A DENSITY RESULT IN VECTOR OPTIMIZATION

ALEXANDER J. ZASLAVSKI

Received 21 November 2005; Revised 2 March 2006; Accepted 12 March 2006

We study a class of vector minimization problems on a complete metric space such that all its bounded closed subsets are compact. We show that a subclass of minimization problems with a nonclosed set of minimal values is dense in the whole class of minimization problems.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and the main result

The study of vector optimization problems has recently been a rapidly growing area of research. See, for example, [1-5] and the references mentioned therein. In this paper we study a class of vector minimization problems on a complete metric space such that all its bounded closed subsets are compact. This class of problems is associated with a complete metric space of continuous vector functions \mathcal{A} defined below. For each F from \mathcal{A} we denote by v(F) the set of all minimal elements of the image $F(X) = \{F(x) : x \in X\}$. In this paper we will study the sets v(F) with $F \in \mathcal{A}$. It is clear that for a minimization problem with only one criteria the set of minimal values is a singleton. In the present paper we will show that the subspace of all $F \in \mathcal{A}$ with nonclosed sets v(F) is dense in \mathcal{A} . Therefore in general the sets v(F), $F \in \mathcal{A}$ can be rather complicated.

In this paper we use the convention that $\infty/\infty = 1$ and denote by Card(E) the cardinality of the set *E*.

Let \mathbb{R} be the set of real numbers and let *n* be a natural number. Consider the finitedimensional space \mathbb{R}^n with the norm

$$\|x\| = \|(x_1, \dots, x_n)\| = \max\{|x_i| : i = 1, \dots, n\}, \quad x = (x_1, \dots, x_n) \in \mathbb{R}^n.$$
(1.1)

Let $\{e_1, \ldots, e_n\}$ be the standard basis in \mathbb{R}^n :

$$e_1 = (1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1).$$
 (1.2)

Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 29135, Pages 1–10 DOI 10.1155/IJMMS/2006/29135

We equip the space \mathbb{R}^n with the natural order. Let $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$. We say that

$$x \ge y \quad \text{if } x_i \ge y_i \ \forall i \in \{1, \dots, n\},$$

$$x > y \quad \text{if } x \ge y, \ x \ne y,$$

$$x \gg y \quad \text{if } x_i > y_i \ \forall i \in \{1, \dots, n\}.$$

$$(1.3)$$

We say that $x \ll y$ (resp., x < y, $x \le y$) if $y \gg x$ (resp., y > x, $y \ge x$).

Let (X,ρ) be a complete metric space such that each of its bounded closed subsets is compact. Fix $\theta \in X$.

Denote by \mathcal{A} the set of all continuous mappings $F = (f_1, \dots, f_n) : X \to \mathbb{R}^n$ such that for $i = 1, \dots, n$

$$\lim_{\rho(x,\theta)\to\infty} f_i(x) = \infty.$$
(1.4)

For each $F = (f_1, \ldots, f_n), G = (g_1, \ldots, g_n) \in \mathcal{A}$ set

$$\widetilde{d}(F,G) = \sup\{ |f_i(x) - g_i(x)| : x \in X, i = 1,...,n \},\$$

$$d(F,G) = \widetilde{d}(F,G) (1 + \widetilde{d}(F,G))^{-1}.$$
(1.5)

Clearly the metric space (\mathcal{A}, d) is complete.

Let $A \subset \mathbb{R}^n$ be a nonempty set. An element $x \in A$ is called a minimal element of A if there is no $y \in A$ for which y < x.

Let $F \in \mathcal{A}$. A point $x \in X$ is called a point of minimum of F if F(x) is a minimal element of F(X). If $x \in X$ is a point of minimum of F, then F(x) is called a minimal value of F. Denote by M(F) the set of all points of minimum of F and put v(F) = F(M(F)).

The following proposition is proved in [6].

PROPOSITION 1.1. Let $F = (f_1, ..., f_n) \in \mathcal{A}$. Then M(F) is a nonempty bounded subset of (X, ρ) and for each $z \in F(X)$ there is $y \in v(F)$ such that $y \leq z$.

