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We obtain sufficient conditions for oscillation of all solutions of the neutral impulsive dif-
ference equation with continuous variable Δτ(y(t) +P(t)y(t−mτ)) +Q(t)y(t− lτ)= 0,
t ≥ t0− τ, t �= tk, y(tk + τ)− y(tk)= bk y(tk), k ∈N(1), where Δτ denotes the forward dif-
ference operator, that is, Δτz(t)= z(t+ τ)− z(t), P(t)∈ C([t0− τ,∞),R ), Q(t)∈ C([t0−
τ,∞),(0,∞)), m, l are positive integers, τ > 0 and bk are constants, 0≤ t0 < t1 < t2 < ··· <
tk < ··· with limk→∞ tk =∞.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let R denote the set of all real numbers. For any a∈R, defineN(a)= {a,a+ 1,a+ 2, . . .}.
For any t,τ ∈R, r ∈N(1), define N(t− rτ, t− τ)= {t− rτ, t− (r− 1)τ, . . . , t− τ}.

Consider the neutral impulsive difference equation with continuous variable

Δτ
(
y(t) +P(t)y(t−mτ)

)
+Q(t)y(t− lτ)= 0, t ≥ t0− τ, t �= tk,

y
(
tk + τ

)− y
(
tk
)= bk y

(
tk
)
, k ∈N(1),

(1.1)

where Δτ denotes the foreward difference operator, that is, Δτz(t)= z(t+ τ)− z(t), P(t)∈
C([t0− τ,∞),R), Q(t)∈ C([t0− τ,∞),(0,∞)), m, l are positive integers, τ > 0 and bk are
constants, 0 ≤ t0 < t1 < t2 < ··· < tk < ··· with limk→∞ tk = ∞. Set l0 = max{m, l}. For
any t0 ≥ 0, let φt0 = {ϕ : [t0− (l0 + 1)τ, t0− τ]→R | ϕ(t) is piecewise continuous on [t0−
(l0 + 1)τ, t0− τ], ϕ(t) is finite for every t ∈ [t0− (l0 + 1)τ, t0− τ], the right and left limits
ϕ(t+) and ϕ(t−) of ϕ(t) exist for every t ∈ (t0− (l0 + 1)τ, t0− τ), and ϕ((t0− (l0 + 1)τ)+)
and ϕ((t0− τ)−) exist}.
Definition 1.1. For given t0 ≥ 0 and ϕ ∈ φt0 , a real-valued function x(t) is said to be a
solution of (1.1) satisfying the initial value condition

x(t)= ϕ(t), t ∈ [t0−
(
l0 + 1

)
τ, t0− τ

]
, (1.2)

if x(t) is defined on [t0− (l0 + 1)τ,∞) and satisfies (1.1) and (1.2).
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2 Oscillation of impulsive difference equations

For given t0 ≥ 0 and ϕ ∈ φt0 , by means of the method of steps, the solution of (1.1)
exists and is unique.

Definition 1.2. A solution of (1.1) is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise, it is called nonoscillatory.

When {tk} = φ, that is, {tk} is an empty set, (1.1) reduces to the neutral difference
equation

Δτ
(
y(t) +P(t)y(t−mτ)

)
+Q(t)y(t− lτ)= 0, t ≥ t0− τ. (1.3)

The oscillatory behavior of difference equations with continuous variable without im-
pulses has been investigated by some authors, see, for example, [1–3, 5, 6]. However, to
the present time, there exists no literature on impulsive delay difference equations with
continuous variable. The purpose of this note is to study the oscillatory behavior of solu-
tions of (1.1). If there is a sequence {mk} of positive integers such that mk →∞ as k→∞
and bmk ≤ −1, then it is easily seen that every solution of (1.1) is oscillatory. Therefore,
we always assume that bk > −1 for all k ∈ N(1). Throughout this note, we will use the
convention

∏

{tk}∩N(t−rτ, t−τ)=φ

(
1 + bk

)−1 ≡ 1,
∏

{tk}∩N(t−rτ, t−τ)=φ

(
1 + bk

)≡ 1, (1.4)

where φ is an empty set and r ∈N(1).

