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1. Introduction

This paper is devoted to the study of the existence and uniqueness of solutions of first-
order boundary value problems for impulsive functional and neutral impulsive func-
tional differential equations with infinite delay. In particular, in Section 3, we will con-
sider the class of first-order boundary value problem for functional differential equations
with impulsive effects,

y′(t)= f
(
t, yt

)
a.e. t ∈ J := [0,∞), t �= tk, k = 1,2, . . . , (1.1)

y
(
t+k
)− y

(
t−k
)= Ik

(
y
(
t−k
))

, t = tk, k = 1,2, . . . , (1.2)

Ay0− x∞ = φ(t), t ∈ (−∞,0], (1.3)

where f : J ×�→Rn and Ik :Rn→Rn, k = 1,2, . . . , are given functions, limt→∞ y(t)= x∞,
A �= 1, and φ ∈�, which is called the phase space, will be defined later. Section 4 is de-
voted to the impulsive neutral functional differential equation with boundary conditions,

d

dt

[
y(t)− g(t, yt

)]= f
(
t, yt

)
, t ∈ J , t �= tk, k = 1,2, . . . ,

y
(
t+k
)− y

(
t−k
)= Ik

(
y
(
t−k
))

, t = tk, k = 1,2, . . . ,

Ay0− x∞ = φ(t), t ∈ (−∞,0],

(1.4)

where f , Ik, A, x∞, and � are as in the problem (1.1)–(1.3) and g : J ×�→Rn is a given
function.
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2 Impulsive functional differential equations

The notion of the phase space � plays an important role in the study of both the
qualitative and quantitative theory of functional differential equations. A usual choice is
a seminormed space satisfying suitable axioms as was introduced by Hale and Kato [18]
(also see Kappel and Schappacher [21] and Schumacher [28]). For a detailed discussion
on this topic, we refer the reader to Hino et al. [20]. For the case where the impulses are
absent (i.e., Ik = 0, k = 1,2, . . .), an extensive theory has been developed for the problem
(1.1), (1.3), and we refer the reader to Corduneanu and Lakshmikantham [8], Hale and
Kato [18], Hino et al. [20], Lakshmikantham et al. [23], and Shin [29].

Impulsive differential equations have become increasingly important in recent years as
mathematical models of real-world processes and phenomena studied in control theory,
physics, chemistry, population dynamics, biotechnology, and economics. There has been
a significant development in impulse theory and this has been especially true in the area
of impulsive differential equations with fixed moments; see, for example, the monographs
of Baı̆nov and Simeonov [3], Lakshmikantham et al. [22], and Samoı̆lenko and Perestyuk
[27], as well as the papers of Agur et al. [2], Ballinger and Liu [4], Benchohra et al. [5, 6],
Franco et al. [9], and the references contained therein.

Boundary value problems on infinite intervals appear in many problems of practical
interest, for example, in linear elasticity, nonlinear fluid flow, and foundation engineer-
ing (e.g., see, [1, 13, 16, 24–26]). Recently, fixed point arguments using such approaches
as the Banach contraction principle, fixed point index theory, and monotone iterative
technique have been applied to first- and second-order impulsive differential equations.
We mention here the survey papers by Guo [12, 14, 15], Guo and Liu [17], Yan and Liu
[30], and the references therein. Very recently, a nonlinear alternative due to Frigon and
Granas [10] was applied to impulsive functional differential equation with variable times
[11]; see the paper by Benchohra et al. [7] for first-order equations and Henderson and
Ouahab [19] for second- and higher-order problems. Our goal here is to give existence
and uniqueness results for the problems (1.1)–(1.3) and (1.4) above by using this nonlin-
ear alternative for contraction maps.

2. Preliminaries

In this short section, we introduce notations and definitions that are used throughout the
remainder of this paper. We let C([0,b],Rn) denote the Banach space of all continuous
functions from [0,b] into Rn with the norm

‖y‖∞ = sup
{∥∥y(t)

∥
∥ : 0≤ t ≤ b}, (2.1)

and we let L1([0,∞),Rn) be the Banach space of measurable functions y : [0,∞)→ Rn

that are Lebesgue integrable with the norm

‖y‖L1 =
∫∞

0

∥
∥y(t)

∥
∥dt ∀y ∈ L1([0,∞),Rn

)
. (2.2)

For more details on the following notions, we refer the reader to Frigon and Granas [10].
Let X be a Fréchet space with a family of seminorms {‖ · ‖n, n ∈ N}. If Y ⊂ X , we say
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that Y is bounded if for every n∈N there exists Mn > 0 such that

