ON SENSIBLE FUZZY IDEALS OF BCK-ALGEBRAS WITH RESPECT TO A t-CONORM

M. AKRAM AND JIANMING ZHAN

Received 3 October 2005; Revised 29 May 2006; Accepted 5 June 2006

We introduce the notion of sensible fuzzy ideals of BCK-algebras with respect to a *t*-conorm and investigate some of their properties. We give the conditions for a sensible fuzzy subalgebra with respect to a *t*-conorm to be a sensible fuzzy ideal with respect to a *t*-conorm. Some properties of the direct product and *S*-product of fuzzy ideals of BCK-algebras with respect to a *t*-conorm are also discussed.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Imai and Iséki [3] introduced the class of logical algebras: BCK-algebras. This notion is originated from two different ways: one of the motivations is based on set theory, another motivation is from classical and nonclassical propositional calculus.

The notion of fuzzy sets was first introduced by Zadeh [8]. On the other hand, Schweizer and Sklar [5, 6] introduced the notions of triangular norm (t-norm) and triangular conorm (t-conorm). Triangular norm (t-norm) and triangular conorm (t-conorm) are the most general families of binary operations that satisfy the requirement of the conjunction and disjunction operators, respectively. Thus, the t-norm generalizes the conjunctive (AND) operator and the *t*-conorm generalizes the disjunctive (OR) operator. In application, t-norm T and t-conorm S are two functions that map the unit square into the unit interval. Jun and Kim [4] introduced the notion of imaginable fuzzy ideals of BCK-algebras with respect to a t-norm. Cho et al. [1] have recently introduced the notion of sensible fuzzy subalgebras of BCK-algebras with respect to s-norm and studied some of their properties. In this paper, we introduce the notion of sensible fuzzy ideals of BCK-algebras with respect to a t-conorm and investigate some of their properties. We give conditions for a sensible fuzzy subalgebra with respect to a t-conorm to be a sensible fuzzy ideal with respect to a t-conorm. Some properties of the direct product and S-product of fuzzy ideals of BCK-algebras with respect to a t-conorm are also obtained.

2. Preliminaries

In this section, we review some definitions and results that will be used in the sequel.

An algebra (X; *, 0) of type (2,0) is called a BCK-algebra if it satisfies the following conditions:

- (1) ((x * y) * (x * z)) * (z * y) = 0,
- (2) (x * (x * y)) * y = 0,
- (3) x * x = 0,
- (4) x * y = 0, $y * x = 0 \Rightarrow x = y$,
- $(5) \ 0 * x = 0$

for all $x,y,z\in X$. We can define a partial ordering relation " \leq " on X by letting $x\leq y$ if and only if x*y=0. Let S be a nonempty subset of a BCK-algebra X, then S is called a *subalgebra* of X if $x*y\in S$ for all $x,y\in S$. A mapping $f:X\to Y$ of BCK-algebras is a *homomorphism* if f(x*y)=f(x)*f(y) for all $x,y\in X$. A nonempty subset A of a BCK-algebra X is called an *ideal* of X if, for all $x,y\in X$, it satisfies (I1) $0\in A$, (I2) $x*y,y\in A\Rightarrow x\in A$. A mapping $\mu:X\to [0,1]$, where X is an arbitrary nonempty set, is called a *fuzzy set* in X. For any fuzzy set μ in X and any $\alpha\in [0,1]$, we define the set $L(\mu;\alpha)=\{x\in X\mid \mu(x)\leq \alpha\}$, which is called *lower level cut* of μ .

Definition 2.1 [2]. A fuzzy set μ in a BCK-algebra X is called an antifuzzy ideal of X if $(AF1) \mu(0) \le \mu(x)$ for all $x \in X$;

(AF2)
$$\mu(x) \le \max(\mu(x * y), \mu(y))$$
 for all $x, y \in X$.

Definition 2.2 [7]. A triangular conorm (t-conorm S) is a mapping $S: [0,1] \times [0,1] \rightarrow [0,1]$ that satisfies the following conditions:

- (S1) S(x,0) = x,
- (S2) S(x, y) = S(y, x),
- (S3) S(x,S(y,z)) = S(S(x,y),z),
- (S4) $S(x, y) \le S(x, z)$ whenever $y \le z$

for all $x, y, z \in [0, 1]$.

Replacing 0 by 1 in condition S_1 , we obtain the concept of t-norm T.

Definition 2.3. Given a *t*-norm *T* and a *t*-conorm *S*, *T* and *S* are *dual* (with respect to the negation ') if and only if (T(x,y))' = S(x',y').

PROPOSITION 2.4. Conjunctive (AND) operator is a t-norm T and disjunctive (OR) operator is its dual t-conorm S.

