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Our goal is to establish the theorems of existence and multiple of positive entire solutions
for a class quasilinear elliptic equations in RN with the Schauder-Tychonoff fixed point
theorem as the principal tool. In many articles, the theorems of existence and multiple
of positive entire solutions for a class semilinear elliptic equations are established. The
results of the semilinear equations are extended to the quasilinear ones and the results of
semilinear equations are developed.
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1. Introduction

In this paper, we consider the existence of multiple positive entire solutions for a class of
quasilinear elliptic equation

div
(|∇u|p−2∇u)= f (x,u,∇u), x ∈RN , (1.1)

where p > 1.
Equations of the above form are mathematical models occurring in the studies of the

p-Laplace equation, generalized reaction-diffusion theory, non-Newtonian fluid theory
[7], and the turbulent flow of a gas in porous medium [2]. In the non-Newtonian fluid
theory, the quantity p is characteristic of the medium. Media with p > 2 are called dila-
tant fluids and those with p < 2 are called pseudoplastics. If p = 2, they are Newtonian
fluids.

By a positive entire solution of (1.1) we mean a function u ∈W1,p(RN )∩ C1(RN )
which satisfies (1.1) at every point of RN in a weak sense with u > 0 in RN (see [4] and
references therein), that is u∈W1,p(RN )∩C1(RN ) which satisfies

−
∫

RN
|∇u|p−2∇u ·∇ψdx =

∫

RN
f (x,u,∇u)ψdx ∀ψ ∈ C∞0

(
RN

)
(1.2)

and u > 0 in RN .
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2 Multiple entire solutions for quasilinear elliptic equations

The existence and nonexistence of entire solutions, existence of multiple positive entire
solutions of (1.1) for f (x,u,∇u)= q(x) f (u) or f (x,u,∇u)=− f (x,u), have been studied
in previous papers (see [22, 24, 25]). Some other problems have also been treated by many
other authors. See, for example, [5, 6, 8, 13–15, 18, 23, 26, 27].

When f : (0,∞)→ (0,∞) and q :RN → (0,∞) are continuous functions, and

∫∞

1

(∫ u

0
f (s)ds

)−1/p

du=∞, (1.3)

it has been shown in [22] that there exist entire radially symmetric solutions of the prob-
lem

div
(|∇u|p−2∇u)= q(x) f (u), x ∈RN . (1.4)

On the other hand, it was shown in [24] that the problem

div
(|∇u|p−2∇u)+ f (x,u)= 0, x ∈RN , (1.5)

possesses infinitely many positive entire solutions. When f (x,u) defined on RN is lo-
cally Hölder continuous in x and is locally Lipschitz continuous in u; there exist a locally
Hölder continuous function ψ(r)≥ 0 on [0,∞),

∫∞
0 (
∫ s

0 ψ(t)dt)1/(p−1)ds <∞, and a locally
Lipschitz continuous function F(u) > 0 on (0,∞) such that

f (x,u)≤ ψ(|x|)F(u), (x,u)∈RN × (0,∞), (1.6)

and limu→0(F(u)/up−1)= 0.
Moreover, it was also shown in [25] that the problem

div
(|∇u|p−2∇u)+ q(x)u−γ = 0, x ∈RN , (1.7)

has a positive entire solution if 1 < p < N , 0≤ γ < p− 1, and q(x)∈ C(R+) satisfy
(A1) wherever q(x0) = 0, ∃r > 0 such that q(x) > 0 on ∂B(x0,r), where B(x0,r) is the

ball of radius r centered at x0;
(A2) for any 0 < ε < (N − p)(p− 1−|γ|)/(p− 1),

∫∞

1
r p+ε−1+[(N−p)|γ|/(p−1)]m(r)dr <∞; (1.8)

(A3) for r ∈ (0,1),

q(r)=O(r−δ), δ < 1. (1.9)

Motivated by the results of the above-cited papers, we further study the existence of
multiple positive entire solutions for (1.1), the results of the semilinear equations are
extended to the quasilinear ones. We can find the related results for p = 2 in [10, 11, 17,
20, 21]. The main differences between p = 2 and p �= 2 are known in [5, 6]. When p = 2,
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it is well known that all positive solutions in C2(BR) of the problem

�u+ f (u)= 0 in BR,

u(x)= 0 on ∂BR
(1.10)

are radially symmetric solutions for very general f (see [3]). Unfortunately, this result
does not apply to the case p �= 2. Kichenassamy and Smoller showed that there exist many
positive nonradial solutions of the above problem for some f (see [9]). The major stum-
bling block in the case of p �= 2 is that certain nice features inherent to the case p = 2
seem to be lost or at least difficult to verify. In this paper, we obtain the existence of mul-
tiple positive entire solutions for a class of f , extended to the results in [11, 20, 21] and
complement the results by [22, 24, 25].

2. Some preliminary lemmas

Before we prove the main results, we need the following definitions and lemmas.