2. Main results

We first introduce two lemmas due to [4]. We give the following hypothesis:
(H) r is an integer, p(n) ≥ 0, n = 0,1,2, . . . , bk > −1, k = 1,2,3, . . . ,{nk} is an infinite

subset of N(1) satisfying n1 < n2 < ··· < nk < ··· with limk→∞nk =∞.

Lemma 2.1. Let (H) hold. Assume that
(i)

limsup
n→∞

∏

n−r≤nk≤n−1

(
1 + bk

)−1
<∞, (2.1)

(ii)

liminf
n→∞

n−1∑

i=n−r,
i �∈{nk}

p(i)
∏

n−r≤nk≤n−1

(
1 + bk

)−1
>
(

r

r + 1

)r+1

. (2.2)

Then the discrete impulsive difference inequality

y(n+ 1)− y(n) + p(n)y(n− r)≤ 0, n∈N(0), n �= nk,

y
(
nk + 1

)− y
(
nk
)≤ bk y

(
nk
)
, k ∈N(1),

(2.3)

has no eventually positive solution.
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Lemma 2.2. Let (H) hold and r ≥ 2. Assume that
(i)

liminf
n→∞

∏

n+1≤nk≤n+r−1

(
1 + bk

)
> 0, (2.4)

(ii)

liminf
n→∞

∏

n+1≤nk≤n+r−1

(
1 + bk

)
<∞, (2.5)

(iii)

liminf
n→∞

n+r−1∑

i=n+1
i �∈{nk}

p(i)
∏

n+1≤nk≤n+r−1

(
1 + bk

)
>
(
r− 1
r

)r
. (2.6)

Then the discrete impulsive difference inequality

y(n+ 1)− y(n)− p(n)y(n+ r)≤ 0, n∈N(0), n �= nk,

y
(
nk + 1

)− y
(
nk
)≤ bk y

(
nk
)
, k ∈N(1),

(2.7)

has no eventually negative solution.

Theorem 2.3. Let tk+1 − tk =mτ, bk > 0, and (1 + bk)P(tk) = (1 + bk−1)P(tk + τ) for k =
1,2,3, . . . ,−1 < P(t) < 0 with inf t∈[t0−τ,∞)P(t) >−1, Q(t)∈ C([t0− τ,∞),(0,∞)). If

liminf
t→∞

∑

i∈N(t−lτ,t−τ)
i �∈{tk}

Q(i)
∏

tk∈N(t−lτ,t−τ)

(
1 + bk

)−1
>
(

l

l+ 1

)l+1

, (2.8)

then every solution of (1.1) oscillates.

Proof. Suppose, on the contrary, there is a solution y(t) of (1.1) which is eventually
nonoscillatory. If y(t) is a solution of (1.1), then −y(t) is a solution of (1.1). Without
loss of generality, we assume that y(t) > 0 for t ≥ tN − (l0 + 1)τ ≥ t0− τ, where N is some
positive integer. Let

z(t)= y(t) +P(t)y(t−mτ), t ≥ tN − τ. (2.9)

For any t ≥ tN − τ, by (1.1) and (1 + bk)P(tk) = (1 + bk−1)P(tk + τ) for k = 1,2,3, . . . , we
have

Δτz(t)=−Q(t)y(t− lτ) < 0 for t �∈ {tk
}

, (2.10)

z
(
tk + τ

)− z
(
tk
)= bkz

(
tk
)

for k =N ,N + 1,N + 2, . . . . (2.11)

From (2.10), it follows that z(t) strictly decreases on {tk + τ, tk + 2τ, . . . , tk + (m− 1)τ, tk+1}
(k = N ,N + 1,N + 2, . . .), and noting (2.11), the seqence {z(tN + nτ)}∞n=1 has only two



4 Oscillation of impulsive difference equations

cases: eventually positive or eventually negative. If {z(tN +nτ)}∞n=1 is eventually negative,
noticing

z
(
tN +nτ

)= y
(
tN +nτ

)
+P
(
tN +nτ

)
y
(
tN + (n−m)τ

)
, n= 1,2,3, . . . , (2.12)

then y(tN +nτ) <−P(tN +nτ)y(tN + (n−m)τ) eventually holds for n. It follows that 0<
y(tN +(n+ jm)τ)<−P(tN + (n+ jm)τ)y(tN + (n+ ( j− 1)m)τ)<P(tN + (n+ jm)τ)P(tN +

