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We study a class of vector minimization problems on a complete metric space such that all
its bounded closed subsets are compact. We show that a subclass of minimization prob-
lems with a nonclosed set of minimal values is dense in the whole class of minimization
problems.
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1. Introduction and the main result

The study of vector optimization problems has recently been a rapidly growing area of
research. See, for example, [1–5] and the references mentioned therein. In this paper
we study a class of vector minimization problems on a complete metric space such that
all its bounded closed subsets are compact. This class of problems is associated with a
complete metric space of continuous vector functions � defined below. For each F from
� we denote by v(F) the set of all minimal elements of the image F(X)= {F(x) : x ∈ X}.
In this paper we will study the sets v(F) with F ∈�. It is clear that for a minimization
problem with only one criteria the set of minimal values is a singleton. In the present
paper we will show that the subspace of all F ∈� with nonclosed sets v(F) is dense in �.
Therefore in general the sets v(F), F ∈� can be rather complicated.

In this paper we use the convention that ∞/∞= 1 and denote by Card(E) the cardi-
nality of the set E.

Let R be the set of real numbers and let n be a natural number. Consider the finite-
dimensional space Rn with the norm

‖x‖ = ∥∥(x1, . . . ,xn
)∥
∥=max

{∣
∣xi
∣
∣ : i= 1, . . . ,n

}

, x = (x1, . . . ,xn
)∈ Rn. (1.1)

Let {e1, . . . ,en} be the standard basis in Rn:

e1 = (1,0, . . . ,0), . . . ,en = (0, . . . ,0,1). (1.2)
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2 A density result in vector optimization

We equip the space Rn with the natural order. Let x = (x1, . . . ,xn), y = (y1, . . . , yn)∈ Rn.
We say that

x ≥ y if xi ≥ yi ∀i∈ {1, . . . ,n},
x > y if x ≥ y, x �= y,

x� y if xi > yi ∀i∈ {1, . . . ,n}.
(1.3)

We say that x	 y (resp., x < y, x ≤ y) if y� x (resp., y > x, y ≥ x).
Let (X ,ρ) be a complete metric space such that each of its bounded closed subsets is

compact. Fix θ ∈ X .
Denote by � the set of all continuous mappings F = ( f1, . . . , fn) : X → Rn such that for

i= 1, . . . ,n

lim
ρ(x,θ)→∞

fi(x)=∞. (1.4)

For each F = ( f1, . . . , fn),G= (g1, . . . ,gn)∈� set

d̃(F,G)= sup
{∣
∣ fi(x)− gi(x)

∣
∣ : x ∈ X , i= 1, . . . ,n

}

,

d(F,G)= d̃(F,G)
(

1 + d̃(F,G)
)−1

.
(1.5)

Clearly the metric space (�,d) is complete.
Let A ⊂ Rn be a nonempty set. An element x ∈ A is called a minimal element of A if

there is no y ∈ A for which y < x.
Let F ∈ �. A point x ∈ X is called a point of minimum of F if F(x) is a minimal

element of F(X). If x ∈ X is a point of minimum of F, then F(x) is called a minimal value
of F. Denote by M(F) the set of all points of minimum of F and put v(F)= F(M(F)).

The following proposition is proved in [6].

Proposition 1.1. Let F = ( f1, . . . , fn) ∈�. Then M(F) is a nonempty bounded subset of
(X ,ρ) and for each z ∈ F(X) there is y ∈ v(F) such that y ≤ z.

In the sequel we assume that n≥ 2 and that the space (X ,ρ) has no isolated points.
The following theorem is our main result. It will be proved in Section 2.

Theorem 1.2. Suppose that the space (X ,ρ) is connected. Let F = ( f1, . . . , fn) ∈� and let

ε > 0. Then there exists G∈� such that d̃(F,G)≤ ε and the set v(G) is not closed.

2. Proof of Theorem 1.2

By Proposition 1.1 there exists x∗ ∈ X such that

F
(

x∗
)∈ v(F). (2.1)
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There exists δ ∈ (0,1/4) such that

∥
∥F(x)−F(x∗

)∥
∥≤ ε

8
for each x ∈ X such that ρ

(

x,x∗
)≤ 2δ, (2.2)

{

z ∈ X : ρ
(

z,x∗
)= 8δ

} �= ∅. (2.3)

Since the metric space X is connected for each t ∈ (0,8δ], there is z ∈ X such that ρ(z,
x∗)= t.

It is clear that there exists a continuous function ψ : X → [0,1] such that

ψ(x)= 1 for each x ∈ X satisfying ρ
(

x,x∗
)≤ δ,

ψ(x)= 0 for each x ∈ X satisfying ρ
(

x,x∗
)≥ 2δ.