Definition 2.1. u∈W1,p(RN )∩C1(RN ) is called a supersolution to problem (1.1) if

−
∫

RN
|∇u|p−2∇u ·∇ψdx ≥

∫

RN
f (x,u,∇u)ψdx ∀ψ ∈ C∞0

(
RN

)
(2.1)

and u > 0 in RN . Similarly, u ∈W1,p(RN )∩C1(RN ) is called a subsolution to problem
(1.1) if

−
∫

RN
|∇u|p−2∇u ·∇ψdx ≤

∫

RN
f (x,u,∇u)ψdx ∀ψ ∈ C∞0

(
RN

)
(2.2)

and u > 0 in RN .
For (1.1), the following hypotheses on f are adopted.
(A) f (x,u,v) is a continuous function in RN ×R+×RN and locally Lipschitz continu-

ous.
(B) For every bounded domain Ω⊂RN , for any M > 0, ∃ρ(Ω,M) > 0 such that

∣
∣ f (x,u,v)

∣
∣ < ρ(Ω,M)

(
1 + |v|p), x ∈Ω, 0≤ u≤M, v ∈RN . (2.3)

(C) There exist nonnegative continuous functions defined in (R+)3, F1(r,u,v), and
F2(r,u,v), which are local Lipschitz continuous and satisfy

F1
(|x|,u,|v|)≤ f (x,u,v)≤ F2

(|x|,u,|v|), (2.4)

where (x,u,v)∈RN ×R+×RN , |x| = (
∑n

i=1 x
2
i )1/2.

Lemma 2.2. Let u,u∈W1,p(RN )∩C1(RN ), respectively, be supersolution and subsolution
of (1.1) onRN with u(x)≤ u(x) onRN , and let (A), (B) hold. Then, (1.1) possesses an entire
solution u(x) with u(x)≤ u(x)≤ u(x) on RN .
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Proof. Let BR be the ball with radius R in RN . Consider the boundary value problem

div
(|∇u|p−2∇u)= f (x,u,∇u), x ∈ BR, (2.5)

u|∂BR = g, (2.6)

where g(x) is a function that satisfies u(x) ≤ g(x) ≤ u(x). For (2.5), (2.6), u(x) is still a
supersolution (for every R) and u(x) is still a subsolution (for every R), and u(x)≥ u(x)
in BR. By C1,α(BR) estimates in [13] and monotonic iteration [16] or [1, 8], one concludes
that there exists u ∈ C1(BR), which is a weak solution of (1.1) with u(x) ≤ uR(x) ≤ u(x)
in BR.

Now, we want to apply elliptic interior estimates together with a diagonal process to
conclude that {uR : R≥ 1} has a subsequence {uRk : Rk ↑ ∞} such that {uRk} converges to
a function u in RN (pointwise) and this convergence is in C1 on every compact set in RN .
(Therefore, u∈ C1 and div(|∇u|p−2∇u)= f (x,u,∇u) with u(x)≤ u(x)≤ u(x), and this
concludes the proof.)
Step 1. On B2,{uR : R≥ 2} is uniformly bounded by u(x) and u(x). Since both u(x) and
u(x) are bounded functions on B2, there exists M > 0 such that ‖uR(x)‖L∞(B2) ≤M for all
R≥ 2.

From (1.1), uR satisfies
∫

B2

∣
∣∇uR

∣
∣p =−

∫

B2

f uR. (2.7)

Therefore,
∫

B2

∣
∣∇uR

∣
∣p ≤M(measB2

)1/q
C1
∥
∥∇uR

∥
∥
p. (2.8)

Here 1/q+ 1/p = 1, and C1 is the Sobolev embedding constant. So, ‖uR‖1,p ≤ C2. When

1 < p < N , the embedding of W
1,p
0 (B2) in LNp/(N−p)(B2) implies that uR ∈ LNp/(N−p)(B2).

Applying [12, Theorem 7.1, pages 286, 287], we obtain the estimate

sup
{∣∣uR

∣
∣; x ∈ B2

}≤ C3, (2.9)

here C3 = C3(‖ f ‖0). If p ≥N , we get (2.9) from the Sobolev embedding theorem. Using
[12, Theorem 1.1, page 251], we see that uR belongs to Cα(B2) for some 0 < α < 1, and

∥
∥uR

∥
∥
Cα ≤ C4, (2.10)

here C4 is determined by C3. By [19, Proposition 3.7, page 806] we also know that uR
belongs to C1,α(B2) and

∥
∥uR

∥
∥
C1,α ≤ C5, (2.11)

here C5 is determined by C4.
From the arguments above we see that there exists C > 0 such that

∥
∥uR

∥
∥
C1+α(B1) ≤ C ∀R≥ 2. (2.12)
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Since the embedding C1+α(B1)→ C1(B1) is compact, there exists a sequence denoted by
{uR1 j} j=1,... (where R1 j ↑ ∞), which converges in C1(B1). Let u1(x) = lim j→∞uR1 j (x) for
x ∈ B1; then u1 is a solution of (2.5) with u(x)≤ u1 ≤ u(x).
Step 2. Repeat Step 1 up to the existence of the sequence {uR1 j} j=1,... to get a subsequence
{uR2m}m=1,2,... converging in C1(B2) to a limit u2. Then likewise u2 is a solution of (2.5),
(2.6) and u2|B1 = u1. Repeat Step 1 again on B3, . . . , and so forth. In this way, we obtain
a sequence {uRk j} j=1,2,... which converges in C1(Bk) and is a subsequence of {uR(k−1) j}. Let
uk = lim j→∞uRk j , then uk is a solution of (2.5), (2.6) in Bk and uk|Bk−1 = uk−1.
Step 3. By a diagonal process, {uRmm}m=1,2,... is a subsequence of {uRk j} j=1,2,... for every k.
Thus, on Bk for each k we have

lim
m→∞uRmm = uk. (2.13)