In the sequel we assume that $n \ge 2$ and that the space (X, ρ) has no isolated points. The following theorem is our main result. It will be proved in Section 2.

THEOREM 1.2. Suppose that the space (X, ρ) is connected. Let $F = (f_1, ..., f_n) \in \mathcal{A}$ and let $\epsilon > 0$. Then there exists $G \in \mathcal{A}$ such that $\tilde{d}(F, G) \leq \epsilon$ and the set v(G) is not closed.

2. Proof of Theorem 1.2

By Proposition 1.1 there exists $x_* \in X$ such that

$$F(x_*) \in v(F). \tag{2.1}$$

There exists $\delta \in (0, 1/4)$ such that

$$||F(x) - F(x_*)|| \le \frac{\epsilon}{8}$$
 for each $x \in X$ such that $\rho(x, x_*) \le 2\delta$, (2.2)

$$\{z \in X : \rho(z, x_*) = 8\delta\} \neq \emptyset.$$
(2.3)

Since the metric space X is connected for each $t \in (0, 8\delta]$, there is $z \in X$ such that $\rho(z, x_*) = t$.

It is clear that there exists a continuous function $\psi: X \to [0,1]$ such that

$$\psi(x) = 1 \quad \text{for each } x \in X \text{ satisfying } \rho(x, x_*) \le \delta,$$

 $\psi(x) = 0 \quad \text{for each } x \in X \text{ satisfying } \rho(x, x_*) \ge 2\delta.$
(2.4)

For $x \in X$ and i = 1, ..., n define

$$f_i^{(1)}(x) = \psi(x)f_i(x_*) + (1 - \psi(x))f_i(x),$$
(2.5)

$$F^{(1)} = (f_1^{(1)}, \dots, f_n^{(1)}).$$
(2.6)

Clearly, $F^{(1)} \in \mathcal{A}$ and

$$F^{(1)}(x) = F(x_*) \quad \forall x \in X \text{ satisfying } \rho(x, x_*) \le \delta.$$
(2.7)

We will show that $\widetilde{d}(F, F^{(1)}) \le \epsilon/8$. Let $x \in X$. If $\rho(x, x_*) \ge 2\delta$, then $\psi(x) = 0$ and $F^{(1)}(x) = F(x)$. If $\rho(x, x_*) \le 2\delta$, then by (2.2)

$$\left|\left|F(x) - F(x_*)\right|\right| \le \frac{\epsilon}{8}.$$
(2.8)

Combined with (2.5) the inequality above implies that

$$||F^{(1)}(x) - F(x)|| = ||\psi(x)(F(x_*) - F(x))|| \le ||F(x_*) - F(x)|| \le \frac{\epsilon}{8}.$$
 (2.9)

Therefore

$$\widetilde{d}(F,F^{(1)}) \le \frac{\epsilon}{8}.$$
(2.10)

We will show that $F^{(1)}(x_*) \in v(F^{(1)})$. Assume that $x \in X$ and that

$$F^{(1)}(x) \le F^{(1)}(x_*) = F(x_*).$$
(2.11)

By (2.11), (2.5), and (2.6)

$$F(x_*) \ge F^{(1)}(x) = \psi(x)F(x_*) + (1 - \psi(x))F(x).$$
(2.12)

If $\psi(x) = 1$, then $F^{(1)}(x) = F(x_*)$. If $\psi(x) < 1$, then by (2.12) and (2.1) $F(x_*) \ge F(x)$ and $F(x_*) = F(x)$ and in view of (2.5) and (2.6) $F^{(1)}(x) = F(x_*)$. Therefore $F(x_*) \in \nu(F^{(1)})$.