(2.4)

For x ∈ X and i= 1, . . . ,n define

f (1)
i (x)= ψ(x) fi

(

x∗
)

+
(

1−ψ(x)
)

fi(x), (2.5)

F(1) = ( f (1)
1 , . . . , f (1)

n

)

. (2.6)

Clearly, F(1) ∈� and

F(1)(x)= F(x∗
) ∀x ∈ X satisfying ρ

(

x,x∗
)≤ δ. (2.7)

We will show that d̃(F,F(1))≤ ε/8. Let x ∈ X . If ρ(x,x∗)≥ 2δ, thenψ(x)= 0 and F(1)(x)=
F(x). If ρ(x,x∗)≤ 2δ, then by (2.2)

∥
∥F(x)−F(x∗

)∥
∥≤ ε

8
. (2.8)

Combined with (2.5) the inequality above implies that

∥
∥F(1)(x)−F(x)

∥
∥= ∥∥ψ(x)

(

F
(

x∗
)−F(x)

)∥
∥≤ ∥∥F(x∗

)−F(x)
∥
∥≤ ε

8
. (2.9)

Therefore

d̃
(

F,F(1))≤ ε
8
. (2.10)

We will show that F(1)(x∗)∈ v(F(1)). Assume that x ∈ X and that

F(1)(x)≤ F(1)(x∗
)= F(x∗

)

. (2.11)

By (2.11), (2.5), and (2.6)

F
(

x∗
)≥ F(1)(x)= ψ(x)F

(

x∗
)

+
(

1−ψ(x)
)

F(x). (2.12)

If ψ(x)= 1, then F(1)(x)= F(x∗). If ψ(x) < 1, then by (2.12) and (2.1) F(x∗)≥ F(x) and
F(x∗) = F(x) and in view of (2.5) and (2.6) F(1)(x) = F(x∗). Therefore F(x∗) ∈ v(F(1)).



4 A density result in vector optimization

For x ∈ X and i∈ {1, . . . ,n} set

f (2)
i (x)= f (1)

i (x) + min
{

1,max
{

ρ
(

x,x∗
)− δ

2
,0
}}(

ε
8

)

, (2.13)

F(2) = ( f (2)
1 , . . . , f (2)

n

)

. (2.14)

Clearly

F(2) ∈�, F(2)(x)≥ F(1)(x) ∀x ∈ X. (2.15)

By (2.13), and (2.7)

F(2)(x)= F(1)(x)= F(x∗
) ∀x ∈ X satisfying ρ

(

x,x∗
)≤ δ

2
. (2.16)

By (2.13) and (2.7) for each x ∈ X satisfyingρ(x,x∗)∈ [δ/2,δ
]

,

F(2)(x)= F(1)(x∗
)

+
(
ε
8

)[

ρ
(

x,x∗
)− δ

2

]

(1,1, . . . ,1). (2.17)

By (2.13)

d̃
(

F(2),F(1))≤ ε
8
. (2.18)

This inequality and (2.10) imply that

d̃
(

F,F(2))≤ ε
4
. (2.19)

It is clear that the inclusion F(x∗)∈ v(F(1)), (2.15), and (2.16) imply that

F
(

x∗
)∈ v(F(2)). (2.20)

We will show that

if x ∈ X satisfies F(2)(x)= F(x∗), then ρ
(

x,x∗
)≤ δ

2
. (2.21)

Assume that

x ∈ X , F(2)(x)= F(x∗
)

. (2.22)

In view of (2.15) and (2.22) F(1)(x) ≤ F(2)(x) ≤ F(x∗). Together with the inclusion
F(x∗) ∈ v(F(1)) the inequality above implies that F(1)(x) = F(x∗) ≥ F(2)(x). Combined
with (2.13) this relation implies that

ρ
(

x,x∗
)≤ δ

2
. (2.23)

Thus (2.21) is proved.
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Since F(x∗)∈ v(F(1)), it follows from (2.13) that the following property holds.
(P1) For each x ∈ X satisfying ρ(x,x∗) > δ/2 there is i∈ {1, . . . ,n} such that

f (1)
i (x)≥ f (1)

i

(

x∗
)= fi

(

x∗
)

(2.24)

and that

f (2)
i (x)= f (1)

i (x) +
(
ε
8

)

min
{

1,ρ
(

x,x∗
)− δ

2

}

≥ f (1)
i (x∗) +

(
ε
8

)

min
{

1,ρ
(

x,x∗
)− δ

2

}

= fi(x∗) +
(
ε
8

)

min
{

1,ρ
(

x,x∗
)− δ

2

}

.