So, if we define u(x)= limm→∞uRmm(x), then u(x) satisfies

div
(|∇u|p−2∇u)= f (x,u,∇u), x ∈RN , (2.14)

and u(x)≤ u(x)≤ u(x), since u(x)≤ uk(x)≤ u(x) for every k. This completes the proof
of Lemma 2.2. �

Lemma 2.3. (i) Let all a,b > 0 and p ≥ 2, then

∣
∣a1/(p−1)− b1/(p−1)

∣
∣≤ 2

|a− b|
a(p−2)/(p−1) + b(p−2)/(p−1) . (2.15)

(ii) Let all a,b ≥ 0 and 1 < p < 2, then

∣
∣a1/(p−1)− b1/(p−1)

∣
∣≤ 21/(p−1)|a− b|(a(2−p)/(p−1) + b(2−p)/(p−1)). (2.16)

3. Main results

In this section we give the following main results.

Theorem 3.1. Assume that f satisfies (A)–(C) and the following conditions hold.
(I) F1(r,u,v) and F2(r,u,v) are nonincreasing functions in u ∈ R+, nondecreasing in

v ∈R+ for each r ≥ 0.

(II)(a) For 1 < p < 2 and fixed r ∈ R+, F
1/(p−1)
2 (r,λ,mλ/p)/λ is nonincreasing for λ ∈

(0,∞) and satisfies that

lim
λ→+∞

F
1/(p−1)
2 (r,λ,mλ/p)

λ
= 0, (3.1)

where m= ((2− p)/(N − p+ 1))(2−p)/(p−1).
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(b) For 2 ≤ p ≤ N + 1 and fixed r ∈ R+, F
p−1
2 (r,λ,m1λ/p)/λ is nonincreasing for

λ∈ (0,∞) and satisfies that

lim
λ→+∞

F
p−1
2

(
r,λ,m1λ/p

)

λ
= 0, (3.2)

where m1 = ((p− 2)/(N(p− 1)− 1))(p−2)/(p−1)2
.

(III)(a) For 1 < p < 2, there exists a positive constant c > 0 such that

∫∞

0
K(s)F

1/(p−1)
2

(
s,c,

mc

p

)
ds <∞, (3.3)

where

K(s)=
⎧
⎨

⎩

1 if 0≤ s < 1,

s1/(p−1) if s > 1.
(3.4)

(b) For 2≤ p ≤N + 1, there exists a positive constant c such that

∫∞

0
K(s)F

p−1
2

(
s,c,

m1c

p

)
ds <∞, (3.5)

where

K(s)=
⎧
⎨

⎩

1 if 0≤ s < 1,

sp−1 if s > 1,
(3.6)

then (1.1) has infinitely many positive entire solutions u(x).

Proof. It is easy to see that under conditions (A)–(C) a positive solution u(x) of the equa-
tion

div
(|∇u|p−2∇u)= F1

(|x|,u,|∇u|), x ∈RN , (3.7)

is a supersolution of (1.1) in RN ; and a positive solution u of the equation

div
(|∇u|p−2∇u)= F2

(|x|,u,|∇u|), x ∈RN , (3.8)

is a subsolution of (1.1) in RN . Therefore, we only prove that (3.7), (3.8) have solutions
and satisfy u(x)≤ u(x).

We first consider (3.7), in view of the spherical symmetry of F1(|x|,v,|∇v|), it is nat-
ural to seek spherically symmetric solutions of (3.7), and thus we are led to the one-
dimensional initial value problems

(
Φp(y′)

)′
+
N − 1
r

Φp(y′)= F1
(
r, y,|y′|), r > 0, (3.9)

y(0)= η, y′(0)= 0, (3.10)
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where Φp(y) = |y|p−2y, and η is a real number which is determined below. If y(r) is a
solution of (3.9) on (0,∞), then v(x)= y(|x|) is a supersolution of (1.1) in RN .

It can be proved that the problem (3.9), (3.10) is equivalent to the following integral
equation:

y(r)= η+
∫ r

0

(∫ s

0

(
t

s

)N−1

F1
(
t, y,

∣
∣y′(t)

∣
∣)dt

)1/(p−1)

ds. (3.11)

Therefore we only consider integral equation (3.11). To prove that (3.11) has a solution,
we consider two cases here: (i) 1 < p ≤ 2 and (ii) p > 2.