Proposition 2.5 [5]. For a t-conorm T, the following statement holds:

$$S(x,y) \ge \max(x,y), \quad \forall x,y \in [0,1]. \tag{2.1}$$

Definition 2.6. Let *S* be a *t*-conorm. A fuzzy set μ in *X* is called sensible with respect to *S* if $\text{Im } \mu \subseteq \Delta_S$, where $\Delta_S = \{\alpha \in [0,1] \mid S(\alpha,\alpha) = \alpha\}$.

3. Fuzzy ideals with respect to a t-conorm

In what follows, let *X* denote a BCK-algebra unless otherwise specified.

Definition 3.1. Let S be a t-conorm. A fuzzy set $\mu: X \to [0,1]$ is called a fuzzy ideal of X with respect to S if

(SF1)
$$\mu(0) \le \mu(x)$$
,
(SF2) $\mu(x) \le S(\mu(x * y), \mu(y))$ for all $x, y \in X$.

Example 3.2. Let $X = \{0, a, b, 1\}$ be a BCK-algebra with the following Cayley table:

Define a fuzzy set $\mu: X \to [0,1]$ by $\mu(x) = 0$ if $x \in \{0,a\}$ and $\mu(x) = 1$ for all $x \notin \{0,a\}$ and let $S_m: [0,1] \times [0,1] \rightarrow [0,1]$ be a function defined by $S_m(x,y) = \min(x+y,1)$ which is a t-conorm for all $x, y \in [0, 1]$. By routine calculations, it is easy to check that μ is a sensible fuzzy ideal of X with respect to S_m .

Proposition 3.3. Let S be a t-conorm. Then every sensible fuzzy ideal of X with respect to S is an antifuzzy ideal of X.

Proof. The proof is obtained dually by using the notion of *t*-conorm *S* instead of *t*-norm T in [4].

The converse of Proposition 3.3 is not true in general as seen in the following example.

Example 3.4. Let $X = \{0,1,2,3,4\}$ be a BCK-algebra with the following Cayley table:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	0 1 2 3 4	3	4	1	0

Define a fuzzy set $\mu: X \to [0,1]$ by $\mu(0) = 0.1$, $\mu(1) = \mu(2) = \mu(3) = 0.4$ and $\mu(4) = 0.7$ is an antifuzzy ideal of X. Let $\gamma \in (0,1)$ and define the binary operation S_{γ} on (0,1) as follows:

$$S_{\gamma}(\alpha,\beta) = \begin{cases} \max\{\alpha,\beta\} & \text{if } \min\{\alpha,\beta\} = 0, \\ 1 & \min\{\alpha,\beta\} > 0, \ \alpha + \beta \ge 1 + \gamma, \\ \gamma & \text{otherwise} \end{cases}$$
 (3.1)

for all $\alpha, \beta \in [0,1]$. Then S_{ν} is a t-conorm. Thus $S_{\nu}(\mu(0), \mu(0)) = S_{\nu}(0.1, 0.1) = \gamma \neq \mu(0)$ whenever γ < 0.8. Hence μ is not a sensible fuzzy ideal of X with respect to S_{γ} .

THEOREM 3.5. Let S be a t-conorm and μ a nonempty fuzzy set of X. Then μ is fuzzy ideal of X with respect to S if and only if each nonempty level subset $L(\mu;\alpha)$ of μ is an ideal of X.

4 Sensible fuzzy ideals of BCK-algebras with *t*-conorms

Proof. Suppose that μ is a fuzzy ideal of X with respect to S. Since $L(\mu, \alpha)$ is nonempty, there exists $x \in L(\mu, \alpha)$. Now, from (SF1), $\mu(0) \le \mu(x) \le \alpha$, we have $0 \in L(\mu, \alpha)$. Let $x, y \in X$ be such that $x * y \in L(\mu, \alpha)$ and $y \in L(\mu, \alpha)$. Then we have $\mu(x) \le S(\mu(x * y), \mu(y)) \le S(\alpha, \alpha) = \alpha$, and so $x \in L(\mu, \alpha)$. This shows that the level set $L(\mu, \alpha)$ is an ideal of X.

Conversely, assume that every nonempty level subset $L(\mu;\alpha)$ of μ is an ideal of X. Then it can be easily checked that μ satisfies (SF1). If there exist $x,y \in X$ such that $\mu(x) > S(\mu(x*y),\mu(y))$, then by taking $t_0 := (1/2)\{\mu(x) + S(\mu(x*y),\mu(y))\}$, we have $x*y \in L(\mu;t_0)$ and $y \in L(\mu;t_0)$. Since μ is an ideal of X, $x \in L(\mu;t_0)$, we have $\mu(x) \le t_0$, a contradiction. Hence μ is a fuzzy ideal of X with respect to X.

