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We state and prove a theorem showing how iterates of the Volterra operator can be used
to evaluate indeterminate forms of type 0/0. This general result allows one to recover the
Boltzmann-Gibbs entropy as a limit of a wide class of generalized entropies, as considered
in an earlier work.
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1. Introduction

During the last decades, many attempts have been made in order to explain and formalize
mathematically a large set of phenomena that, at a first glance, are not well described by
traditional theories. Among those attempts one finds the whole theory of self-organized
criticality and some statistical theories. In recent years, a popular approach has been a
Daróczy-like entropy [2] and its corresponding statistical mechanics formalism known
as Tsallis thermostatistics [12]

Sq = kB
1−∑W

i=1 p
q
i

q− 1
, (1.1)

where W is the total number of configurations, pi are the associated probabilities, and
kB is some suitable constant. Tsallis statistics is based on a special parameter q, which
is adjusted to the phenomena represented by the theory. When q → 1, the Boltzmann
entropy is obtained. In [8], an inverse formalism was applied to find this limit. In this way
an infinite number of entropies, and consequently of statistics, of Tsallis type were found.
The necessity of deeper criteria to choose a formalism to represent physical systems was
pointed out.

Naively describing, the method used in [8] consists in verifying that, for the special
functional form of (1.1), separately integrating an infinite number of times the numer-
ator and the denominator leads to the same result as differentiating a finite number of
times (i.e, to apply the replica trick or, even simpler, L’Hôpital’s rule). More precisely, one
considers the Volterra operator T , as defined in Section 2, applies its iterates Tn to the
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numerator and the denominator separately, and evaluates the limit of this expression as
n→∞. Through this process, one achieves a limit which is independent of the parameter
q. Here, we state and prove a theorem providing general conditions which allow one to
apply this technique.

2. The theorem

For a real continuous function f : R→ R and a point x0 ∈ R, we denote by T f (x) the
Volterra operator

T f (x)=
∫ x

x0

f (t)dt. (2.1)

For more results and properties of the Volterra operator and its iterates, see [3, 5–7, 10,
11].

To keep the notation simple, we do not write explicitly the dependence of the operator
above on the point x0. We use the usual notation f ( j)(x) to denote the jth derivative of
f (x). We begin with a simple lemma.

Lemma 2.1. Let g :R→R be a continuous function in an open neighborhood U of x0 ∈R.
If f (x0) �= 0, then there exists δ > 0 such that V = [x0− δ,x0 + δ]⊂U and Tn f (x) �= 0 for
all n∈N and all x ∈V\{x0}.
Proof. Since U is open and f (x0) �= 0, there exists δ > 0 such that V = [x0− δ,x0 + δ]⊂U
and f (x) �= 0, for all x ∈V . We define V1 := (x0,x0 + δ] and V2 := [x0− δ,x0). If f (x) > 0
in V =V1∪V2∪{x0}, we have

T f (x)=
∫ x

x0

f (t)dt > 0, ∀x ∈V1,

T f (x)=
∫ x

x0

f (t)dt < 0, ∀x ∈V2.
(2.2)

If f (x) < 0 in V =V1∪V2∪{x0}, we have

T f (x)=
∫ x

x0

f (t)dt < 0, ∀x ∈V1,

T f (x)=
∫ x

x0

f (t)dt > 0, ∀x ∈V2.
(2.3)

Therefore, in both cases, we have T f (x) �= 0 for all x ∈ V\{x0}. Now suppose that for
some n∈N,

Tn f (x) �= 0, (2.4)

for all x ∈V\{x0}. We analyze the signal ofTn+1 f (x) in the intervalsV1 andV2 separately.
For the interval V1, we have that if Tn f (x) > 0 in V1, then

Tn+1 f (x)= T
(
Tn f

)
(x)=

∫ x

x0

Tn f (t)dt > 0, ∀x ∈V1, (2.5)
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and if Tn f (x) < 0 in V1, then

Tn+1 f (x)= T
(
Tn f

)
(x)=

∫ x

x0

Tn f (t)dt < 0, ∀x ∈V1. (2.6)

For the interval V2, we have that if Tn f (x) > 0 in V2, then

Tn+1 f (x)= T
(
Tn f

)
(x)=

∫ x

x0

Tn f (t)dt < 0, ∀x ∈V2, (2.7)

and if Tn f (x) < 0 in V2, then

Tn+1 f (x)= T
(
Tn f

)
(x)=

∫ x

x0

Tn f (t)dt > 0, ∀x ∈V2. (2.8)

Thus, we have Tn+1 f (x) �= 0 for all x ∈V1∪V2 =V\{x0}. Therefore, it follows by induc-
tion that

Tn f (x) �= 0, ∀x ∈V\{x0
}

, ∀n∈N. (2.9)
�

Corollary 2.2. Let K ∈N and let f :R→R be a function of class �K+2 in an open neigh-
borhood U of x0 ∈ R. Suppose f ( j)(x0) = 0, for j = 0,1, . . . ,K , and f (K+1)(x0) �= 0. Then,
there exists δ > 0 such that V = [x0− δ,x0 + δ] ⊂ U and Tn f (x) �= 0 for all n ∈N and all
x ∈V\{x0}.
Proof. By Lemma 2.1, there exists V = [x0− δ,x0 + δ]⊂U , δ > 0, such that

Tn f (K+1)(x) �= 0, (2.10)

for all n∈N and all x ∈V\{x0}. Therefore, for all m∈N, we have

Tm f (x)= Tm+K+1 f (K+1)(x) �= 0, (2.11)

for all x ∈V\{x0}. �

We now state and prove the main result.