For $x \in X$ and $i \in \{1, \ldots, n\}$ set

$$f_i^{(2)}(x) = f_i^{(1)}(x) + \min\left\{1, \max\left\{\rho(x, x_*) - \frac{\delta}{2}, 0\right\}\right\} \left(\frac{\epsilon}{8}\right),$$
(2.13)

$$F^{(2)} = (f_1^{(2)}, \dots, f_n^{(2)}).$$
(2.14)

Clearly

$$F^{(2)} \in \mathcal{A}, \quad F^{(2)}(x) \ge F^{(1)}(x) \quad \forall x \in X.$$
 (2.15)

By (2.13), and (2.7)

$$F^{(2)}(x) = F^{(1)}(x) = F(x_*) \quad \forall x \in X \text{ satisfying } \rho(x, x_*) \le \frac{\delta}{2}.$$
 (2.16)

By (2.13) and (2.7) for each $x \in X$ satisfying $\rho(x, x_*) \in [\delta/2, \delta]$,

$$F^{(2)}(x) = F^{(1)}(x_*) + \left(\frac{\epsilon}{8}\right) \left[\rho(x, x_*) - \frac{\delta}{2}\right] (1, 1, \dots, 1).$$
(2.17)

By (2.13)

$$\widetilde{d}(F^{(2)}, F^{(1)}) \le \frac{\epsilon}{8}.$$
(2.18)

This inequality and (2.10) imply that

$$\widetilde{d}(F,F^{(2)}) \le \frac{\epsilon}{4}.$$
(2.19)

It is clear that the inclusion $F(x_*) \in v(F^{(1)})$, (2.15), and (2.16) imply that

$$F(x_*) \in v(F^{(2)}).$$
 (2.20)

We will show that

if
$$x \in X$$
 satisfies $F^{(2)}(x) = F(x_*)$, then $\rho(x, x_*) \le \frac{\delta}{2}$. (2.21)

Assume that

$$x \in X, \quad F^{(2)}(x) = F(x_*).$$
 (2.22)

In view of (2.15) and (2.22) $F^{(1)}(x) \le F^{(2)}(x) \le F(x_*)$. Together with the inclusion $F(x_*) \in v(F^{(1)})$ the inequality above implies that $F^{(1)}(x) = F(x_*) \ge F^{(2)}(x)$. Combined with (2.13) this relation implies that

$$\rho(x, x_*) \le \frac{\delta}{2}.\tag{2.23}$$

Thus (2.21) is proved.

Since $F(x_*) \in v(F^{(1)})$, it follows from (2.13) that the following property holds. (P1) For each $x \in X$ satisfying $\rho(x, x_*) > \delta/2$ there is $i \in \{1, ..., n\}$ such that

$$f_i^{(1)}(x) \ge f_i^{(1)}(x_*) = f_i(x_*)$$
(2.24)

and that

$$f_{i}^{(2)}(x) = f_{i}^{(1)}(x) + \left(\frac{\epsilon}{8}\right) \min\left\{1, \rho(x, x_{*}) - \frac{\delta}{2}\right\}$$

$$\geq f_{i}^{(1)}(x_{*}) + \left(\frac{\epsilon}{8}\right) \min\left\{1, \rho(x, x_{*}) - \frac{\delta}{2}\right\}$$

$$= f_{i}(x_{*}) + \left(\frac{\epsilon}{8}\right) \min\left\{1, \rho(x, x_{*}) - \frac{\delta}{2}\right\}.$$
(2.25)

Choose

$$\delta_0 \in \left(0, \frac{\delta}{8}\right), \quad \lambda_0 \in \left(0, \frac{\epsilon}{16}\right).$$
 (2.26)

Define functions $\phi_1, \phi_2 : [0, \infty) \to R$ as follows:

$$\phi_{1}(x) = x, \quad x \in [0,1], \quad \phi_{1}(x) = 1, \quad x \in (1,2],$$

$$\phi_{1}(x) = x - 1, \quad x \in (2,8], \quad \phi_{1}(x) = 15 - x, \quad x \in (8,14],$$

$$\phi_{1}(x) = 1, \quad x \in (14,15], \quad \phi_{1}(x) = 16 - x, \quad x \in (15,16], \quad \phi_{1}(x) = 0, \quad x \in (16,\infty),$$