‖y‖n ≤Mn ∀y ∈ Y. (2.3)

We associate to X a sequence of Banach spaces {(Xn,‖ · ‖n)} as follows: for every n∈N,
we consider the equivalence relation ∼n defined by x ∼n y if and only if ‖x− y‖n = 0 for
all x, y ∈ X . We let Xn = (X/ ∼n,‖ · ‖) denote the quotient space that is the completion
of Xn with respect to ‖ · ‖n. To every Y ⊂ X , we associate a sequence {Yn} of subsets
Yn ⊂ Xn as follows: for every x ∈ X , let [x]n denote the equivalence class of x of subsets
Xn, and we defineYn = {[x]n : x ∈ Y}. We letY

n
, intn(Yn), and ∂nYn, respectively, denote

the closure, the interior, and the boundary of Yn with respect to ‖ · ‖ in Xn. We will
assume that the family of seminorms {‖ · ‖n} satisfies

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ ··· for every x ∈ X. (2.4)

Next, we define what we mean by a contraction.

Definition 2.1. A function f : X → X is said to be a contraction if for each n ∈ N there
exists kn ∈ (0,1) such that

∥
∥ f (x)− f (y)

∥
∥
n ≤ kn‖x− y‖n ∀x, y ∈ X. (2.5)

The following nonlinear alternative will be used to prove our main results.

Theorem 2.2 (nonlinear alternative [10]). Let X be a Fréchet space, let Y ⊂ X be a closed
subset in X , and let N : Y → X be a contraction such that N(Y) is bounded. Then one of the
following statements holds:

(C1) N has a unique fixed point;
(C2) there exists λ∈ [0,1), n∈N, and x ∈ ∂nYn such that ‖x− λN(x)‖n = 0.

We will also need the following definition.

Definition 2.3. The map f : [0,∞)×�→Rn is said to be L1-Carathéodory if
(i) t �→ f (t,x) is measurable for each x ∈�;

(ii) x �→ f (t,x) is continuous for almost all t ∈ [0,∞);
(iii) for each q > 0 there exists hq ∈ L1([0,∞),R+) such that

∥
∥ f (t,x)

∥
∥≤ hq(t) ∀‖x‖� ≤ q and for almost all t ∈ [0,∞). (2.6)

3. Functional differential equations

In order to define the phase space and a solution of the problem (1.1)–(1.3), we consider
the space

PC= {y : (−∞,∞)−→Rn | y(t−k
)

and y
(
t+k
)

exist with y
(
tk
)= y

(
t−k
)
,

Ay(t)− x∞ = φ(t) for t ≤ 0, yk ∈ C
(
Jk,Rn

)
, k = 1,2, . . .

}
,

(3.1)

where yk is the restriction of y to Jk = (tk, tk+1], k = 1,2, . . . . In the remainder of this paper,
we will assume that � satisfies the following properties.
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(A-1) If y : (−∞,∞)→Rn and y0 ∈�, then for every t in [0,∞), we have
(i) yt is in �,

(ii) ‖yt‖� ≤ K(t)sup{|y(s)| : 0≤ s≤ t}+M(t)‖y0‖�, and
(iii) |y(t)| ≤H‖yt‖�,

where H ≥ 0 is a constant, K : [0,∞)→ [0,∞) is continuous,M : [0,∞)→ [0,∞) is locally
bounded, and H , K , and M are independent of y.

(A-2) For the function y in (A-1), yt is a continuous function on [0,∞) \ {t1, t2, . . .}.
(A-3) The space � is complete.
Now set

B∗ =
{
y : (−∞,∞)−→Rn : y ∈ PC∩�

}
,

Bk =
{
y ∈ B∗ : sup

t∈J∗k

∣
∣y(t)

∣
∣ <∞

}
, where J∗k =

(−∞, tk
]
.

(3.2)

Let ‖ · ‖k be the seminorm in Bk defined by

‖y‖k =
∥
∥y0

∥
∥

� + sup
{∣∣y(s)

∣
∣ : 0≤ s≤ tk

}
, y ∈ Bk. (3.3)

We will next define what we mean by a solution of (1.1)–(1.3).

Definition 3.1. A function y is said to be a solution of the problem (1.1)–(1.3) if y ∈ B∗
and y satisfies (1.1)–(1.3).

