ Kε−Rε,N

osc + εrεosc,N ,ϕε
N �Hs−2(T2)

∣
∣
∣+

∣
∣
∣≺Qε

(
ϕε
N ,ϕε

N

)
,ϕε

N �Hs−2(T2)

∣
∣
∣.

(3.50)

By Lemma 3.7, we have

1
2
d

dt

∥
∥ϕε

N

∥
∥2
Hs−2(T2) ≤ C

[∥
∥ϕε

N

∥
∥2
Hs−2(T2)

(∥
∥ϕε

N

∥
∥
Hs−2(T2) +

∥
∥εR̃ε

osc,N − v
∥
∥
Hs−1(T2) + 1

)

+
∥
∥Kε−Rε,N

osc + εrεosc,N

∥
∥2
Hs−2(T2)

]
.

(3.51)

Integrating this inequality and using Proposition 3.8, we obtain

∥
∥ϕε

N (t)
∥
∥2
Hs−2(T2) ≤ C

(∥
∥Kε

∥
∥
L2([0,T],Hs−2(T2)) +

∥
∥Rε,N

osc

∥
∥2
L2([0,T],Hs−2(T2)) + ε2C2

N (T)
)

+C
∫ t

0

∥
∥ϕε

N (τ)
∥
∥2
Hs−2(T2)

(
B(T) + εCN (T) +

∥
∥ϕε

N (τ)
∥
∥
Hs−2(T2)

)
dτ,

(3.52)

where B(T)= 1 +‖v‖�0
T (Hs−2(T2)).
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Put

T� = sup
{

0≤ t < T/
∥
∥ϕε

N

∥
∥
L∞([0,t],Hs−2(T2)) ≤ B(T)

}
. (3.53)

Then, for all 0≤ t < T�, we have

∥
∥ϕε

N (t)
∥
∥2
Hs−2(T2) ≤ C

(∥
∥Kε

∥
∥
L2([0,T],Hs−2(T2)) +

∥
∥Rε,N

osc

∥
∥2
L2([0,T],Hs−2(T2)) + ε2C2

N (T)
)

+C
(
B(T) + εCN (T)

)
∫ t

0

∥
∥ϕε

N (τ)
∥
∥2
Hs−2(T2)dτ.

(3.54)

A classical Gronwall estimate gives

∥
∥ϕε

N (t)
∥
∥2
Hs−2(T2) ≤ C exp

(
CTB(T) +CTεCN (T)

)

×
(∥
∥Kε

∥
∥
L2([0,T],Hs−2(T2)) +

∥
∥Rε,N

osc

∥
∥2
L2([0,T],Hs−2(T2)) + ε2C2

N (T)
)
.

(3.55)

For N large and ε small enough, Proposition 3.6 leads to

∥
∥ϕε

N (t)
∥
∥
Hs−2(T2) ≤

B(T)
2

, (3.56)

which implies that T� = T .
Using Proposition 3.6 and letting ε→ 0, N → +∞, we get

Wε −→ 0 in �0([0,T],Hs−2(T2)). (3.57)

An interpolation argument completes the proof. �

Remark 3.9. For the particular choice k = (6p,0,3p) and m = (4p,0,−8p), p ∈ Z∗, a
direct computation gives

ωn,k,m = σ1
n3

|n| − σ2
k3

|k| − σ3
m3

|m| = 0. (3.58)

Then, the resonance set is not empty and the unit torus T2 is a resonant one.

4. Case of the whole spaceR3

Theorem 1.4 and its proof are similar to those given in [2]. We give them here for the sake
of completeness.