(2.27)

$$\phi_{2}(x) = -x, \quad x \in [0,2], \quad \phi_{2}(x) = x - 4, \quad x \in (2,8],$$

$$\phi_{2}(x) = 12 - x, \quad x \in (8,14], \quad \phi_{2}(x) = -16 + x, \quad x \in (14,16],$$

$$\phi_{2}(x) = 0, \quad x \in (16,\infty).$$
(2.28)

It is clear that ϕ_1 , ϕ_2 are continuous functions and that

$$\sup\{|\phi_i(x)|: x \in R, i = 1, 2\} \le 7.$$
(2.29)

Define a function $G = (g_1, \dots, g_n): X \to \mathbb{R}^n$ as follows:

$$g_1(x) = f_1^{(2)}(x) + \lambda_0 \phi_1 (16\rho(x, x_*)\delta_0^{-1}), \quad x \in X;$$
(2.30)

for $i \in \{2, ..., n\}$

$$g_i(x) = f_i^{(2)}(x) + \lambda_0 \phi_2(16\rho(x, x_*)\delta_0^{-1}), \quad x \in X.$$
(2.31)

Clearly, $G \in A$. By (2.31), (2.30), (2.29), and (2.26) $\tilde{d}(G, F^{(2)}) \le \epsilon/2$. Together with (2.19) this implies that

$$\widetilde{d}(G,F) < \epsilon. \tag{2.32}$$

Relations (2.30), (2.31), and (2.28) imply that for each $x \in X$ satisfying $\rho(x, x_*) \ge \delta_0$

$$G(x) = F^{(2)}(x). (2.33)$$

In view of (2.33) and (2.16) for each $x \in X$ satisfying $\rho(x, x_*) \in [\delta_0, \delta/2]$ we have

$$G(x) = F(x_*).$$
 (2.34)

It follows from (2.33) and (2.17) that for each $x \in X$ satisfying $\rho(x, x_*) \in [\delta/2, \delta]$

$$G(x) = F(x_*) + \left(\frac{\epsilon}{8}\right) \left[\rho(x, x_*) - \frac{\delta}{2}\right] (1, 1, \dots, 1).$$
(2.35)

By (2.30), (2.31), (2.16), (2.27), and (2.28) for each $x \in X$ satisfying $\rho(x, x_*) \le \delta_0/16$ we have

$$g_1(x) = f_1^{(2)}(x) + \lambda_0 \rho(x, x_*) \delta_0^{-1} 16 = f_1(x_*) + \lambda_0 \rho(x, x_*) \delta_0^{-1} 16;$$
(2.36)

for i = 2, ..., n

$$g_i(x) = f_i^{(2)}(x_*) - \lambda_0 \rho(x, x_*) \delta_0^{-1} 16 = f_i(x_*) - \lambda_0 \rho(x, x_*) \delta_0^{-1} 16, \qquad (2.37)$$

$$G(x) = F(x_*) + \lambda_0 \rho(x, x_*) \delta_0^{-1} 16(1, -1, \dots, -1).$$
(2.38)

Relations (2.27), (2.30), (2.31), (2.16) , and (2.28) imply that for each $x \in X$ satisfying $\rho(x, x_*) = \delta_0/8$ we have

$$g_1(x) = f_1^{(2)}(x) + \lambda_0 \phi_1(2) = f_1(x_*) + \lambda_0; \qquad (2.39)$$

for i = 2, ..., n

$$g_i(x) = f_i^{(2)}(x) + \lambda_0 \phi_2(2) = f_i(x_*) - 2\lambda_0, \qquad (2.40)$$

$$G(x) = F(x_*) + \lambda_0(1, -2, -2, \dots, -2).$$
(2.41)

We will show that for each $x \in X$ satisfying $\rho(x, x_*) \leq \delta_0$ the following property holds.

(P2) There is $z \in X$ such that $\rho(z, x_*) \in [0, \delta_0/16] \cup \{\delta_0/8\}$ and $G(z) \leq G(x)$.