(i) For 1 < p < 2, condition (II) implies that

K(s)
F

1/(p−1)
2 (s,λ,mλ/p)

λ
≤ K(s)F

1/(p−1)
2

(
s,c,

mc

p

)
, λ≥ c, (3.12)

where c is defined in (III), and for all s∈ (0,∞), as λ→∞, we have

K(s)
F

1/(p−1)
2 (s,λ,mλ/p)

λ
−→ 0. (3.13)

According to (III), by Lebesgue dominated convergence theorem, we have

1
λ

∫∞

0
K(s)F

1/(p−1)
2

(
s,λ,

mλ

p

)
ds−→ 0 (λ−→∞) (3.14)

from (a) of (II) implying that

1
λ

∫∞

0
K(s)F

1/(p−1)
1

(
s,λ,

mλ

p

)
ds−→ 0 (λ−→∞) (3.15)

for all 1 < p < 2. From (3.15), we can choose sufficiently large constants η > 0, such that
∫∞

0
K(s)F

1/(p−1)
1

(
s,η,

mη

p

)
ds <

η

p
. (3.16)

Let Y be a set defined by

Y =
{
y ∈ C1[0,∞) | η ≤ y(r)≤ 2η, 0≤ y′(r)≤ mη

p

}
. (3.17)

Clearly, Y is a closed convex subset of C1[0,∞). Furthermore, the mapping F : Y →
C1[0,∞) is defined by

Fy(r)= η+
∫ r

0

(∫ s

0

(
t

s

)N−1

F1
(
t, y,

∣
∣y′(t)

∣
∣)dt

)1/(p−1)

ds, r ≥ 0, (3.18)

where the value at 0 as well as the following limit supplement define

Fy(0)= lim
r→0

[

η+
∫ r

0

(∫ s

0

(
t

s

)N−1

F1
(
t, y,

∣
∣y′(t)

∣
∣)dt

)1/(p−1)

ds

]

= η. (3.19)
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Next we will prove step by step that F is a continuous operator, mapping Y into a compact
subset of Y . The following propositions are essential.

Proposition 3.2. F is a mapping from Y to Y .

In fact, if all y ∈ Y , it follows from (3.16) and (3.18) that

η ≤ Fy(r)≤ η+
∫ r

0
s1/(p−1)F

1/(p−1)
1

(
s,η,

mη

p

)
ds

≤ η+
∫ r

0
K(s)F

1/(p−1)
1

(
s,η,

mη

p

)
ds≤ 2η,

(3.20)

and from (3.18), we have

0 < (Fy)′(r)=
(∫ r

0

(
t

r

)N−1

F1
(
t, y,|y′|)dt

)1/(p−1)

≤
[(∫ r

0

(
t

r

)(N−1)/(2−p)

dt
)2−p(∫ r

0
F

1/(p−1)
1

(
t, y,|y′|)dt

)p−1
]1/(p−1)

=mr(2−p)/(p−1)
∫ r

0
F

1/(p−1)
1

(
t, y,|y′|)dt

≤m
∫∞

0
K(s)F

1/(p−1)
1

(
s,η,

mη

p

)
ds≤ mη

p
(3.21)

for r > 0. It follows from (3.21) that

lim
r→0+

[
(Fy)′(r)

]p−1 = lim
r→0+

∫ r
0 t

N−1F1
(
t, y,|y′|)dt

rN−1
= 0, (3.22)

then limr→0+ (Fy)′(r)= 0. Therefore, we have

(Fy)′(0)= lim
r→0+

[
Fy(r)−Fy(0)

]

r
= lim

ξ→0+
(Fy)′(ξ)= 0; (3.23)

and then let

(∫ r

0

(
t

r

)N−1

F1
(
t, y,|y′|)dt

)1/(p−1)∣∣
∣
∣
r=0
= 0. (3.24)

So (3.18) holds for r ≥ 0, and we have

0≤ (Fy)′(r)≤ mη

p
, r ≥ 0. (3.25)
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Proposition 3.3. F is continuous.

Let {yk} be a sequence in Y converging to y ∈ Y . By (3.18) and Lemma 2.3, we have

∣
∣Fyk(r)−Fy(r)

∣
∣

≤
∣
∣
∣
∣
∣

∫ r

0

[
Φ−1
p

(∫ s

0

(
t

s

)N−1

F1
(
t, yk,

∣
∣y′k

∣
∣)dt

)
−Φ−1

p

(∫ s

0

(
t

s

)N−1

F1
(
t, y,|y′|)dt

)]
ds

∣
∣
∣
∣
∣

≤21/(p−1)

∣
∣
∣
∣
∣

∫∞

0

(∫ s

0

∣
∣F1

(
t, yk,

∣
∣y′k

∣
∣)−F1

(
t, y,|y′|)∣∣dt

)
(
A(2−p)/(p−1) +B(2−p)/(p−1))ds

∣
∣
∣
∣
∣,

(3.26)

where

A=
∫ s

0

(
t

s

)N−1

F1
(
t, yk,

∣
∣y′k

∣
∣)dt, B =

∫ s

0

(
t

s

)N−1

F1
(
t, y,|y′|)dt. (3.27)

Note that Ψk(s) = 21/(p−1)
∫ s

0 |F1(t, yk,|y′k|) − F1(t, y,|y′|)|dt(A(2−p)/(p−1) + B(2−p)/(p−1))
satisfies

Ψk(s)≤ 2(p+1)/(p−1)
∫ s

0
F

1/(p−1)
1

(
t,η,

mη

p

)
dt, (3.28)

Ψk(s)→ 0 pointwise on [0,∞) as k→∞. From the Lebesgue dominated convergence the-
orem, it follows that Fyk(r) converges to Fy(r) uniformly on [0,∞) as k→∞, and hence
Fyk(r)→ Fy(r) in C[0,∞) as k→∞. On the other hand,

∣
∣(Fyk

)′
(r)− (Fy)′(r)

∣
∣

=
∣
∣
∣
∣
∣Φ

−1
p

(∫ s

0

(
t

s

)N−1

F1
(
t, yk,

∣
∣y′k

∣
∣)dt

)
−Φ−1

p

(∫ s

0

(
t

s

)N−1

F1
(
t, y,|y′|)dt

)∣∣
∣
∣
∣.