To prove our existence results for the problem (1.1)–(1.3), we first establish the fol-
lowing lemma.

Lemma 3.2. Let f : [0,∞)→Rn be a continuous function with
∫∞

0 f (s)ds <∞. Then y is a
solution of the impulsive integral equation

y(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(0)
A(A− 1)

+
1

A− 1

[∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+
φ(t)
A

, t ∈ (−∞,0],

φ(0)
A− 1

+
1

A− 1

[∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+
∫ t

0
f
(
ys
)
ds

+
∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ [0,∞),

(3.4)

if and only if y is a solution of the impulsive boundary value problem

y′(t)= f
(
yt
)
, t ∈ [0,∞), t �= tk, k = 1,2, . . . , (3.5)

y
(
t+k
)− y

(
t−k
)= Ik

(
y
(
t−k
))

, k = 1,2, . . . , (3.6)

Ay0− y∞ = φ(t), t ∈ (−∞,0], (3.7)

where limt→∞ y(t)= y∞.
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Proof. Let y be a solution of the impulsive integral equation (3.4). Then for t ∈ [0,∞)
and t �= tk, k = 1,2, . . . , we have

y(t)= φ(0)
A− 1

+
1

A− 1

[∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+
∫ t

0
f
(
ys
)
ds+

∑

0<tk<t

Ik
(
y
(
t−k
))
.

(3.8)

Thus, y′(t)= f (yt) for t ∈ [0,∞) and t �= tk, k = 1,2, . . . . From the definition of y, we see
that

y
(
t+k
)− y

(
t−k
)= Ik

(
y
(
t−k
))

for k = 1,2, . . . . (3.9)

Finally, to see that Ay0− y∞ = φ(t) for t ∈ (−∞,0], note that

y∞ = φ(0)
A− 1

+
A

A− 1

[∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

,

y0 = φ(0)
A(A− 1)

+
1

A− 1

[∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+
φ(t)
A

.

(3.10)

Hence,

Ay0− y∞ = φ(0)
A− 1

+
A

A− 1

[∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+φ(t)− φ(0)
A− 1

− A

A− 1

[∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

= φ(t).

(3.11)

Now let y be a solution of the problem (3.5)–(3.7). Then,

y′(t)= f
(
yt
)

for t ∈ [0, t1
]
, (3.12)

and an integration from 0 to t ∈ (0, t1] yields

y(t)− y(0)=
∫ t

0
y′(s)ds=

∫ t

0
f
(
ys
)
ds (3.13)

or

y(t)= y(0) +
∫ t

0
f
(
ys
)
ds (3.14)

for t ∈ [0, t1]. If t ∈ (t1, t2], then

y
(
t−1
)− y(0) + y(t)− y

(
t+1
)=

∫ t1

0
y′(s)ds+

∫ t

t1
y′(s)ds=

∫ t

0
f
(
ys
)
ds, (3.15)
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so

y(t)= y(0) +
∫ t

0
f
(
ys
)
ds+ I1

(
y
(
t−1
))
. (3.16)

Continuing this procedure, we obtain

y(t)= y(0) +
∫ t

0
f
(
ys
)
ds+

∑

0<tk<t

Ik
(
y
(
t−k
))

(3.17)

for t ∈ [0,∞). Since limt→∞ y(t)= y∞, we have

y∞ = y(0) +
∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
. (3.18)

From (3.7), we have y∞ =Ay(0)−φ(0), and so

y(0)= φ(0)
A− 1

+
1

A− 1

[∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

. (3.19)

Substituting (3.19) into (3.17), we obtain

y(t)= φ(0)
A− 1

+
1

A− 1

[∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+
∫ t

0
f
(
ys
)
ds+

∑

0<tk<t

Ik
(
y
(
t−k
))

(3.20)

for t ∈ [0,∞).
From (3.7), (3.18), and (3.19), we have

y(t)= φ(t)
A

+
1
A

[

y(0) +
∫∞

0
f (ys)ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

= φ(0)
A(A− 1)

+
1

A− 1

[∫∞

0
f
(
ys
)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+
φ(t)
A

(3.21)

for t ∈ (−∞,0]. This completes the proof of the lemma. �

We are now ready to prove our existence and uniqueness result for the problem (1.1)–
(1.3).