(2.25)

Choose

δ0 ∈
(

0,
δ

8

)

, λ0 ∈
(

0,
ε
16

)

. (2.26)

Define functions φ1,φ2 : [0,∞)→ R as follows:

φ1(x)= x, x ∈ [0,1], φ1(x)= 1, x ∈ (1,2],

φ1(x)= x− 1, x ∈ (2,8], φ1(x)= 15− x, x ∈ (8,14],

φ1(x)= 1, x ∈ (14,15], φ1(x)= 16− x, x ∈ (15,16], φ1(x)= 0, x ∈ (16,∞),
(2.27)

φ2(x)=−x, x ∈ [0,2], φ2(x)= x− 4, x ∈ (2,8],

φ2(x)= 12− x, x ∈ (8,14], φ2(x)=−16 + x, x ∈ (14,16],

φ2(x)= 0, x ∈ (16,∞).
(2.28)

It is clear that φ1, φ2 are continuous functions and that

sup
{∣
∣φi(x)

∣
∣ : x ∈ R, i= 1,2

}≤ 7. (2.29)

Define a function G= (g1, . . . ,gn): X → Rn as follows:

g1(x)= f (2)
1 (x) + λ0φ1

(

16ρ
(

x,x∗
)

δ−1
0

)

, x ∈ X ; (2.30)

for i∈ {2, . . . ,n}

gi(x)= f (2)
i (x) + λ0φ2

(

16ρ
(

x,x∗
)

δ−1
0

)

, x ∈ X. (2.31)

Clearly,G∈�. By (2.31), (2.30), (2.29), and (2.26) d̃(G,F(2))≤ ε/2. Together with (2.19)
this implies that

d̃(G,F) < ε. (2.32)
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Relations (2.30), (2.31), and (2.28) imply that for each x ∈ X satisfying ρ(x,x∗)≥ δ0

G(x)= F(2)(x). (2.33)

In view of (2.33) and (2.16) for each x ∈ X satisfying ρ(x,x∗)∈ [δ0,δ/2] we have

G(x)= F(x∗
)

. (2.34)

It follows from (2.33) and (2.17) that for each x ∈ X satisfying ρ(x,x∗)∈ [δ/2,δ]

G(x)= F(x∗
)

+
(
ε
8

)[

ρ
(

x,x∗
)− δ

2

]

(1,1, . . . ,1). (2.35)

By (2.30), (2.31), (2.16), (2.27), and (2.28) for each x ∈ X satisfying ρ(x,x∗)≤ δ0/16 we
have

g1(x)= f (2)
1 (x) + λ0ρ

(

x,x∗
)

δ−1
0 16= f1

(

x∗
)

+ λ0ρ
(

x,x∗
)

δ−0 16; (2.36)

for i= 2, . . . ,n

gi(x)= f (2)
i

(

x∗
)− λ0ρ

(

x,x∗
)

δ−1
0 16= fi

(

x∗
)− λ0ρ

(

x,x∗
)

δ−1
0 16, (2.37)

G(x)= F(x∗
)

+ λ0ρ
(

x,x∗
)

δ−1
0 16(1,−1, . . . ,−1). (2.38)

Relations (2.27), (2.30), (2.31), (2.16) , and (2.28) imply that for each x ∈ X satisfying
ρ(x,x∗)= δ0/8 we have

g1(x)= f (2)
1 (x) + λ0φ1(2)= f1

(

x∗
)

+ λ0; (2.39)

for i= 2, . . . ,n

gi(x)= f (2)
i (x) + λ0φ2(2)= fi

(

x∗
)− 2λ0, (2.40)

G(x)= F(x∗
)

+ λ0(1,−2,−2, . . . ,−2). (2.41)

We will show that for each x ∈ X satisfying ρ(x,x∗)≤ δ0 the following property holds.
(P2) There is z ∈ X such that ρ(z,x∗)∈ [0,δ0/16]∪{δ0/8} and G(z)≤G(x).
Let x ∈ X satisfy

ρ
(

x,x∗
)≤ δ0. (2.42)
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Clearly, if ρ(x,x∗)≤ δ0/16, then (P2) holds with z = x. We consider the following cases:

ρ
(

x,x∗
)∈

[
δ0

16
,
δ0

8

]

; (2.43)

ρ
(

x,x∗
)∈

(
δ0

8
,
δ0

2

]

; (2.44)

ρ
(

x,x∗
)∈

(
δ0

2
,
7
8
δ0

]