(3.29)

Similarly, we have (Fyk)′(r) converging to (Fy)′(r) uniformly on [0,∞) as k→∞. Thus,
F is continuous.

Proposition 3.4. FY is relatively compact.

It suffices to show that {Fy(r) | y ∈ Y} and {(Fy)′(r) | y ∈ Y} are uniformly bounded
and equicontinuous on every subset [0,M] ⊂ [0,∞). From (3.20), (3.21), the uniform
boundedness is obvious, so we only prove that {(Fy)′(r) | y ∈ Y} is equicontinuous in
[0,M].

From (3.21), we obtain

(Fy)′(r)=
(∫ r

0

(
s

r

)N−1

F1
(
s, y(s),

∣
∣y′(s)

∣
∣)ds

)1/(p−1)

,

(
Φp
(
(Fy)′(r)

))′ = F1
(
r, y(r),

∣
∣y′(r)

∣
∣)− (N − 1)

∫ r

0
sN−1r−NF1

(
s, y,

∣
∣y′(s)

∣
∣)ds,

(3.30)
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then

∣
∣(Φp

(
(Fy)′(r)

))′∣∣≤ F1

(
r,η,

mη

p

)
+
N − 1
r

∫ r

0
F1

(
s,η,

mη

p

)
ds. (3.31)

From (3.30), we have

lim
r→0+

(
Φp
(
(Fy)′(r)

))′ = 1
N
F1
(
0, y(0),

∣
∣y′(0)

∣
∣), (3.32)

then

(
Φp(Fy)′

)′
(0)= lim

r→0+

[
Φp
(
(Fy)′(r)

)−Φp
(
(Fy)′(0)

)]

r
= 1
N
F1
(
0, y(0),

∣
∣y′(0)

∣
∣).

(3.33)

Therefore,

∣
∣(Φp

(
(Fy)′

))′
(0)
∣
∣= 1

N
F1
(
0, y(0),

∣
∣y′(0)

∣
∣)≤ F1

(
0,η,

mη

p

)
. (3.34)

For (3.25), we let

[
N − 1
r

∫ r

0
F1

(
s,η,

mη

p

)
ds
]∣∣
∣
∣
r=0
= (N − 1)F1

(
0,η,

mη

p

)
, (3.35)

and then (3.31) holds for all r ≥ 0, therefore

∣
∣(Φp

(
(Fy)′

)′
(r)
∣
∣≤ F1

(
r,η,

mη

p

)
+
N − 1
r

∫ r

0

F1(s, . . .)
r

ds, r ≥ 0. (3.36)

Consequently, for ((Fy)′(r))′ we have estimates in [0,M]:

max
0≤r≤M

∣
∣Φp

(
(Fy)′(r)

)′∣∣

≤ max
0≤r≤M

F1

(
r,η,

mη

p

)
+ max

0≤r≤M

∣
∣
∣
∣
N − 1
r

∫ r

0
F1

(
s,η,

mη

p

)
ds
∣
∣
∣
∣= LM ,

(3.37)

then

∣
∣Φp

(
(Fy)′

(
r1
))−Φp

(
(Fy)′

(
r2
))∣∣≤ LM

∣
∣r1− r2

∣
∣, r1,r2 ∈ [0,M]. (3.38)

On the other hand,

∣
∣(Fy)′

(
r1
)− (Fy)′

(
r2
)∣∣≤ sup

∣
∣(Φ−1

p

)′
(x)
∣
∣
∣
∣r1− r2

∣
∣, r1,r2 ∈ [0,M], (3.39)

then {(Fy)′(r) | y ∈ Y} is equicontinuous in [0,M].
To prove that FY is relatively compact in Y , we will prove every sequence {Fyk(r)}

which has convergent subsequence in Y . We only need to use Ascoli-Arzela theorem in
turn for the sequence of interval [0,M1]⊂ [0,M2]⊂ ··· ⊂ [0,Mj]⊂ ··· (where Mj →∞
as j →∞), and use the diagonalization argument as in [25]. Thus we are able to apply the
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Schauder-Tychonoff fixed point theorem and conclude that F has a fixed point y in Y .
This fixed point y = y(r) is a solution of (3.9), and so we obtain a supersolution y(x) of
(1.1) in RN defined by y(x)= y(|x|).