Definition 3.6. Let *X* be a BCK-algebra and a family of fuzzy sets $\{\mu_i \mid i \in I\}$ in a BCK-algebra *X*. Then the union $\bigvee_{i \in I} \mu_i$ of $\{\mu_i \mid i \in I\}$ is defined by

$$\left(\bigvee_{i\in I}\mu_i\right)(x) = \sup\left\{\mu_i(x) \mid i\in I\right\} \tag{3.2}$$

for each $x \in X$.

THEOREM 3.7. If $\{\mu_i \mid i \in I\}$ is a family of fuzzy ideals of a BCK-algebra X with respect to S, then $\bigvee_{i \in I} \mu(x_i)$ is a fuzzy ideal of X with respect to S.

Proof. Let $\{\mu_i \mid i \in I\}$ be a family of fuzzy ideals of X with respect to S. It is easy to see that $\mu_i(0) \le \mu_i(x)$ for all $x \in X$. For $x, y \in X$, we have

$$\left(\bigvee_{i \in I} \mu_{i}\right)(x) = \sup \left\{\mu_{i}(x) \mid i \in I\right\} \leq \sup \left\{S\left(\mu_{i}(x * y), \mu_{i}(y)\right) \mid i \in I\right\}$$

$$= S\left(\sup \left\{\mu_{i}(x * y) \mid i \in I\right\}, \sup \left\{\mu_{i}(y) \mid i \in I\right\}\right)$$

$$= S\left(\bigvee_{i \in I} \mu_{i}(x * y), \bigvee_{i \in I} \mu_{i}(y)\right).$$
(3.3)

Hence $\bigvee_{i \in I}$ is a fuzzy ideal of X with respect to S.

Proposition 3.8. Every sensible fuzzy ideal of X with respect to S is order preserving.

PROPOSITION 3.9. Let μ be a sensible fuzzy ideal of X with respect to S. If the inequality $x * y \le z$ holds in X, then $\mu(x) \le S(\mu(y), \mu(z))$ for all $x, y, z \in X$.

Definition 3.10 [1]. A fuzzy set μ is called a *fuzzy subalgebra* of X with respect to a t-conorm S if $\mu(x * y) \le S(\mu(x), \mu(y))$ for all $x, y \in X$.

Theorem 3.11. Let S be a t-conorm. Then every sensible fuzzy ideal of X with respect to S is a sensible fuzzy subalgebra of X with respect to S.

Proof. Straightforward.

The converse of Theorem 3.11 is not true in general as seen in the following example.

Example 3.12. Let $X = \{0, a, b, c\}$ be a BCK-algebra with the following Cayley table:

*			b	С
0	0	0	0	0
a	а	0	0	0
b	b	b	0	b
С	С	С	С	0

Define a fuzzy set $\mu: X \to [0,1]$ by $\mu(0) = \mu(b) = \mu(c) = 0$ and $\mu(c) = 1$ and let $S_m: [0,1] \times$ $[0,1] \rightarrow [0,1]$ be a function defined by $S_m(x,y) = \min\{x+y,1\}$ which is a t-conorm for all $x, y \in [0,1]$. By routine computation, we can easily check that μ is a sensible fuzzy subalgebra of X with respect to S_m . But μ is not a sensible fuzzy ideal of X with respect to S_m because $\mu(a) = 1 \ge 0 = S_m(\mu(a * b), \mu(b))$.

Remark 3.13. In Example 3.12, we observe that a sensible fuzzy subalgebra with respect to S is not a sensible fuzzy ideal with respect to S. So, a question arises: under what condition(s) a sensible fuzzy subalgebra with respect to S is a sensible fuzzy ideal with respect to S? We answer this question in the following theorems without proofs.

THEOREM 3.14. Let S be a t-conorm. A sensible fuzzy subalgebra μ of X with respect to S is a sensible fuzzy ideal of X with respect to S if and only if for all $x, y, z \in X$, the inequality $x * y \le z$ implies that $\mu(x) \le S(\mu(y), \mu(z))$.

THEOREM 3.15. Let S be a t-conorm and let X be a BCK-algebra in which the equality x =(x * y) * y holds for all distinct elements x and y of X. Then every sensible fuzzy subalgebra of *X* with respect to *S* is a sensible fuzzy ideal of *X* with respect to *S*.

Definition 3.16. Let $f: X \to Y$ be a mapping, where X and Y are nonempty sets, and μ is fuzzy set of Y. The preimage of μ under f written μ^f is a fuzzy set of X defined by $\mu^f(x) = \mu(f(x))$ for all $x \in X$.