Theorem 3.3. Let f : J ×�→Rn be an L1-Carathéodory function and assume that
(H1) there exist constants dk > 0, k = 1,2, . . . , such that

∥
∥Ik(x)− Ik(x)

∥
∥≤ dk‖x− x‖ for each k = 1,2, . . . , ∀x,x ∈Rn; (3.22)

(H2) there exists a function l ∈ L1([0,∞),Rn) such that

∥
∥ f (t,x)− f (t,x)

∥
∥≤ l(t)‖x− x‖� for each t ∈ [0,∞), ∀x,x ∈�; (3.23)
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(H3) there exist a function p ∈ L1([0,∞),R+) and positive constants ck, k = 1,2, . . . ,
such that

∥
∥ f (t,u)

∥
∥≤ p(t) for (t,u)∈ [0,∞)×�,
∥
∥Ik(z)

∥
∥≤ ck ∀z ∈Rn,

∞∑

k=1

ck <∞.
(3.24)

If
∑∞

k=1dk < 1, then the problem (1.1)–(1.3) has a unique solution.

Proof. We transform the problem (1.1)–(1.3) into a fixed point problem. Consider the
operator N : B∗ → B∗ defined by

N(y)(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(0)
A(A− 1)

+
1

A− 1

[∫∞

0
f
(
s, ys

)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+
φ(t)
A

, t ∈ (−∞,0],

φ(0)
A− 1

+
1

A− 1

[∫∞

0
f
(
s, ys

)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+
∫ t

0
f
(
s, ys

)
ds+

∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ [0,∞).

(3.25)

It should be clear from Lemma 3.2 that the fixed points of N are solutions of the problem
(1.1)–(1.3). Let x : (−∞,∞)→Rn be the function defined by

x(t)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(0)
A− 1

+
1

A− 1

[∫∞

0
f
(
s,xs

)
ds+

∞∑

k=1

Ik
(
x
(
t−k
))
]

if t ∈ [0,∞),

φ(0)
A(A− 1)

+
1

A− 1

[∫∞

0
f
(
s,xs

)
ds+

∞∑

k=1

Ik
(
x
(
t−k
))
]

+
φ(t)
A

if t ∈ (−∞,0].

(3.26)

Then,

x0 = φ(0)
A− 1

+
1

A− 1

[∫∞

0
f
(
s,xs

)
ds+

∞∑

k=1

Ik
(
x
(
t−k
))
]

. (3.27)

For each z ∈ C([0,∞),Rn) with z(0)= 0, denote by z̄ the function given by

z̄(t)=
⎧
⎨

⎩
z(t) if t ∈ [0,∞),

0 if t ∈ (−∞,0].
(3.28)

If y satisfies the integral equation

y(t)= φ(0)
A− 1

+
1

A− 1

[∫∞

0
f
(
s, ys

)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+
∫ t

0
f
(
s, ys

)
ds+

∑

0<tk<t

Ik
(
y
(
t−k
))

,

(3.29)
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we can decompose y into y(t)= z̄(t) + x(t), 0≤ t <∞, which implies that yt = z̄t + xt for
0≤ t <∞, and z satisfies

z(t)=
∫ t

0
f
(
s, z̄s + xs

)
ds+

∑

0<tk<t

Ik
(
z̄
(
t−k
)

+ x
(
t−k
))
. (3.30)

Let

Bk∗ =
{
z ∈ Bk : z0 = 0

}
. (3.31)

For any z ∈ Bk∗, we have

‖z‖k =
∥
∥z0

∥
∥

� + sup
{∥∥z(s)

∥
∥ : 0≤ s≤ tk

}= sup
{∥∥z(s)

∥
∥ : 0≤ s≤ tk

}
. (3.32)

Thus (Bk∗,‖ · ‖k) is a Banach space. If we set

C0 =
{
z ∈ B∗ : z0 = 0

}
(3.33)

with the Bielecki-type norm on Bk∗ defined by

‖z‖Bk∗ =max
{∥
∥z(t)

∥
∥e−τl̂(t) : t ∈ [0, tk

]}
, (3.34)

where l̂(t)= ∫ t0 l̃(s)ds, l̃(t)= Kkl(t), Kk = sup{|K(t)| : t ∈ [0, tk]}, k = 1,2, . . . , and τ > 0 is
a constant, then C0 is a Fréchet space with the family of seminorms ‖ · ‖Bk∗ .