Let $x \in X$ satisfy

$$\rho(x, x_*) \le \delta_0. \tag{2.42}$$

Clearly, if $\rho(x, x_*) \le \delta_0/16$, then (P2) holds with z = x. We consider the following cases:

$$\rho(x, x_*) \in \left[\frac{\delta_0}{16}, \frac{\delta_0}{8}\right]; \tag{2.43}$$

$$\rho(x, x_*) \in \left(\frac{\delta_0}{8}, \frac{\delta_0}{2}\right]; \tag{2.44}$$

$$\rho(x, x_*) \in \left(\frac{\delta_0}{2}, \frac{7}{8}\delta_0\right]; \tag{2.45}$$

$$\rho(x, x_*) \in \left(\frac{7}{8}\delta_0, \frac{1}{16}\delta_0\right]; \tag{2.46}$$

$$\rho(x, x_*) \in \left(\frac{15}{16}\delta_0, \delta_0\right]. \tag{2.47}$$

Let (2.43) hold. Then by (2.43), (2.30), (2.31), (2.27), (2.28), and (2.16) we have

$$g_1(x) = f_1^{(2)}(x) + \lambda_0 \phi_1(\rho(x, x_*) \delta_0^{-1} 16) = f_1(x_*) + \lambda_0;$$
(2.48)

for i = 2, ..., n

$$g_i(x) = f_i^{(2)}(x) + \lambda_0 \phi_2(\rho(x, x_*) \delta_0^{-1} 16) = f_i(x_*) - \lambda_0(\rho(x, x_*) \delta_0^{-1} 16) \ge f_i(x_*) - 2\lambda_0.$$
(2.49)

Together with (2.41) these relations imply that

$$G(x) \ge G(z)$$
 if $z \in X$ satisfies $\rho(z, x_*) = \frac{\delta_0}{8}$. (2.50)

Thus property (P2) holds if (2.43) is valid.

Assume that (2.44) is true. By (2.44), (2.30), (2.31), (2.27), (2.28), and (2.16) we have

$$g_1(x) = f_1(x_*) + \lambda_0(\rho(x, x_*)\delta_0^{-1}16 - 1) \ge f_1(x_*) + \lambda_0;$$
(2.51)

for i = 2, ..., n

$$g_i(x) = f_i(x_*) + \lambda_0(\rho(x, x_*)\delta_0^{-1}16 - 4) \ge f_i(x_*) + \lambda_0(-2).$$
(2.52)

Together with (2.41) these relations imply that for each $z \in X$ satisfying $\rho(z, x_*) = \delta_0/8$ we have $G(z) \leq G(x)$. Thus property (P2) holds if (2.44) is valid.

Assume that (2.45) holds. By (2.45), (2.30), (2.31), (2.27), (2.28), and (2.16) we have

$$g_1(x) = f_1(x_*) + \lambda_0 (15 - \rho(x, x_*) \delta_0^{-1} 16) \ge f_1(x_*) + \lambda_0;$$
(2.53)

for i = 2, ..., n

$$g_i(x) = f_i(x_*) + \lambda_0 (12 - \rho(x, x_*) \delta_0^{-1} 16) \ge f_i(x_*) - 2\lambda_0.$$
(2.54)

Together with (2.41) these relations imply that for each $z \in X$ satisfying $\rho(z, x_*) = \delta_0/8$ we have $G(z) \leq G(x)$. Thus property (P2) holds if (2.45) is valid.

Assume that (2.46) holds. By (2.46), (2.30), (2.31), (2.27), (2.28), and (2.16) we have

$$g_1(x) = f_1(x_*) + \lambda_0;$$
 (2.55)

for i = 2, ..., n

$$g_i(x) = f_i(x_*) + \lambda_0 (-16 + \rho(x, x_*) \delta_0^{-1} 16) \ge f_i(x_*) - 2\lambda_0.$$
(2.56)

Together with (2.41) these relations imply that for each $z \in X$ satisfying $\rho(z, x_*) = \delta_0/8$ we have $G(z) \leq G(x)$. Thus property (P2) holds if (2.46) is valid.