(ii) For 2 < p ≤ N + 1, since Φ−1
p �∈ C1(R) (Φ−1

p is the inverse function of Φp(y) =
|y|p−2y), then we consider the perturbation equation

(
rN−1gε(y′)

)′ = rN−1F1
(
r, y,|y′|), (3.40)

y(0)= η, y′(0)= 0, (3.41)

where gε(y)= εy +Φp(y). From g−1
ε ∈ C1(R), and then similarly with (i), we have for all

ε > 0, (3.40), (3.41) has a bounded positive solution yε ∈ C1(R), and similarly with (i),
we have

max
0≤r≤M

∣
∣(gε

((
Fyε

)′
(r)
))′

(r)
∣
∣≤ LM (be independent of ε). (3.42)

From Ascoli-Arzela theorem, we have gε(y′ε)→ v (ε→ 0), where v ∈ C(R). Since ‖y′ε‖0 is
bounded, it follows that Φp(yε)→ v (ε→ 0). Since Φp is R→ R strictly increasing which
implies that y′ε →Φ−1

p (v) (ε→ 0), then we have

yε = η+
∫ r

0
y′ε(s)ds−→ η+

∫ t

0
Φ−1
p

(
v(s)

)
ds= y (ε −→ 0). (3.43)

From (3.40), (3.41), we have yε satisfying

εrN−1y′ε + rN−1Φp
(
y′ε
)= η+

∫ s

0
sN−1F1

(
s, yε, y′ε

)
ds,

yε(0)= η, y′ε(0)= 0,
(3.44)

and then for all r ∈ [0,M], let ε→ 0, y ∈ C1[0,M] a bounded entire solution of (3.7).
Similarly, we consider the initial value problem for (3.8):

(
Φp(z′)

)′
+
N − 1
r

Φp(z′)= F2
(
r,z,|z′|), r > 0,

z(0)= ξ, z′(0)= 0,
(3.45)

where ξ is a real number which is determined below. Further we consider equivalence
integral equation equivalent to (3.45):

z(r)= ξ +
∫ r

0

(∫ s

0

(
t

s

)N−1

F2
(
t,z,|z′|)dt

)1/(p−1)

ds. (3.46)

From (3.14), we can choose sufficiently large constant ξ > 0, satisfying

∫∞

0
K(s)F

1/(p−1)
2

(
s,ξ,

mξ

p

)
ds <

ξ

p
. (3.47)
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Let us set

Z =
{
z ∈ C1[0,∞) | ξ ≤ z(r)≤ 2ξ, 0≤ z′(r)≤ mξ

p
, r ≥ 0

}
. (3.48)

Define mapping Ψ:

Ψ(r)= ξ +
∫ r

0

(∫ s

0

(
t

s

)N−1

F2
(
t,z,|z′|)dt

)1/(p−1)

ds. (3.49)

Similarly, Ψ(r) has a fixed point in z ∈ Z.
In the above, constants η and ξ have to satisfy not only (3.14) and (3.40), but also they

need to satisfy 2ξ ≤ η (this we can realize choosing first ξ which satisfies (3.40), fixing,
and finally adjusting ξ, so that we choose η which satisfies 2ξ ≤ η and (3.18)). Therewith,
we have

0 < ξ ≤ z(r)≤ 2ξ ≤ η ≤ y(r)≤ 2η. (3.50)

On the other hand, if the problem (3.9) has a solution y(r), then v(x)= y(|x|)= y(r) is
a solution of (3.7). Similarly, if the initial value problem (3.45) has solutions z(r), then
w(x)= z(|x|)= z(r) is a solution of (3.8). From (3.50), it follows that

0 < ξ ≤w(x)≤ v(x)≤ 2η, x ∈RN . (3.51)

From Lemma 2.2, (1.1) has at least a solution u(x) and satisfies

w(x)≤ u(x)≤ v(x), x ∈RN . (3.52)

Here and now we have proved that (1.1) exists for positive entire solution u(x). From
(3.51), (3.52), we see that all super- and subbounds of positive solutions are dependent
choice of sufficiently large positive number ξ, η. If we choose the number pair (ξj ,ηj)
( j = 1,2, . . .), using the closed interval of the closed interval set which is each other non-
intersect {(ξj ,ηj) | j = 1,2, . . .}, then we obtain each other difference bounded positive
solutions of (1.1) uj(x), j = 1,2, . . . , therefore (1.1) possesses infinitely many positive en-
tire solutions. �

Remark 3.5. When p = 2, in [11, 20, 21] relative results were obtained and our results can
be seen as their extensions.

Remark 3.6. If condition (II) of Theorem 3.1 is replaced by

(II)2 (a) for 1 < p < 2 and fixed r ∈R+, F
1/(p−1)
2 (r,λ,mλ/p)/λ is nondecreasing for λ∈

(0,∞) and satisfies

lim
λ→0+

F
1/(p−1)
2 (r,λ,mλ/p)

λ
= 0, (3.53)

where m= ((2− p)/(N − p+ 1))(2−p)/(p−1);
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(b) for 2 ≤ p ≤ N + 1 and fixed r ∈ R+, F
p−1
2 (r,λ,m1λ/p)/λ is nondecreasing for

λ∈ (0,∞) and satisfies

lim
λ→0+

F
p−1
2

(
r,λ,m1λ/p

)

λ
= 0, (3.54)

where m1 = ((p− 2)/(N(p− 1)− 1))(p−2)/(p−1)2
;

then the conclusion of Theorem 3.1 holds.