Let the operator P : C0 → C0 be defined by

(Pz)(t)=

⎧
⎪⎪⎨

⎪⎪⎩

0, t ≤ 0,
∫ t

0
f
(
s, z̄s + xs

)
ds+

∑

0<tk<t

Ik
(
z̄
(
t−k
)

+ x
(
t−k
))

, t ∈ [0,∞).
(3.35)

Clearly, the operator N having a fixed point is equivalent to the operator P having one,
and so we turn our attention to proving that P does have a fixed point. We will use the
nonlinear alternative given in Theorem 2.2 to show this.

Let z be a possible solution of the problem z = λP(z) for some 0 < λ < 1. Then, for each
t ∈ [0,∞),

z(t)= λ
[∫ t

0
f
(
s, z̄s + xs

)
ds+

∑

0<tk<t

Ik
(
z̄
(
t−k
)

+ x
(
t−k
))
]

, (3.36)

so by (H3), we have

∥
∥z(t)

∥
∥ <

∫ t

0
p(s)ds+

i=k∑

i=1

Ii
(
z̄
(
ti
)

+ x
(
ti
)) |≤

∫ tk

0
p(s)ds+

i=k∑

i=1

ci :=M∗
k . (3.37)

Hence,

sup
{‖z(t)

∥
∥ : t ∈ [0, tk

]}
<M∗

k . (3.38)
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Let

Y = {z ∈ C0 | sup
{‖z‖Bk∗ : 0≤ t ≤ tk

}≤M∗
k ∀k = 1,2, . . .

}
. (3.39)

Clearly, Y is a closed subset of C0. We will show that P : Y → Bk∗ is a contraction map. To
see this, consider z, z∗ ∈ Y ; then for each t ∈ [0, tk] and k = 1,2, . . . , we have

∥
∥P(z)(t)−P(z∗)(t)∥∥≤

∫ t

0

∥
∥ f
(
s, z̄s + xs

)− f
(
s, z̄∗s + xs

)∥∥ds

+
i=k∑

i=1

∥
∥Ii
(
z̄
(
t−i
)

+ x
(
t−i
))− Ii

(
z̄∗
(
t−i
)

+ x
(
t−i
))∥∥

≤
∫ t

0
l(s)

∥
∥z̄s− z̄∗s

∥
∥

�ds+
i=k∑

i=1

di
∥
∥z
(
t−i
)− z∗(t−i

)∥∥

≤
∫ t

0
l(s)Kk sup

s∈[0,t]

∥
∥z(s)− z∗(s)

∥
∥ds+

i=k∑

i=1

di
∥
∥z
(
t−i
)− z∗(t−i

)∥∥

≤
∫ t

0
l̃(s)eτl̂(s)e−τl̂(s) sup

s∈[0,t]

∥
∥z(s)− z∗(s)

∥
∥ds

+
i=k∑

i=1

die
τl̂(t)e−τl̂(t) sup

s∈[0,tk]

∥
∥z(s)− z∗(s)

∥
∥

=
∫ t

0
l̃(s)eτl̂(s)ds

∥
∥z− z∗∥∥Bk∗ +

i=k∑

i=1

die
τl̂(t)

∥
∥z− z∗∥∥Bk∗

= 1
τ

∫ t

0

(
eτl̂(s)

)′
ds
∥
∥z− z∗∥∥Bk∗ +

i=k∑

i=1

die
τl̂(t)

∥
∥z− z∗∥∥Bk∗

≤ 1
τ
eτl̂(t)ds

∥
∥z− z∗∥∥Bk∗ +

i=k∑

i=1

die
τl̂(t)

∥
∥z− z∗∥∥Bk∗ .

(3.40)

Thus,

e−τl̂(t)
∥
∥P(z)(t)−P(z∗)(t)∥∥≤ 1

τ

∥
∥z− z∗∥∥Bk∗ +

i=k∑

i=1

di
∥
∥z− z∗∥∥Bk∗ =

(
1
τ

+
i=k∑

i=1

di

)
∥
∥z− z∗∥∥Bk∗ .

(3.41)

Therefore,

∥
∥P(z)−P(z∗)∥∥Bk∗ ≤

(
1
τ

+
i=k∑

i=1

di

)
∥
∥z− z∗

∥
∥
Bk∗ , (3.42)

which shows that if τ is large enough, then P is a contraction. From the choice of Y , there
is no z ∈ ∂Yn such that z = λP(z) for some λ∈ (0,1). As a consequence of Theorem 2.2,
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we conclude that P has a unique fixed point. In turn, this implies that the operator N
has a unique fixed point that is a solution to (1.1)–(1.3). This completes the proof of the
theorem. �

4. Neutral functional differential equations

This section is concerned with the existence of solutions to the boundary value problem
for first-order neutral functional differential equations with infinite delay and impulses
given in (1.4). Our main result is as follows.