Assume that (2.47) holds. By (2.47), (2.30), (2.31), (2.27), (2.28), and (2.16) we have

$$g_1(x) = f_1(x_*) + \lambda_0 (16 - \rho(x, x_*) \delta_0^{-1} 16);$$
(2.57)

for i = 2, ..., n

$$g_i(x) = f_i(x_*) + \lambda_0 (\rho(x, x_*) \delta_0^{-1} 16 - 16).$$
(2.58)

Since the space *X* is connected, it follows from (2.3) and (2.47) that there is $z \in X$ such that

$$\rho(z, x_*) = \delta_0 - \rho(x, x_*) \in \left[0, \frac{\delta_0}{16}\right].$$
(2.59)

In view of (2.59), (2.38), (2.57), and (2.58)

$$G(z) = F(x_*) + \lambda_0 \rho(z, x_*) \delta_0^{-1} 16(1, -1, ..., -1)$$

= $F(x_*) + \lambda_0 (\delta_0 - \rho(x, x_*)) \delta_0^{-1} 16(1, -1, -1, ..., -1) = G(x).$ (2.60)

Thus property (P2) holds if (2.47) is valid.

We have shown that (P2) holds in all the cases. We have also shown that the following property holds.

(P3) For each $x \in X$ satisfing $\rho(x, x_*) \le \delta_0$ there is $z \in X$ such that

$$\rho(z, x_*) \in \left[0, \frac{\delta_0}{16}\right] \cup \left\{\frac{\delta_0}{8}\right\}, \quad G(z) \le G(x).$$
(2.61)

We will show that the following property holds.

(P4) If $x \in X$ satisfies $\rho(x, x_*) \ge \delta/2$ and $z \in X$ satisfies $\rho(z, x_*) \in \{\delta_0/8\} \cup [0, \delta_0/16]$, then the inequality $G(x) \le G(z)$ does not hold.

Assume that

$$x \in X, \quad z \in X, \quad \rho(x, x_*) > \frac{\delta}{2}, \quad \rho(z, x_*) \in \left\{\frac{\delta_0}{8}\right\} \cup \left[0, \frac{\delta_0}{16}\right].$$
 (2.62)

By property (P1) and (2.62) there is $j \in \{1, ..., n\}$ such that

$$f_j^{(2)}(x) \ge f_j(x_*) + \left(\frac{\epsilon}{8}\right) \min\left\{1, \rho(x, x_*) - \frac{\delta}{2}\right\}.$$
 (2.63)

By (2.13) and (2.62)

$$f_i^{(2)}(x) > f_i(x_*), \quad i = 1, \dots, n.$$
 (2.64)

Together with (2.33) and (2.26) this implies that

$$g_i(x) > f_i(x_*), \quad i = 1, \dots, n.$$
 (2.65)

It follows from (2.62) that

$$G(z) \in \{F(x_*) + \lambda_0(1, -1, -1, \dots, -1)t : t \in [0, 1]\}$$

$$\cup \{F(x_*) + \lambda_0(1, -2, -2, \dots, -2)\}.$$
(2.66)

It follows from this inclusion and (2.65) that $G(x) \le G(z)$ does not hold. Therefore property (P4) holds.

Let $t \in [0,1)$. We show that $F(x_*) + \lambda_0 t(1, -1, -1, ..., -1) \in v(G)$. Since the space *X* is connected, it follows from (2.3) that there is $z \in X$ such that

$$\rho(z, x_*) = \frac{\delta_0}{16} t. \tag{2.67}$$

By (2.67) and (2.38)

$$G(z) = F(x_*) + \lambda_0 \rho(z, x_*) \delta_0^{-1} 16(1, -1, -1, ..., -1)$$

= $F(x_*) + t\lambda_0(1, -1, -1, ..., -1) \in G(X).$ (2.68)