; (2.45)

ρ
(

x,x∗
)∈

(
7
8
δ0,

1
16
δ0

]

; (2.46)

ρ
(

x,x∗
)∈

(
15
16
δ0,δ0

]

. (2.47)

Let (2.43) hold. Then by (2.43), (2.30), (2.31), (2.27), (2.28), and (2.16) we have

g1(x)= f (2)
1 (x) + λ0φ1

(

ρ
(

x,x∗
)

δ−1
0 16

)= f1
(

x∗
)

+ λ0; (2.48)

for i= 2, . . . ,n

gi(x)= f (2)
i (x) + λ0φ2

(

ρ
(

x,x∗
)

δ−1
0 16

)= fi
(

x∗
)− λ0

(

ρ
(

x,x∗
)

δ−1
0 16

)≥ fi
(

x∗
)− 2λ0.

(2.49)

Together with (2.41) these relations imply that

G(x)≥G(z) if z ∈ X satisfies ρ
(

z,x∗
)= δ0

8
. (2.50)

Thus property (P2) holds if (2.43) is valid.
Assume that (2.44) is true. By (2.44), (2.30), (2.31), (2.27), (2.28), and (2.16) we have

g1(x)= f1
(

x∗
)

+ λ0
(

ρ
(

x,x∗
)

δ−1
0 16− 1

)≥ f1
(

x∗
)

+ λ0; (2.51)

for i= 2, . . . ,n

gi(x)= fi
(

x∗
)

+ λ0
(

ρ
(

x,x∗
)

δ−1
0 16− 4

)≥ fi
(

x∗
)

+ λ0(−2). (2.52)

Together with (2.41) these relations imply that for each z ∈ X satisfying ρ(z,x∗) = δ0/8
we have G(z)≤G(x). Thus property (P2) holds if (2.44) is valid.

Assume that (2.45) holds. By (2.45), (2.30), (2.31), (2.27), (2.28), and (2.16) we have

g1(x)= f1
(

x∗
)

+ λ0
(

15− ρ(x,x∗
)

δ−1
0 16

)≥ f1
(

x∗
)

+ λ0; (2.53)

for i= 2, . . . ,n

gi(x)= fi
(

x∗
)

+ λ0
(

12− ρ(x,x∗
)

δ−1
0 16

)≥ fi
(

x∗
)− 2λ0. (2.54)
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Together with (2.41) these relations imply that for each z ∈ X satisfying ρ(z,x∗) = δ0/8
we have G(z)≤G(x). Thus property (P2) holds if (2.45) is valid.

Assume that (2.46) holds. By (2.46), (2.30), (2.31), (2.27), (2.28) , and (2.16) we have

g1(x)= f1
(

x∗
)

+ λ0; (2.55)

for i= 2, . . . ,n

gi(x)= fi
(

x∗
)

+ λ0
(− 16 + ρ

(

x,x∗
)

δ−1
0 16

)≥ fi
(

x∗
)− 2λ0. (2.56)

Together with (2.41) these relations imply that for each z ∈ X satisfying ρ(z,x∗) = δ0/8
we have G(z)≤G(x). Thus property (P2) holds if (2.46) is valid.

Assume that (2.47) holds. By (2.47), (2.30), (2.31), (2.27), (2.28) , and (2.16) we have

g1(x)= f1
(

x∗
)

+ λ0
(

16− ρ(x,x∗
)

δ−1
0 16

)

; (2.57)

for i= 2, . . . ,n

gi(x)= fi
(

x∗
)

+ λ0
(

ρ
(

x,x∗
)

δ−1
0 16− 16

)

. (2.58)

Since the space X is connected, it follows from (2.3) and (2.47) that there is z ∈ X such
that

ρ
(

z,x∗
)= δ0− ρ

(

x,x∗
)∈

[

0,
δ0

16

]

. (2.59)

In view of (2.59), (2.38), (2.57), and (2.58)

G(z)= F(x∗
)

+ λ0ρ
(

z,x∗
)

δ−1
0 16(1,−1, . . . ,−1)

= F(x∗
)

+ λ0
(

δ0− ρ
(

x,x∗
))

δ−1
0 16(1,−1,−1, . . . ,−1)=G(x).