(n + ( j − 1)m)τ)y(tN + (n + ( j − 2)m)τ) < ··· < (−1) j
∏ j

i=1P(tN + (n + i)τ)y(tN + nτ).
By condition −1 < P(t) < 0 with inf t∈[t0−τ,∞)P(t) > −1, we have y(tN + (n + jm)τ) →
0( j →∞), that is, lim j→∞ y(tN + jmτ)= 0. Noticing (2.12), we get lim j→∞ z(tN + jmτ)=
0. This is a contradiction with the condition that {z(tN + nτ}∞n=1 is eventually negative
and strictly decreases. If {z(tN +nτ)}∞n=1 is eventually positive, then

y
(
tN +nτ

)
> z
(
tN +nτ

)
, z

(
tN +nτ

)
> 0 for large n. (2.13)

Let tN+ j = tN + njτ, j = 1,2,3, . . . . By (1.1), (2.9), and (2.11)–(2.13), we conclude that
{z(tN + nτ}∞n=1 is an eventually positive solution of the following impulsive difference
inequality:

Δz
(
tN +nτ

)
+Q

(
tN +nτ

)
z
(
tN + (n− l)τ

)
< 0, n≥ 1, n �= nj ,

z
(
tN +

(
nj + 1

)
τ
)− z

(
tN +njτ

)= bN+ j z
(
tN +njτ

)
, j = 1,2,3, . . . ,

(2.14)

where Δ is the forward difference operator with respect to n. On the other hand, by con-
dition (2.8), we have

liminf
n→∞

n−1∑

i=n−l
i �∈{nj}

Q
(
tN + iτ

) ∏

n−l≤nj≤n−1

(
1 + bj

)−1
>
(

l

l+ 1

)l+1

. (2.15)

Employing Lemma 2.1, we conclude that (2.14) has no eventually positive solution. This
is a contradiction. Thus, the proof is complete. �

Theorem 2.4. Let tk+1 − tk ≡mτ, bk > 0, (1 + bk)P(tk) = (1 + bk−1)P(tk + τ) for k = 1,2,
3, . . . , m> l+ 1, P(t)≤−1, Q(t)∈ C([t0− τ,∞),(0,∞)). If

liminf
t→∞

∑

i∈N(t−lτ,t−τ)
i �∈{tk}

Q(i)
∏

tk∈N(t−lτ,t−τ)

(1 + bk)−1 >
(

l

l+ 1

)l+1

, (2.16)

liminf
t→∞

∑

i∈N(t+τ,t+(m−l−1)τ)
i �∈{tk}

Q(i)
−P(i+ (m− l)τ

)
∏

tk∈N(t+τ,t+(m−l−1)τ)

(
1 + bk

)
>
(
m− l− 1
m− l

)m−l
,

(2.17)

then every solution of (1.1) oscillates.

Proof. Suppose, on the contrary, there is a solution y(t) of (1.1) which is eventually
nonoscillatory. If y(t) is a solution of (1.1), then −y(t) is a solution of (1.1). Without
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loss of generality, we assume that y(t) > 0 for t ≥ tN − (l0 + 1)τ ≥ t0− τ, where N is some
positive integer. Set

z(t)= y(t) +P(t)y(t−mτ), t ≥ tN − τ. (2.18)

For any t ≥ tN − τ, by (1.1), we get

Δτz(t)=−Q(t)y(t− lτ) < 0 for t �∈ {tk}, (2.19)

z
(
tk + τ

)− z
(
tk
)= bkz

(
tk
)
, k =N ,N + 1, . . . . (2.20)

From (2.19), it follows that z(t) strictly decreases on {tk + τ, tk + 2τ, . . . , tk + (m− 1)τ, tk+1}
(k = N ,N + 1,N + 2, . . .), and noting (2.20), the sequence {z(tN + nτ)}∞n=1 has only two
cases: eventually positive or eventually negative. If {z(tN +nτ)}∞n=1 is eventually positive,
noticing

z
(
tN +nτ

)= y
(
tN +nτ

)
+P(t)y

(
tN + (n−m)τ

)
, n= 1,2,3, . . . , (2.21)

then

y
(
tN +nτ

)
> z
(
tN +nτ

)
, z

(
tN +nτ

)
> 0 for large n. (2.22)