THEOREM 3.17. Let $f: X \to Y$ be a homomorphism of BCK-algebras. If μ is a fuzzy ideal of Y with respect to S, then μ^f is a fuzzy ideal of X with respect to S.

Proof. For any $x \in X$, we have $\mu^f(x) = \mu(f(x)) \ge \mu(0) = \mu(f(0)) = \mu^f(0)$. Let $x, y \in X$. Then we have

$$S(\mu^{f}(x * y), \mu^{f}(y)) = S(\mu(f(x * y)), \mu(f(y)))$$

$$= S(\mu(f(x) * f(y)), \mu(f(y)))$$

$$\leq \mu(f(x)) = \mu^{f}(x).$$
(3.4)

Hence μ^f is a fuzzy ideal of *X* with respect to *S*.

THEOREM 3.18. Let $f: X \to Y$ be an epimorphism of BCK-algebras. If μ^f is a fuzzy ideal of *X* with respect to *S*, then μ is a fuzzy ideal of *Y* with respect to *S*.

Proof. Let $y \in Y$, there exists $x \in X$ such that f(x) = y. Then $\mu(y) = \mu(f(x)) = \mu^f(x) \ge 1$ $\mu^f(0) = \mu(f(0)) = \mu(0)$, where 0 = f(0). Let $x, y \in Y$. Then there exist $a, b \in X$ such that f(a) = x and f(b) = y. It follows that

$$\mu(x) = \mu(f(a)) = \mu(f(a)) = \mu^{f}(a)$$

$$\leq S(\mu^{f}(a * b), \mu^{f}(b)) = S(\mu(f(a * b)), \mu(f(b)))$$

$$= S(\mu(f(a) * f(b)), \mu(f(b))) = S(\mu(x * y), \mu(y)).$$
(3.5)

Hence μ is a fuzzy ideal of Y with respect to S.

Definition 3.19. Let f be a mapping defined on X. If ν is a fuzzy set in f(X), then the fuzzy set $\mu = \nu \circ f$ in X (i.e., the fuzzy set defined by $\mu(x) = \nu(f(x))$ for all $x \in X$) is called *preimage* of ν under f.

Theorem 3.20. Let S be a t-conorm and let $f: X \to Y$ be an epimorphism of BCK-algebras, ν sensible fuzzy ideal of Y with respect to S and μ , the preimage of ν under f. Then μ is a sensible fuzzy ideal of X with respect to S.

Proof. The proof is obtained dually by using the notion of *t*-conorm *S* instead of *t*-norm *T* in [4]. \Box

THEOREM 3.21. Let μ be a fuzzy set in X and $\text{Im}(\mu) = \{\alpha_0, \alpha_1, ..., \alpha_k\}$, where $\alpha_i < \alpha_j$ whenever i > j. Let $\{A_n \mid n = 0, 1, ..., k\}$ be a family of ideals of X with respect to a t-conorm S such that

- (i) $A_0 \subset A_1 \subset \cdots \subset A_k = X$,
- (ii) $\mu(A^*) = \alpha_n$, where $A_n^* = A_n \setminus A_{n-1}$, $A_{-1} = \emptyset$ for n = 0, 1, ..., k.

Then μ is a fuzzy ideal of X with respect to S.

Proof. Since $0 \in A_0$, we have $\mu(0) = \alpha_0 \le \mu(x)$ for all $x \in X$. Let $x, y \in X$. Then we discuss the following cases: if $x * y \in A_n^*$ and $y \in A_n^*$, then $x \in A_n$ because A_n is an ideal of X. Thus

$$\mu(x) \le \alpha_n = S(\mu(x * y), \mu(y)). \tag{3.6}$$

If $x * y \notin A_n^*$ and $y \notin A_n^*$, then the following four cases arise:

- (1) $x * y \in X \setminus A_n$ and $y \in X \setminus A_n$,
- (2) $x * y \in A_{n-1}$ and $y \in A_{n-1}$,
- (3) $x * y \in X \setminus A_n$ and $y \in A_{n-1}$,
- (4) $x * y \in A_{n-1}$ and $y \in X \setminus A_n$.

But, in either case, we know that

$$\mu(x) \le S(\mu(x * y), \mu(y)). \tag{3.7}$$

If $x * y \in A_n^*$ and $y \notin A_n^*$, then either $y \in A_{n-1}$ or $y \in X \setminus A_n$. It follows that either $x \in A_n$ or $x \in X \setminus A_n$. Thus

$$\mu(x) \le S(\mu(x * y), \mu(y)). \tag{3.8}$$

If $x * y \notin A_n^*$ and $y \in A_n^*$, then by similar process, we have

$$\mu(x) \le S(\mu(x * y), \mu(y)). \tag{3.9}$$

This completes the proof.