(2.60)

Thus property (P2) holds if (2.47) is valid.
We have shown that (P2) holds in all the cases. We have also shown that the following

property holds.
(P3) For each x ∈ X satisfing ρ(x,x∗)≤ δ0 there is z ∈ X such that

ρ
(

z,x∗
)∈

[

0,
δ0

16

]

∪
{
δ0

8

}

, G(z)≤G(x). (2.61)

We will show that the following property holds.
(P4) If x ∈ X satisfies ρ(x,x∗)≥ δ/2 and z ∈ X satisfies ρ(z,x∗)∈ {δ0/8}∪ [0,δ0/16],

then the inequality G(x)≤G(z) does not hold.
Assume that

x ∈ X , z ∈ X , ρ
(

x,x∗
)

>
δ

2
, ρ

(

z,x∗
)∈

{
δ0

8

}

∪
[

0,
δ0

16

]

. (2.62)

By property (P1) and (2.62) there is j ∈ {1, . . . ,n} such that

f (2)
j (x)≥ f j

(

x∗
)

+
(
ε
8

)

min
{

1,ρ
(

x,x∗
)− δ

2

}

. (2.63)
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By (2.13) and (2.62)

f (2)
i (x) > fi

(

x∗
)

, i= 1, . . . ,n. (2.64)

Together with (2.33) and (2.26) this implies that

gi(x) > fi
(

x∗
)

, i= 1, . . . ,n. (2.65)

It follows from (2.62) that

G(z)∈ {F(x∗
)

+ λ0(1,−1,−1, . . . ,−1)t : t ∈ [0,1]
}

∪ {F(x∗
)

+ λ0(1,−2,−2, . . . ,−2)
}

.
(2.66)

It follows from this inclusion and (2.65) that G(x)≤G(z) does not hold. Therefore prop-
erty (P4) holds.

Let t ∈ [0,1). We show that F(x∗) + λ0t(1,−1,−1, . . . ,−1)∈ v(G). Since the space X is
connected, it follows from (2.3) that there is z ∈ X such that

ρ
(

z,x∗
)= δ0

16
t. (2.67)

By (2.67) and (2.38)

G(z)= F(x∗
)

+ λ0ρ
(

z,x∗
)

δ−1
0 16(1,−1,− 1, . . . ,−1)

= F(x∗
)

+ tλ0(1,−1,−1, . . . ,−1)∈G(X).
(2.68)

Assume that

x ∈ X , G(x)≤G(z). (2.69)

We will show that G(x) = G(z). If ρ(x,x∗) > δ/2, then by (2.13), (2.33) , and (2.26) the
relation (2.65) is true and together with (2.69) this implies that G(z)� F(x∗). This con-
tradicts (2.68). Therefore

ρ
(

x,x∗
)≤ δ

2
. (2.70)

If ρ(x,x∗)∈ [δ0,δ/2], then by (2.34), (2.69), (2.68), and (2.67)

G(x)= F(x∗
)

, t = 0, z = x∗, G(z)=G(x). (2.71)

Assume that

ρ
(

x,x∗
)≤ δ0. (2.72)

By (2.72) and property (P3) there is y ∈ X such that

G(y)≤G(x), ρ
(

y,x∗
)∈

[

0,
δ0

16

]

∪
{
δ0

8

}

. (2.73)
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In view of (2.73), (2.69) , and (2.68)

G(y)≤G(x)≤G(z)= F(x∗
)

+ λ0t(1,−1,−1, . . . ,−1). (2.74)

If ρ(y,x∗)= δ0/8, then by (2.41)

G(y)= F(x∗
)

+ λ0(1,−2,−2, . . . ,−2) (2.75)

and since t ∈ [0,1), the equality above contradicts (2.74). Therefore in view of (2.73)

ρ
(

y,x∗
)∈

[

0,
δ0

16

]

. (2.76)

By (2.76) and (2.38)

G(y)= F(x∗
)

+ λ0ρ
(

x,x∗
)

δ−1
0 (16)(1,−1,−1, . . . ,−1). (2.77)

Together with (2.74) this equality implies that t = ρ(x,x∗)δ−1
0 16 andG(y)=G(x)=G(z).

Thus we have shown that (2.69) implies that G(x)=G(z). Therefore

F
(

x∗
)

+ λ0t(1,−1,−1, . . . ,−1)∈ v(G) ∀t ∈ [0,1). (2.78)

Let x ∈ X satisfy ρ(x,x∗)= δ0/8. (Note that by (2.3) such an x exists.) In view of (2.41)

G(x)= F(x∗
)

+ λ0(1,−2,−2, . . . ,−2) < F
(

x∗
)

+ λ0(1,−1,−1, . . . ,−1). (2.79)

Thus

F
(

x∗
)

+ λ0(1,−1,−1, . . . ,−1) /∈ v(G). (2.80)

Together with (2.78) this implies that v(G) is not closed. Theorem 1.2 is proved.
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