Theorem 3.7. Suppose that f satisfies (A)–(C) and the following conditions hold.
(I) F1(r,u,v) and F2(r,u,v) are nondecreasing for u∈ R+, and nonincreasing for v ∈
R+.

(II)(a) For 1 < p < 2 and fixed r ∈R+, F
1/(p−1)
2 (r,λ,0)/λ is nonincreasing for λ∈ (0,∞)

and satisfies

lim
λ→∞

F
1/(p−1)
2 (r,λ,0)

λ
= 0. (3.55)

(b) For 2 ≤ p ≤ N + 1 and fixed r ∈ R+, F
p−1
2 (r,λ,0)/λ is nonincreasing for λ ∈

(0,∞) and satisfies

lim
λ→∞

F
p−1
2 (r,λ,0)

λ
= 0. (3.56)

(III)(a) For 1 < p < 2, there exists a positive constant c such that

∫∞

0
K(s)F

1/(p−1)
2 (s,c,0)ds <∞, (3.57)

where

K(s)=
⎧
⎨

⎩

1 if 0≤ s < 1,

s1/(p−1) if s > 1.
(3.58)

(b) For 2≤ p ≤N + 1, there exists a positive constant c such that

∫∞

0
K(s)F

p−1
2 (s,c,0)ds <∞, (3.59)

where

K(s)=
⎧
⎨

⎩

1 if 0≤ s < 1,

sp−1 if s > 1.
(3.60)

Then the conclusion of Theorem 3.1 holds.
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Remark 3.8. If condition (II) of Theorem 3.7 is replaced by

(II)2 (a) for 1 < p < 2 and fixed r ∈ R+, F
1/(p−1)
2 (r,λ,0)/λ is nondecreasing for λ ∈

(0,∞) and satisfies

lim
λ→0+

F
1/(p−1)
2 (r,λ,0)

λ
= 0; (3.61)

(b) for 2 ≤ p ≤ N + 1 and fixed r ∈ R+, F
p−1
2 (r,λ,0)/λ is nondecreasing for λ ∈

(0,∞) and satisfies

lim
λ→0+

F
p−1
2 (r,λ,0)

λ
= 0; (3.62)

then the conclusion of Theorem 3.1 holds.

Theorem 3.9. Assume that f satisfies (A)–(C) and the following conditions hold.
(I) F1(r,u,v) and F2(r,u,v) are nonincreasing in u∈ (0,∞) and nonincreasing in v ∈

(0,∞) for all fixed r ∈R+.
(II)(a) For 1 < p < 2, there exists a positive constant c such that

∫∞

0
K(s)F

1/(p−1)
2 (s,c,0)ds <∞, (3.63)

where

K(s)=
⎧
⎨

⎩

1 if 0≤ s < 1,

s1/(p−1) if s > 1.
(3.64)

(b) For 2≤ p ≤N + 1, there exists a positive constant c such that

∫∞

0
K(s)F

p−1
2 (s,c,0)ds <∞, (3.65)

where

K(s)=
⎧
⎨

⎩

1 if 0≤ s < 1,

sp−1 if s > 1.
(3.66)

Then the conclusion of Theorem 3.1 holds.

Theorem 3.10. Assume that f satisfies (A)–(C) and the following conditions hold.
(I) F1(r,u,v) and F2(r,u,v) are nondecreasing in u∈ (0,∞) and nondecreasing in v ∈

(0,∞) for all fixed r ∈R+.
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(II)(a) For 1 < p < 2 and fixed r ∈R+, F
1/(p−1)
2 (r, pλ,mλ/p)/λ is nonincreasing for λ∈

(0,∞) and satisfies

lim
λ→+∞

F
1/(p−1)
2 (r, pλ,mλ/p)

λ
= 0, (3.67)

where m= ((2− p)/(N − p+ 1))(2−p)/(p−1).

(b) For 2 ≤ p ≤ N + 1 and fixed r ∈ R+, F
p−1
2 (r, pλ,m1λ/p)/λ is nonincreasing for

λ∈ (0,∞) and satisfies

lim
λ→+∞

F
p−1
2

(
r, pλ,m1λ/p

)

λ
= 0, (3.68)

where m1 = ((p− 2)/(N(p− 1)− 1))(p−2)/(p−1)2
.

(III)(a) For 1 < p < 2, there exists a positive constant c > 0 such that

∫∞

0
K(s)F

1/(p−1)
2

(
s, pc,

mc

p

)
ds <∞, (3.69)

where

K(s)=
⎧
⎨

⎩

1 if 0≤ s < 1,

s1/(p−1) if s > 1.
(3.70)

(b) For 2≤ p ≤N + 1, there exists a positive constant c such that

∫∞

0
K(s)F

p−1
2

(
s, pc,

m1c

p

)
ds <∞, (3.71)

where

K(s)=
⎧
⎨

⎩

1 if 0≤ s < 1,

sp−1 if s > 1.
(3.72)

Then the conclusion of Theorem 3.1 holds.