Definition 3.22 [9]. A BCK-algebra X is said to satisfy the ascending (resp., descending) chain condition (ACC (resp., DCC)) if for every ascending (resp., descending) sequence $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ (resp., $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$) of ideals of X there exists a natural number n such that $A_n = A_k$ for all $n \ge k$. If X satisfies DCC, X is an Artin BCK-algebras.

Theorem 3.23. Let S be a t-conorm. If μ is a fuzzy ideal of X, with respect to S, having finite image, then X is an Artin BCK-algebra.

Proof. Suppose that there exists a strictly descending chain $A_0 \supset A_1 \supset A_2 \supset \cdots$ of fuzzy ideals of *X* which does not terminate at finite step. Define a fuzzy set μ in *X* by

$$\mu(x) := \begin{cases} \frac{1}{n+1} & \text{if } x \in A_n \setminus A_{n+1}, \ n = 0, 1, 2, \dots, \\ 0 & \text{if } x \in \bigcap_{n=0}^{\infty} A_n, \end{cases}$$
 (3.10)

where $A_0 = X$. We prove that μ is a fuzzy ideal of X with respect to S. Clearly, $\mu(0) \le \mu(x)$ for all $x \in X$. Let $x, y \in X$. Assume that $x * y \in A_n \setminus A_{n+1}$ and $y \in A_k \setminus A_{k+1}$ for n = 0, 1, 2, ...; k = 0, 1, 2, ... Without loss of generality, we may assume that $n \le k$. Then obviously $y \in A_n$, and so $x \in A_n$ because A_n is a fuzzy ideal of X. Hence

$$\mu(x) \le \frac{1}{n+1} = S(\mu(x * y), \mu(y)).$$
 (3.11)

If x * y, $y \in \bigcap_{n=0}^{\infty} A_n$, then $x \in \bigcap_{n=0}^{\infty} A_n$. Thus

$$\mu(x) = 0 = S(\mu(x * y), \mu(y)). \tag{3.12}$$

If $x * y \notin \bigcap_{n=0}^{\infty} A_n$ and $y \in \bigcap_{n=0}^{\infty} A_n$, then there exists $k \in \mathbb{N}$ such that $x * y \in A_k \setminus A_{k+1}$. It follows that $x \in A_k$ so that

$$\mu(x) \le \frac{1}{k+1} = S(\mu(x * y), \mu(y)).$$
 (3.13)

Finally, suppose that $x * y \in \bigcap_{n=0}^{\infty} A_n$ and $y \notin \bigcap_{n=0}^{\infty} A_n$. Then $y \in A_r \setminus A_{r+1}$ for some $r \in \mathbb{N}$. Hence $x \in A_r$, and so

$$\mu(x) \le \frac{1}{r+1} = S(\mu(x * y), \mu(y)).$$
 (3.14)

Consequently, we conclude that μ is a fuzzy ideal of X with respect to S and μ has infinite number of different values. This is a contradiction, and the proof is complete.

THEOREM 3.24. Let S be a t-conorm. The following statements are equivalent:

- (i) every ascending chain of ideals of *X* with respect to *S* terminates at finite step,
- (ii) the set of values of any fuzzy ideal with respect to S is a well-ordered subset of [0, 1].

Proof. Let μ be a fuzzy ideal of X with respect to S. Suppose that the set of values of μ is not a well-ordered subset of [0,1]. Then there exists a strictly increasing sequence $\{\alpha_n\}$ such that $\mu(x) = \alpha_n$. Let $G_n := \{x \in X \mid \mu(x) \le \alpha\}$. Then

$$G_1 \subset G_2 \subset G_3 \subset \cdots$$
 (3.15)

is a strictly ascending chain of ideals of X which is not terminating. This is a contradiction.

Conversely, suppose that there exists a strictly ascending chain

$$G_1 \subset G_2 \subset G_3 \subset \cdots$$
 (*)

of ideals of X with respect to S which does not terminate at finite step. Define a fuzzy set μ in X by

$$\mu(x) := \begin{cases} \frac{1}{k}, & \text{where } k = \max \{ n \in \mathbb{N} \mid x \in G_n \}, \\ 1 & \text{if } x \in G_n, \end{cases}$$
(3.16)

where $G = \bigcup_{n \in \mathbb{N}} G_n$. Since $0 \in G_n$ for all n = 0, 1, ..., therefore, $\mu(0) \le \mu(x)$ for all $x \in X$. Let $x, y \in X$. If x * y, $y \in G_n \setminus G_{n-1}$ for n = 2, 3, ..., then $x \in G_n$. Thus, we obtain

$$\mu(x) \le \frac{1}{n} = S(\mu(x * y), \mu(y)).$$
 (3.17)