Assume that

$$x \in X, \quad G(x) \le G(z). \tag{2.69}$$

We will show that G(x) = G(z). If $\rho(x, x_*) > \delta/2$, then by (2.13), (2.33), and (2.26) the relation (2.65) is true and together with (2.69) this implies that $G(z) \gg F(x_*)$. This contradicts (2.68). Therefore

$$\rho(x, x_*) \le \frac{\delta}{2}.\tag{2.70}$$

If $\rho(x, x_*) \in [\delta_0, \delta/2]$, then by (2.34), (2.69), (2.68), and (2.67)

$$G(x) = F(x_*), \quad t = 0, \quad z = x_*, \quad G(z) = G(x).$$
 (2.71)

Assume that

$$\rho(x, x_*) \le \delta_0. \tag{2.72}$$

By (2.72) and property (P3) there is $y \in X$ such that

$$G(y) \le G(x), \quad \rho(y, x_*) \in \left[0, \frac{\delta_0}{16}\right] \cup \left\{\frac{\delta_0}{8}\right\}.$$
(2.73)

In view of (2.73), (2.69), and (2.68)

$$G(y) \le G(x) \le G(z) = F(x_*) + \lambda_0 t(1, -1, -1, \dots, -1).$$
(2.74)

If $\rho(y, x_*) = \delta_0 / 8$, then by (2.41)

$$G(y) = F(x_*) + \lambda_0(1, -2, -2, \dots, -2)$$
(2.75)

and since $t \in [0, 1)$, the equality above contradicts (2.74). Therefore in view of (2.73)

$$\rho(y, x_*) \in \left[0, \frac{\delta_0}{16}\right]. \tag{2.76}$$

By (2.76) and (2.38)

$$G(y) = F(x_*) + \lambda_0 \rho(x, x_*) \delta_0^{-1}(16)(1, -1, -1, \dots, -1).$$
(2.77)

Together with (2.74) this equality implies that $t = \rho(x, x_*)\delta_0^{-1}16$ and G(y) = G(x) = G(z). Thus we have shown that (2.69) implies that G(x) = G(z). Therefore

$$F(x_*) + \lambda_0 t(1, -1, -1, \dots, -1) \in \nu(G) \quad \forall t \in [0, 1).$$
(2.78)

Let $x \in X$ satisfy $\rho(x, x_*) = \delta_0/8$. (Note that by (2.3) such an *x* exists.) In view of (2.41)

$$G(x) = F(x_*) + \lambda_0(1, -2, -2, \dots, -2) < F(x_*) + \lambda_0(1, -1, -1, \dots, -1).$$
(2.79)

Thus

$$F(x_*) + \lambda_0(1, -1, -1, \dots, -1) \notin \nu(G).$$
(2.80)

Together with (2.78) this implies that $\nu(G)$ is not closed. Theorem 1.2 is proved.

References

- [1] G.-Y. Chen, X. Huang, and X. Yang, *Vector Optimization*, Lecture Notes in Economics and Mathematical Systems, vol. 541, Springer, Berlin, 2005.
- [2] J. P. Dauer and R. J. Gallagher, *Positive proper efficient points and related cone results in vector optimization theory*, SIAM Journal on Control and Optimization **28** (1990), no. 1, 158–172.
- [3] M. Ehrgott and X. Gandibleux (eds.), Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, International Series in Operations Research & Management Science, vol. 52, Kluwer Academic, Massachusetts, 2002.
- [4] J. Jahn, Vector Optimization. Theory, Applications, and Extensions, Springer, Berlin, 2004.
- [5] T. Tanino, Stability and sensitivity analysis in convex vector optimization, SIAM Journal on Control and Optimization 26 (1988), no. 3, 521–536.
- [6] A. J. Zaslavski, A generic result in vector optimization, preprint.

Alexander J. Zaslavski: Department of Mathematics, The Technion-Israel Institute of Technology, 32000 Haifa, Israel

E-mail address: ajzasl@tx.technion.ac.il