4. Example

Example 4.1. Consider the equation

div
(|∇u|p−2∇u)= ψ(x)e−|x|

2uα(p−1)|∇u|p−1, x ∈RN , N ≥ 3, (4.1)

where 0 < α < p− 1, p > 1, and ψ(x) > 0 is locally Lipschitz continuous in RN .
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Let f (x,u,∇u) = ψ(x)e−|x|2uα(p−1)|∇u|p−1, ψ∗(r) = max|x|=r ψ(x), and ψ∗(r) =
min|x|=r ψ(x). Choose

F1
(|x|,u,|v|)=

⎧
⎨

⎩

ψ∗
(|x|)e−|x|2uα(p−1)|v|p−1 if 1 < p < 2,

ψ∗
(|x|)e−|x|2uα/(p−1)|v|1/(p−1) if p ≥ 2,

F2
(|x|,u,|v|)=

⎧
⎨

⎩

ψ∗
(|x|)e−|x|2uα(p−1)|v|p−1 if 1 < p < 2,

ψ∗
(|x|)e−|x|2uα/(p−1)|v|1/(p−1) if p ≥ 2.

(4.2)

It is easy to check that (i) F1(r,u,v), F2(r,u,v) satisfy condition (I) of Theorem 3.1; (ii)
F2(r,u,v) satisfies condition (II) of Theorem 3.1, F1(r,u, t), F2(r,u, t) are nonincreasing
functions for u∈R+, which is a nondecreasing function for t ∈R+, and for 1 < p < 2 and
fixed r ∈R+,

F
1/(p−1)
2 (r,λ,mλ/p)

λ
= (ψ∗(r)

)1/(p−1)
e−r

2λα p

m
(4.3)

is nonincreasing for λ∈ (0,∞) and satisfies

lim
λ→+∞

F
p−1
2 (r,λ,mλ/p)

λ
= 0, (4.4)

where m= ((2− p)/(N − p+ 1))(2−p)/(p−1). For p ≥ 2, being similar to 1 < p < 2, suppose
that

∫∞

0
K(s)F

1/(p−1)
2

(
s,c,

mc

p

)
ds=

(
mc

p

)p−1∫∞

0
K(s)

(
ψ∗(s)

)1/(p−1)
e−s

2cαds <∞ (4.5)

(where c is a certain positive constant) holds. Then from Theorem 3.1 it follows that (4.1)
possesses infinitely many positive entire solutions u(x).

Example 4.2. Consider the equation

div
(|∇u|p−2∇u)= ψ(x)uα(p−1)e−|x||∇u|

β(p−1), x ∈RN , (4.6)

where α,β ∈ (0, p− 1), p > 1.
Let

f (x,u,∇u)= ψ(x)uα(p−1)e−|x||∇u|
β(p−1),

F1
(|x|,u,|v|)=

⎧
⎨

⎩

ψ∗
(|x|)uα(p−1)e−|x|2|v|β(p−1) if 1 < p < 2,

ψ∗
(|x|)uα/(p−1)e−|x|2|v|β/(p−1) if p ≥ 2,

F1
(|x|,u,|v|)=

⎧
⎨

⎩

ψ∗
(|x|)uα(p−1)e−|x|2|v|β(p−1) if 1 < p < 2,

ψ∗
(|x|)uα/(p−1)e−|x|2|v|β/(p−1) if p ≥ 2,

(4.7)
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where ψ(x), ψ∗(r), ψ∗(r) are defined in Example 4.1. It is easy to prove that the condi-
tions of Theorem 3.1 are satisfied. Suppose that

∫∞

0
K(s)

(
ψ∗(s)

)1/(p−1)
ds <∞ (4.8)

holds. Then (4.6) possesses infinitely many positive entire solutions u(x).

Example 4.3. Consider the equation

div
(|∇u|p−2∇u)= ψ(x)

(
uα +uβ + |∇u|γ), x ∈RN , N ≥ 3, (4.9)

where ψ(x), ψ∗(r), ψ∗(r) are defined in Example 4.1, α,β,γ ∈ (0,1), and β + γ < p− 1,
p > 1. It is easy to prove that the conditions of Theorem 3.7 are satisfied. Moreover, sup-
pose that

∫∞

0
K(s)

(
ψ∗(s)

)1/(p−1)
ds <∞ (4.10)

holds. Then (4.9) possesses infinitely many positive entire solutions u(x).

Example 4.4. Consider the equation

div
(|∇u|p−2∇u)= ψ(x)

|∇u|β
(1 +u)α

, (4.11)

where α,β > 0 and β− α > p− 1, p > 1, with ψ(x), ψ∗(r), ψ∗(r) are defined in Example
4.1. It is easy to prove that the conditions of Theorem 3.9 are satisfied. Moreover, suppose
that

∫∞

0
K(s)

(
ψ∗(s)

)1/(p−1)
ds <∞ (4.12)

holds. Then (4.11) possesses infinitely many positive entire solutions u(x).

Example 4.5. Consider the equation

�u= e−γ|x|uα|∇u|β, x ∈R2, (4.13)

where α, β, γ are all positive constants. Let f (r,u,v) = eγruαvβ. Clearly if γ > 0, β ≥
0, either α + β < p− 1 or α + β > p− 1, then it is easy to verify that the conditions of
Theorem 3.10 are satisfied. Thus, Theorem 3.1 holds for (4.13).
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