Theorem 4.1. Let f : J ×�→ Rn be an L1-Carathéodory function. In addition to (H1)–
(H3), assume that M(0) < 1 and

(B) there exist constants c∗1 ,c∗2 ≥ 0, and d̄k > 0, k = 1,2, . . . , such that
∥
∥g(t,u)

∥
∥≤ c∗1 ‖u‖� + c∗2 , t ∈ [0,∞), u∈�, c∗1 Kk < 1,

∥
∥g(t,u)− g(t,u)

∥
∥≤ d̄k

∥
∥u−u∥∥� for t ∈ [0, tk

]
,

(4.1)

where

Kk = sup
{∣∣K(t)

∣
∣ : t ∈ [0, tk

]}
, k = 1,2, . . . . (4.2)

If
∑∞

k=1[dk + d̄kKk] < 1, then the problem (1.4) has a unique solution.

Proof. We proceed similarly to what we did in the proof of Theorem 3.3 by defining the
operators N1 : B∗ → B∗ and P1 : C0 → C0 by

N1(y)(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(
0,φ(0)

)− g(t,φ(t)
)

+
φ(0)

A(A− 1)
+
φ(t)
A

+
1

A− 1

[∫∞

0
f
(
s, ys

)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

, t ∈ (−∞,0],

g(0,φ)− g(t, ys
)

+
1

A− 1

[∫∞

0
f
(
s, ys

)
ds+

∞∑

k=1

Ik
(
y
(
t−k
))
]

+
φ(0)
A− 1

+
∫ t

0
f
(
s, ys

)
ds+

∑

0<tk<t

Ik
(
y
(
t−k
))

, t ∈ [0,∞),

(
P1z

)
(t)=

⎧
⎪⎪⎨

⎪⎪⎩

0, t ≤ 0,

g(0,φ)−g(t,zt+xt
)

+
∫ t

0
f
(
s,zs + xs

)
ds+

∑

0<tk<t

Ik
(
z̄
(
t−k
)

+ x
(
t−k
))

, t ∈ [0,∞),

(4.3)

where zt and xt are defined similar to the way they are in the proof of Theorem 3.3. In
order to apply the nonlinear alternative, Theorem 2.2, we first obtain a priori estimates
for the solutions of the integral equation

z(t)= λ
[

g(0,φ)− g(t,zt + xt
)

+
∫ t

0
f
(
s,zs + xs

)
ds+

∑

0<tk<t

Ik
(
z̄
(
t−k
)

+ x
(
t−k
))
]

(4.4)
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for any λ∈ (0,1). We have

∥
∥z(t)

∥
∥ <

∥
∥g
(
0,φ(0)

)∥∥+
∥
∥g
(
t, z̄t + xt

)∥∥+
∫ t

0
p(s)ds+

∑

0<tk<t

∥
∥Ik
(
z̄
(
t−k
)

+ x
(
t−k
))∥∥

≤ ∥∥g(0,φ)
∥
∥+ c∗1

∥
∥z̄t + xt

∥
∥

� + c∗2 +
∫ t

0
p(s)ds+

i=k∑

i=1

ci

≤ ∥∥g(0,φ(0)
)∥∥+ c∗1 K(t) sup

s∈[0,t]

∣
∣z(s)

∣
∣+ c∗1 K(t) sup

s∈[0,t]

∣
∣x(s)

∣
∣+ c∗1 M(t)

∥
∥x0

∥
∥

�

+ c∗2 +
∫ t

0
p(s)ds+

k∑

i=1

ci ≤
∥
∥g
(
0,φ(0)

)∥∥+ c∗1 Kk sup
s∈[0,t]

∣
∣z(s)

∣
∣

+Kkc∗1 ‖x‖∞ +Mkc
∗
1

∥
∥x0

∥
∥

� + c∗2 +
∫ t

0
p(s)ds+

k∑

i=1

ci,

(4.5)

where

Mk = sup
{
M(t) : t ∈ [0, tk

]}
. (4.6)

Hence,

‖z‖∞ <
∥
∥g(0,φ)

∥
∥+ c∗1 Kk‖z‖∞ +Kkc∗1 ‖x‖∞ +Mkc

∗
1

∥
∥x0

∥
∥

� + c∗2 +
∫∞

0
p(s)ds+

k∑

i=1

ci.