Assume that $x * y \in G_n$ and $y \in G_n \setminus G_m$ for all m < n. Since μ is an ideal of X, therefore, $x \in G_n$. Thus

$$\mu(x) \le \frac{1}{n} \le \frac{1}{m+1} \le \mu(y),$$
(3.18)

and hence

$$\mu(x) \le S(\mu(x * y), \mu(y)).$$
 (3.19)

Similarly, for the case $x * y \in G_n \backslash G_m$ and $y \in G_n$, we have

$$\mu(x) \le S(\mu(x * y), \mu(y)). \tag{3.20}$$

Hence μ is an ideal of X with respect to t-conorm S. Since the chain (*) is not terminating, μ has strictly descending sequence of values. This contradicts that the value of any set of fuzzy ideal with respect to S is well ordered. This ends the proof.

LEMMA 3.25. Let T be a t-norm. Then t-conorm S can be defined as

$$S(x,y) = 1 - T(1-x, 1-y). (3.21)$$

Proof. Straightforward.

THEOREM 3.26. A fuzzy set μ of a BCK-algebra X is a T-fuzzy ideal of X if and only if its complement μ^c is an S-fuzzy ideal of X.

Proof. Let μ be a T-fuzzy ideal of X. For $x, y \in X$, we have

$$\mu^{c}(0) = 1 - \mu(0) \le 1 - \mu(x) = \mu^{c}(x),$$

$$\mu^{c}(x) = 1 - \mu(x) \le 1 - T\mu((x * y), \mu(y))$$

$$= 1 - T1 - \mu^{c}((x * y), 1 - \mu^{c}(y))$$

$$= S(\mu^{c}(x * y), \mu^{c}(y)).$$
(3.22)

Hence μ^c is an S-fuzzy ideal of X.

The converse is proved similarly.

4. S-product and direct product with respect to a t-conorm

In this section, we discuss properties of S-product and direct product of fuzzy ideals of a BCK-algebra with respect to a *t*-conorm.

Definition 4.1. Let S be a t-conorm and let λ and μ be two fuzzy sets in X. Then the S-product of λ and μ is denoted by $[\lambda \cdot \mu]_S$ and defined by $[\lambda \cdot \mu]_S(x) = S(\lambda(x), \mu(x))$, for all $x \in X$.

Theorem 4.2. Let λ and μ be two fuzzy ideals of X with respect to S. If a t-conorm S^* dominates S, that is, if $S^*(S(\alpha, \gamma), S(\beta, \delta)) \leq S(S^*(\alpha, \beta), S^*(\gamma, \delta))$ for all $\alpha, \beta, \gamma, \delta \in [0, 1]$, then S^* -product $[\lambda \cdot \mu]_S *$ is a fuzzy ideal of X with respect to S.

Proof. For any $x \in X$, we have

$$[\lambda \cdot \mu]_S * (0) = S^* (\lambda(0), \mu(0)) \le S^* (\lambda(x), \mu(x)) = [\lambda \cdot \mu]_{S*}(x). \tag{4.1}$$

Let $x, y \in X$. Then

$$[\lambda \cdot \mu]_{S} * (x) = S^{*}(\lambda(x), \mu(x))$$

$$\leq S^{*}(S(\lambda(x * y), \lambda(y)), S(\mu(x * y), \mu(y)))$$

$$\leq S(S^{*}(\lambda(x * y), \mu(x * y)), S^{*}(\lambda(y), \mu(y)))$$

$$= S([\lambda \cdot \mu]_{S} * (x * y), [\lambda \cdot \mu]_{S} * (y)).$$

$$(4.2)$$

Hence $[\lambda \cdot \mu]_S *$ is a fuzzy ideal of X with respect to S.

Theorem 4.3. Let S and S* be t-conorms in which S* dominates S. Let $f: X \to Y$ be an epimorphism of BCK-algebras. If λ and μ are fuzzy ideals of Y with respect to S, then $f^{-1}([\lambda \cdot$ $\mu]_S *) = [f^{-1}(\lambda), f^{-1}(\mu)]_S *.$

Proof. For any $x \in X$, we have

$$f^{-1}([\lambda \cdot \mu]_{S} *)(x) = [\lambda \cdot \mu]_{S} * (f(x)) = S^{*}(\lambda(f(x)), \mu(f(x)))$$

$$= S^{*}([f^{-1}(\lambda)](x), [f^{-1}(\mu)](x)) = [f^{-1}(\lambda), f^{-1}(\mu)]_{S} * (x).$$
(4.3)