Theorem 2.3. Let f :R→R, g :R→R be functions of class �K+2 in an open neighborhood
U of x0 ∈ R. Suppose f ( j)(x0) = g( j)(x0) = 0, for j = 0,1, . . . ,K , and g(K+1)(x0) �= 0. Let
V = [x0 − δ,x0 + δ] ⊂ U , δ > 0, be an interval where Tng(x) �= 0, for all n ∈ N and all
x ∈V\{x0}. Then,

lim
n→∞

Tn f (x)
Tng(x)

= f (K+1)
(
x0
)

g(K+1)
(
x0
) (2.12)

uniformly in V\{x0}.
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Proof. The existence of the interval V is assured by Corollary 2.2. Let x ∈ V\{x0} and
set either Ix = [x0,x] if x > x0 or Ix = [x,x0] if x < x0. Since f and g are of class �K+2 in
U ⊃ V ⊃ Ix, and both have their first K derivatives vanishing at x0, there exist c1, c2 ∈ Ix
such that

f (x)= f (K+1)
(
x0
)

(K + 1)!

∣
∣x− x0

∣
∣(K+1)

+
f (K+2)

(
c1
)

(K + 2)!

∣
∣x− x0

∣
∣(K+2)

,

g(x)= g(K+1)
(
x0
)

(K + 1)!

∣
∣x− x0

∣
∣(K+1)

+
g(K+2)

(
c2
)

(K + 2)!

∣
∣x− x0

∣
∣(K+2)

.

(2.13)

Since Tn is linear for all n∈N, we have

Tn f (x)= f (K+1)
(
x0
)

(K + 1 +n)!

∣
∣x− x0

∣
∣(K+1+n)

+
f (K+2)

(
c1
)

(K + 2 +n)!

∣
∣x− x0

∣
∣(K+2+n)

,

Tng(x)= g(K+1)
(
x0
)

(K + 1 +n)!

∣
∣x− x0

∣
∣(K+1+n)

+
g(K+2)

(
c2
)

(K + 2 +n)!

∣
∣x− x0

∣
∣(K+2+n)

.

(2.14)

Therefore,

Tn f (x)
Tng(x)

= f (K+1)
(
x0
)

+
(
f (K+2)

(
c1
)
/(K + 2 +n)

)∣
∣x− x0

∣
∣

g(K+1)
(
x0
)

+
(
g(K+2)

(
c2
)
/(K + 2 +n)

)∣
∣x− x0

∣
∣ . (2.15)

Now, since f (K+2) and g(K+2) are both continuous in the compact set V , there exists M > 0
such that | f (K+2)(c1)| ≤M and |g(K+2)(c2)| ≤M. Moreover, we have |x− x0| ≤ δ, since
x ∈V\{x0}. Thus,

∣
∣
∣
∣
∣

f (K+2)
(
c1
)

K + 2 +n

∣
∣
∣
∣
∣

∣
∣x− x0

∣
∣≤ Mδ

K + 2 +n
,

∣
∣
∣
∣
∣

g(K+2)
(
c2
)

K + 2 +n

∣
∣
∣
∣
∣

∣
∣x− x0

∣
∣≤ Mδ

K + 2 +n
.

(2.16)

These inequalities imply

lim
n→∞

Tn f (x)
Tng(x)

= f (K+1)
(
x0
)

g(K+1)
(
x0
) . (2.17)

Note that the limit is uniform for x ∈V\{x0} as desired, since inequalities (2.16) hold for
all x ∈V\{x0} and all c1,c2 ∈ Ix ⊂V . �

As an application of the result, one has that the family of entropies introduced in [8]

nSq = kB

∑W
i=1

∑n−1
k=0

(
pi/ lnn−1−k pi

)
(q− 1)k/k!−∑W

i=1

(
p
q
i / lnn−1 pi

)

(q− 1)n/n!
(2.18)
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allows one to recover the Boltzmann-Gibbs entropy in the limit n→∞. Indeed, the ex-
pression in (2.18) is obtained separately integrating (n− 1) times, with respect to q, the
numerator and the denominator of the expression in (1.1) (see [8]). It is worth mention-
ing that at each iteration a new entropy is obtained with essentially the same properties of
the original one. Therefore, through this process, one obtains an infinite set of entropies.
Moreover, the method can be applied to a wide range of entropic forms, as, for example,
Rényi’s [4]

Sq = ln
(∑W

i=1 p
q
i

)

1− q
(2.19)

or Abe’s [1]

Sq =−kB
∑W

i=1 p
q
i −

∑W
i=1 p

1/q
i

q− (1/q)
. (2.20)

This opens the possibility of many applications and studies.
There are related methods to obtain a set of entropies. We mention here the works by

Sharma and Mittal [9] and by van der Lubbe et al. [13] that have been also the subject
of many recent works, and by Yamano [14], which includes the entropies of Tsallis and
Rényi as particular cases.

3. Conclusions

The theorem proved allows one to solve, under quite general conditions, indeterminate
forms through an infinite number of iterations of the Volterra operator. Through this
process, an infinite number of indeterminate forms of the same type are obtained. Be-
yond this pure mathematical application, it is worth mentioning that for large n, one-
parameter-dependent entropies nSq appear to be insensitive to the choice of q. This fact
may help with the approximate evaluation of thermostatic properties of such systems. In
view of the impact of generalized entropies in recent works, we believe that the result may
find applications in physics and information theory.
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