(4.7)

Now,

∥
∥x0

∥
∥

� ≤ K(0)
∣
∣x(0)

∣
∣+M(0)

∥
∥x0

∥
∥

�, (4.8)

so

∥
∥x0

∥
∥

� ≤
K(0)

1−M(0)

∣
∣x(0)

∣
∣, (4.9)

and since

‖x‖∞ := sup
t∈[0,tk]

∣
∣x(t)

∣
∣≤

∣
∣φ(0)

∣
∣

A− 1
+

1
A− 1

[

‖p‖L1 +
∞∑

k=1

ck

]

:= �, (4.10)

we then have

‖z‖∞ < 1
1− c∗1 Kk

[
∥
∥g(0,φ)

∥
∥+ c∗2 +Kkc∗1 � +Mkc

∗
1

K(0)
1−M(0)

� +‖p‖L1 +
i=k∑

i=1

ci

]

:=Mk.

(4.11)
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Now set

Y1 =
{
z ∈ C0 : sup

{∥∥z(t)
∥
∥ : 0≤ t ≤ tk

}≤Mk ∀k = 1,2, . . .
}
. (4.12)

Clearly, Y1 is a closed subset of C0. To show that P1 is a contraction, let z, z∗ ∈ Y1. Then,
for each t ∈ [0, tk] and k = 1,2, . . . , we have

∥
∥P1(z)(t)−P1

(
z∗
)
(t)
∥
∥

≤ ∥∥g(t, z̄t + xt
)− g(t, z̄∗t + xt

)∥∥+
∫ t

0

∥
∥ f
(
s, z̄s + xs

)− f
(
s, z̄∗s + xs

)∥∥ds

+
i=k∑

i=1

∥
∥Ii
(
z̄
(
t−i
)

+ x
(
t−i
))− Ii

(
z̄∗
(
t−i
)

+ x
(
t−i
))∥∥≤ d̄k

∥
∥z̄t − z∗t

∥
∥

�

+
∫ t

0
l(s)

∥
∥z̄s− z̄∗s

∥
∥

�ds+
i=k∑

i=1

di
∥
∥z
(
t−i
)− z∗(t−i

)∥∥≤ d̄kKk sup
t∈[0,tk]

∥
∥z(t)− z∗(t)

∥
∥

+
∫ t

0
l(s)Kk sup

τ∈[0,s]

∥
∥z(τ)− z∗(τ)

∥
∥ds+

i=k∑

i=1

di
∥
∥z
(
t−i
)− z∗(t−i

)∥∥

≤ d̄kKkeτl̂(t)e−τl̂(t) sup
t∈[0,tk]

∥
∥z(t)− z∗(t)

∥
∥+

∫ t

0
l̃(s)eτl̂(s)e−τl̂(s) sup

τ∈[0,s]

∥
∥z(τ)− z∗(τ)

∥
∥ds

+
i=k∑

i=1

die
τl̂(t)e−τl̂(t) sup

s∈[0,tk]

∥
∥z(s)− z∗(s)

∥
∥≤ d̄kKkeτl̂(t)

∥
∥z− z∗∥∥Bk∗

+
∫ t

0
l̃(s)eτl̂(s)ds

∥
∥z− z∗∥∥Bk∗ +

i=k∑

i=1

die
τl̂(t)

∥
∥z− z∗∥∥Bk∗ = d̄kKkeτl̂(t)

∥
∥z− z∗∥∥Bk∗

+
1
τ

∫ t

0

(
eτl̂(s)

)′
ds
∥
∥z− z∗∥∥Bk∗ +

i=k∑

i=1

die
τl̂(t)

∥
∥z− z∗∥∥Bk∗ ≤ d̄kKkeτl̂(t)

∥
∥z− z∗∥∥Bk∗

+
1
τ
eτl̂(t)ds‖z− z∗∥∥Bk∗ +

i=k∑

i=1

die
τl̂(t)

∥
∥z− z∗∥∥Bk∗ .