THEOREM 4.4. Let S be a t-conorm. Let X_1 and X_2 be BCK-algebras and let $X = X_1 \times X_2$ be the direct product BCK-algebra of X_1 and X_2 . Let λ be a fuzzy ideal of a BCK-algebra X_1 with respect to S and let μ be a fuzzy ideal of a BCK-algebra X_2 with respect to S. Then $\nu = \lambda \times \mu$ is a fuzzy ideal of $X = X_1 \times X_2$ with respect to S defined by

$$\nu(x_1, x_2) = (\lambda \times \mu)(x_1, x_2) = S(\lambda(x_1), \mu(x_2)). \tag{4.4}$$

Proof. For any $(x, y) \in X_1 \times X_2 = X$, we have

$$\nu(0,0) = (\lambda \times \mu)(0,0) = S(\lambda(0), \mu(0))$$

$$\leq S(\lambda(x), \mu(y)) = (\lambda \times \mu)(x,y) = \nu(x,y).$$
(4.5)

Let $x = (x_1, x_2)$ and $y = (y_1, y_2) \in X_1 \times X_2 = X$. Then we have

$$\nu(x) = (\lambda \times \mu)(x) = (\lambda \times \mu)(x_1, x_2) = S(\lambda(x_1), \mu(x_2))
\leq S(S(\lambda(x_1 * y_1), \lambda(y_1)), S(\mu(x_2 * y_2), \mu(y_2)))
= S(S(\lambda(x_1 * y_1), \mu(x_2 * y_2)), S(\lambda(y_1), \mu(y_2)))
= S((\lambda \times \mu)(x_1 * y_1, x_2 * y_2), (\lambda \times \mu)(y_1, y_2))
= S((\lambda \times \mu)((x_1, x_2) * (y_1, y_2)), (\lambda \times \mu)(y_1, y_2))
= S((\lambda \times \mu)(x * y), (\lambda \times \mu)(y)) = S(\nu(x * y), \nu(y)).$$
(4.6)

Hence ν is a fuzzy ideal of X with respect to S.

The relationship between fuzzy ideals $\mu_1 \times \mu_2$ and $[\mu_1 \cdot \mu_2]_S$ with respect to S can be viewed via the following diagram:

$$X \xrightarrow{d} X \times X$$

$$[\mu_1 \cdot \mu_2]_S \downarrow \qquad \qquad \downarrow^{\mu_1} \downarrow^{\mu_2} \qquad \qquad \downarrow^{\mu_1} \downarrow^{\mu_2}$$

$$I \xleftarrow{S} I \times I \qquad \qquad (4.7)$$

П

where I = [0,1] and $d: X \to X \times X$ is defined by d(x) = (x,x). It is easy to see that $[\mu_1 \cdot \mu_2]_S$ is the preimage of $\mu_1 \times \mu_2$ under d.

Converse of Theorem 4.4 may not be true as seen in the following example.

Example 4.5. Let *X* be a BCK-algebra and let $s, t \in [0,1]$. Define fuzzy sets μ_1 and μ_2 in *X* by $\mu_1(x) = 1$ and

$$\mu_2(x) = \begin{cases} 1 & \text{if } x = 0, \\ t & \text{otherwise} \end{cases}$$
 (4.8)

for all $x \in X$, respectively.

If x = 0, then $\mu_2(x) = 1$, and thus

$$(\mu_1 \times \mu_2)(x, x) = S(\mu_1(x), \mu_2(x)) = S(1, 1) = 1. \tag{4.9}$$

If $x \neq 0$, then $\mu_2(x) = t$, and thus

$$(\mu_1 \times \mu_2)(x, x) = S(\mu_1(x), \mu_2(x)) = S(1, t) = 1.$$
(4.10)

That is, $\mu_1 \times \mu_2$ is a constant function and so $\mu_1 \times \mu_2$ is a fuzzy ideal of $X_1 \times X_2$. Now μ_1 is a fuzzy ideal of X, but μ_2 is not a fuzzy ideal of X since for $x \neq 0$, we have $\mu_2(0) = 1 > t = \mu_2(x)$.

Now we generalize the product of two fuzzy ideals with respect to S to the product of n fuzzy ideals with respect to S. We first need to generalize the domain of t-conorm S to $\prod_{i=1}^{n} [0,1]$ as follows.

Definition 4.6. The function $S_n: \prod_{i=1}^n [0,1] \to [0,1]$ is defined by

$$S_n(\alpha_1, \alpha_2, \dots, \alpha_n) = S(\alpha_i, S_{n-1}(\alpha_1, \alpha_2, \dots, \alpha_i, \alpha_{i+1}, \dots, \alpha_n))$$

$$(4.11)$$

for all $1 \le i \le n$, $n \ge 2$, $S_2 = S$, and $S_1 =$ identity.