4.1. Proof of Theorem 1.4. Let us designate by μ the Lebesgue measure on R3. Since

μ
({
ξ ∈R3, ξ2 = 0

})= 0, (4.1)
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then one infers that for any function f ,

‖ f ‖2
Hσ (R3) =

∫

R3

(
1 + |ξ|2)σ∣∣ f̂ (ξ)

∣
∣2
dξ =

∫

ξ2 �=0

(
1 + |ξ|2)σ∣∣ f̂ (ξ)

∣
∣2
dξ. (4.2)

Consequently, it suffices to estimate |ûε(t,ξ)| for ξ2 �= 0.
Observe that the same computation used in the periodic case still holds in the case

of the whole space, just change k by ξ. Precisely, as in the periodic case, one just have to
change k by ξ, apply the Duhamel formula and the Cauchy-Schwarz inequality to obtain,
for ξ3 �= 0,

∣
∣Ûε(t,ξ)

∣
∣2 ≤ 2exp

(
− 2t

ε
ω(ξ)

)∣
∣Û0(ξ)

∣
∣2

+ ε

(
1− exp

(− (T/ε)ω(ξ)
)

ω(ξ)

)∫ T

0

∣
∣F̂ε(τ,ξ)

∣
∣2
dτ.

(4.3)

It easily follows that

∥
∥Uε(t)

∥
∥2
Hs−1 ≤ 2

∫

R3

(
1 + |ξ|2)s−1∣∣Û0(ξ)

∣
∣2

exp
(
− 2t

ε
ω(ξ)

)
dξ

+ 2
∫

R3

∫ t

0

ε

2ω(ξ)

(
1− exp

(
− 2t

ε
ω(ξ)

))∣
∣F̂ε(τ,ξ)

∣
∣2(

1 + |ξ|2)s−1
dξ

≤ 2
∫

R3

(
1 + |ξ|2)s−1∣∣Û0(ξ)

∣
∣2

exp
(
− 2t

ε
ω(ξ)

)
dξ +T

∫ t

0

∥
∥F̂ε(τ)

∥
∥2
Hs−1dτ,

(4.4)

where

Fε :=
(
εΔuε−P(uε ·∇uε)+P

(
bε ·∇bε);bε ·∇uε−uε ·∇bε

)
. (4.5)

Using the energy estimate (1.8) and product laws, we get

∫ t

0

∥
∥εΔuε(τ)

∥
∥2
Hs−1 ≤ ε · ε

∫ t

0

∥
∥∇uε∥∥2

Hs−1 ≤ Cε

∫ t

0

∥
∥uε ·∇uε(τ)

∥
∥2
Hs−1dτ ≤ C

∫ t

0

∥
∥uε(τ)

∥
∥2
Hs−1dτ

∫ t

0

∥
∥bε ·∇bε(τ)

∥
∥2
Hs−1dτ ≤ C

∫ t

0

∥
∥∇bε(τ)

∥
∥2
Hsdτ ≤ Cε

∫ t

0

∥
∥uε ·∇bε(τ)

∥
∥2
Hs−1dτ ≤ C

∫ t

0

∥
∥∇bε(τ)

∥
∥2
Hsdτ ≤ Cε

∫ t

0

∥
∥bε ·∇uε(τ)

∥
∥2
Hs−1dτ ≤ C

∫ t

0

∥
∥bε(τ)

∥
∥2
Hs−1dτ.

(4.6)
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Consequently, one infers that

∥
∥Uε(t)

∥
∥2
Hs−1 ≤ 2

∫

R3

(
1 + |ξ|2)s−1∣∣Û0(ξ)

∣
∣2

exp
(
− 2t

ε
ω(ξ)

)
dξ

+CεT +C
∫ t

0

∥
∥Uε(τ)

∥
∥2
Hs−1dτ.

(4.7)

Using Gronwall lemma, the Lebesgue theorem, and interpolation argument, we achieve
the proof.

Remark 4.1. Since the limit system (��) is the two-dimensional Euler equation, then, in
the case of the whole space, a refined convergence result can be obtained for initial data
with 2D and 3D components. To do so, we can proceed as in [6] and approximate the
solution (uε,bε) of the MHD system by the sum of the two-dimensional Navier-Stokes
solution and the MHD linear part solution. For explicit computation, we refer the reader
to [2].
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Université de Tunis El-Manar, 2 rue Abou Rayhane Bayrouni, 2080 l’Ariana, Tunisia;
Laboratoire des Equations aux Derivées Partielles et Applications,
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