(4.13)

Thus,

e−τl̂(t)
∥
∥P1(z)(t)−P1

(
z∗
)
(t)
∥
∥≤

(
1
τ

+
i=k∑

i=1

di + d̄kKk

)
∥
∥z− z∗∥∥Bk∗ . (4.14)

Therefore,

∥
∥P1(z)−P1

(
z∗
)∥∥

Bk∗ ≤
(

1
τ

+
i=k∑

i=1

di + d̄kKk

)
∥
∥z− z∗

∥
∥
Bk∗ , (4.15)
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and again if τ is large enough, P1 is a contraction. From the choice of Y1, there is no
z ∈ ∂Yn

1 such that z = λP1(z) for some λ ∈ (0,1). As a consequence of the nonlinear al-
ternative (Theorem 2.2), we see that P1 has a unique fixed point which again leads to the
existence of a unique solution to (1.4). �

5. Example

In this section we give an example to illustrate the usefulness of our main results. Consider
the problem

y′(t)= e−γt
∣
∣yt

∣
∣

(t+ 1)(t+ 2)
(
1 +

∣
∣yt

∣
∣) , a.e. t ∈ J := [0,∞)− {t1, t2, . . .

}
,

y
(
t+k
)− y

(
t−k
)= bk y

(
t−k
)
, k = 1,2, . . . ,

y(t)= φ(t), t ∈ (−∞,0],

(5.1)

where γ > 0 is a constant and bk > 0 for k = 1,2, . . . . Let

�= {ψ : (−∞,0]−→Rn | ψ is continuous everywhere except for a countable number of

points t̄ at which ψ(t̄−), ψ(t̄+) ∃,ψ(t̄−)= ψ(t̄)
}
.

(5.2)

Let

Bγ =
{
y ∈� : lim

θ−→−∞
eγθ y(θ) exists in Rn

}
(5.3)

with the norm in Bγ given by

‖y‖γ = sup
−∞<θ≤0

eγθ
∥
∥y(θ)

∥
∥. (5.4)

Let y : (−∞,∞)→Rn be such that y0 ∈ Bγ; then

lim
θ−→−∞

eγθ yt(θ)= lim
θ−→−∞

eγθ y(t+ θ)= lim
θ−→−∞

eγ(θ−t)y(θ)= e−γt lim
θ−→−∞

eγθ y0(θ) <∞.
(5.5)

Hence, yt ∈ Bγ.
Next, we prove that |y(t)| ≤H‖yt‖Bγ and

∥
∥yt

∥
∥≤ K(t)sup

{∥∥y(s)
∥
∥ : 0≤ s≤ t}+M(t)

∥
∥y0

∥
∥
γ, (5.6)

where ‖yt(θ)‖ = ‖y(t+ θ)‖, K(t)≡M(t)≡ 1, and H = 1. Now, if θ + t ≤ 0, we have

∥
∥yt(θ)

∥
∥≤ sup

{∥∥y(s)
∥
∥ :−∞ < s≤ 0

}
. (5.7)

For t+ θ ≥ 0, we see that

∥
∥yt(θ)

∥
∥≤ sup

{∥∥y(s)
∥
∥ : 0 < s≤ t}. (5.8)
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Thus, for all t+ θ ∈R, we obtain

∥
∥yt(θ)

∥
∥≤ sup

{∥∥y(s)
∥
∥ :−∞ < s≤ 0

}
+ sup

{∥∥y(s)
∥
∥ : 0≤ s≤ t}. (5.9)

Then,

∥
∥yt

∥
∥
γ ≤

∥
∥y0

∥
∥
γ + sup

{∥∥y(s)
∥
∥ : 0≤ s≤ t}. (5.10)

Now (Bγ,‖ · ‖) is a Banach space and Bγ will serve as the phase space for our problem.
We see that the function f satisfies

∣
∣ f (t,x)

∣
∣= e−γt|x|

(t+ 1)(t+ 2)
(
1 + |x|) ≤

1
(t+ 1)(t+ 2)

= p(t),

∫∞

0
p(t)dt =

∫∞

0

1
(t+ 1)(t+ 2)

dt = ln2.

(5.11)

Let x, y ∈ Bγ; then,

∣
∣ f (t,x)− f (t, y)

∣
∣= e−γt

(t+ 1)(t+ 2)

∣
∣
∣
∣
|x|

1 + |x| −
|y|

1 + |y|
∣
∣
∣
∣=

e−γt
∣
∣|x|− |y|∣∣

(t+ 1)(t+ 2)
(
1 + |x|)(1 + |y|)

≤ e−γt|x− y|
(t+ 1)(t+ 2)

(
1 + |x|)(1 + |y|) ≤

‖x− y‖Bγ
(t+ 1)(t+ 2)

.

(5.12)

Hence, the hypotheses of Theorem 3.3 are satisfied, so if
∑∞

k=1 bk < 1, then the problem
(5.1) has a unique solution.
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