Lemma 4.7. For a t-conorm S and every $\alpha_i, \beta_i \in [0, 1]$, where $1 \le i \le n, n \ge 2$,

$$S_n(S(\alpha_1,\beta_1),S(\alpha_2,\beta_2),\ldots,S(\alpha_n,\beta_n)) = S(S_n(\alpha_1,\alpha_2,\ldots,\alpha_n),S_n(\beta_1,\beta_2,\ldots,\beta_n)).$$
(4.12)

Theorem 4.8. Let S be a t-conorm and let $X = \prod_{i=0}^{n} X_i$ be the direct product of BCK-algebras. If μ_i is a fuzzy ideal of X_i with respect to S, where $1 \le i \le n$, then $\mu = \prod_{i=1}^{n} \mu_i$ defined by

$$\mu(x) = \left(\prod_{i=1}^{n} \mu_i\right)(x_1, x_2, \dots, x_n) = S_n(\mu_1(x_1), \mu_2(x_2), \dots, \mu_n(x_n))$$
(4.13)

for all $x = (x_1, x_2, ..., x_n) \in X$ is a fuzzy ideal of X with respect to S.

Proof. Clearly, $\mu(0) \le \mu(x)$ for all $x = (x_1, x_2, ..., x_n) \in X = \prod_{i=1}^n X_i$. Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ be the elements of $X = \prod_{i=1}^n X_i$. Then

$$\mu(x) = \left(\prod_{i=1}^{n} \mu_{i}\right) (x_{1}, x_{2}, \dots, x_{n}) = S_{n}(\mu_{1}(x_{1}), \mu_{2}(x_{2}), \dots, \mu_{n}(x_{n}))$$

$$\leq S_{n}(S(\mu_{1}(x_{1} * y_{1}), \mu(y_{1})), S(\mu_{2}(x_{2} * y_{2}), \mu(y_{2})), \dots, S(\mu_{n}(x_{n} * y_{n}), \mu(y_{n})))$$

$$= S(S_{n}(\mu_{1}(x_{1} * y_{1}), \mu_{2}(x_{2} * y_{2}), \dots, \mu_{n}(x_{n} * y_{n})), S_{n}(\mu(y_{1}), \mu(y_{2}), \dots, \mu(y_{n})))$$

$$= S\left(\left(\prod_{i=1}^{n} \mu_{i}\right) (x_{1} * y_{1}, x_{2} * y_{2}, \dots, x_{n} * y_{n}), \left(\prod_{i=1}^{n} \mu_{i}\right) (y_{1}, y_{2}, \dots, y_{n})\right)$$

$$= S(\mu(x * y), \mu(y)). \tag{4.14}$$

Hence $\mu = \prod_{i=1}^{n} \mu_i$ is a fuzzy ideals of X with respect to S.

Acknowledgments

The authors are deeply grateful to the Editor-in-Chief and referees for their valuable comments and suggestions for improving the paper. The research work of the first author is supported by Punjab University College of Information Technology (PUCIT).

References

- [1] Y. U. Cho, Y. B. Jun, and E. H. Roh, *On sensible fuzzy subalgebras of BCK-algebras with respect to a s-norm*, Scientiae Mathematicae Japonicae **62** (2005), no. 1, 13–20.
- [2] S. M. Hong and Y. B. Jun, *Anti-fuzzy ideals in BCK-algebras*, Kyungpook Mathematical Journal **38** (1998), no. 1, 145–150.
- [3] Y. Imai and K. Iséki, On axiom systems of propositional calculi. XIV, Proceedings of the Japan Academy 42 (1966), 19–22.
- [4] Y. B. Jun and K. H. Kim, *Imaginable fuzzy ideals of BCK-algebras with respect to a t-norm*, Journal of Fuzzy Mathematics **8** (2000), no. 3, 737–744.
- [5] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics 10 (1960), no. 1, 313–334.
- [6] ______, Associative functions and abstract semigroups, Publicationes Mathematicae Debrecen 10 (1963), 69–81.
- [7] Y. Yu, J. N. Mordeson, and S. C. Cheng, *Elements of L-Algebra*, Lecture Notes in Fuzzy Math. and Computer Sci., Creighton University, Nebraska, 1994.
- [8] L. A. Zadeh, Fuzzy sets, Information and Computation 8 (1965), 338–353.
- [9] J. Zhan and Z. Tan, Characterizations of doubt fuzzy H-ideals in BCK-algebras, Soochow Journal of Mathematics 29 (2003), no. 3, 293–298.

M. Akram: Punjab University College of Information Technology, University of The Punjab, Allama Iqbal Campus (Old Campus), P. O. Box 54000, Lahore, Pakistan *E-mail address*: m.akram@pucit.edu.pk

Jianming Zhan: Department of Mathematics, Hubei Institute for Nationalities, Enshi,

Hubei Province 445000, China

E-mail address: zhanjianming@hotmail.com