Let tN+ j = tN + njτ, j = 1,2,3, . . . . By (1.1), (2.18), and (2.20)–(2.22), we conclude that
{z(tN + nτ)}∞n=1 is an eventually positive solution of the following impulsive difference
inequality:

Δz
(
tN +nτ

)
+Q

(
tN +nτ

)
z
(
tN + (n− l)τ

)
< 0, n≥ 1, n �= nj ,

z
(
tN +

(
nj + 1

)
τ
)− z

(
tN +njτ

)= bN+ j z
(
tN +njτ

)
, j = 1,2,3, . . . ,

(2.23)

where Δ is the forward difference operator with respect to n. On the other hand, by con-
dition (2.16), we have

liminf
n→∞

n−1∑

i=n−l
i �∈{nj}

Q
(
tN + iτ

) ∏

n−l≤nj≤n−1

(
1 + bj

)−1
>
(

l

l+ 1

)l+1

. (2.24)

Employing Lemma 2.1, we conclude that (2.23) has no eventually positive solution. This
is a contradiction. If {z(tN +nτ)}∞n=1 is eventually negative, by simple calculation, we find
that z(t) satisfies

Δτz(t) +P(t− lτ)
Q(t)

Q(t−mτ)
Δτz(t−mτ) +Q(t)z(t− lτ)= 0, t ≥mτ, t �= tk,

z
(
tk + τ

)− z
(
tk
)= bN+ j z

(
tk
)
, k = 2,3, . . . .

(2.25)
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Let tN+ j = tN +njτ for j = 1,2,3, . . . , then {z(tN +nτ)}∞n=1 satisfies

Δz
(
tN +nτ

)
+P
(
tN +nτ − lτ

) Q
(
tN +nτ

)

Q
(
tN + (n−m)τ

)Δz
(
tN + (n−m)τ

)

+Q
(
tN +nτ

)
z
(
tN + (n− l)τ

)= 0, n≥m, n �= nj ,

z
(
tN +

(
nj + 1

)
τ
)− z

(
tN +njτ

)= bN+ j z
(
tN +njτ

)
, j = 2,3, . . . ,

(2.26)

where Δ is the forward difference operator with respect to n. Noticing Δz(tN +nτ) < 0 for
n �= nj , {z(tN +nτ)}∞n=1 eventually satisfies the inequality

P
(
tN + (n− l)τ

) Q
(
tN +nτ

)

Q
(
tN + (n−m)τ

)Δz
(
tN + (n−m)τ

)

+Q
(
tN +nτ

)
z
(
tN + (n− l)τ

)
> 0, n≥m, n �= nj ,

z
(
tN +

(
nj + 1

)
τ
)− z

(
tN +njτ

)= bN+ j z
(
tN +njτ

)
, j = 2,3, . . . .

(2.27)

And (2.27) is equivalent to the inequality

Δz
(
tN +nτ

)
+

Q
(
tN +nτ

)

P
(
tN + (n+m− l)τ

)z
(
tN + (n+m− l)τ

)
< 0, n≥m, n �= nj ,

z
(
tN +

(
nj + 1

)
τ
)− z

(
tN +njτ

)= bN+ j z
(
tN +njτ

)
, j = 2,3, . . . .

(2.28)

So {z(tN +nτ)}∞n=1 is an eventually negative solution of (2.28). On the other hand, notic-
ing the condition (2.17), we have

liminf
t→∞

n+m−l−1∑

i=n+1
i �∈{nj}

Q
(
tN + iτ

)

−P(tN + (i+m− l)τ
)

∏

n+1≤nj≤n+m−l−1

(
1 + bj

)
>
(
m− l− 1
m− l

)m−l
.

(2.29)

By Lemma 2.2, (2.28) has no eventually negative solution. This is a contradiction. Thus,
the poof is complete. �
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