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We introduce and study a new class of generalized nonlinear mixed variational-like in-
equalities in reflexive Banach spaces. By applying Ding’s technique we prove several ex-
istence and uniqueness theorems of solutions for the generalized nonlinear mixed varia-
tional-like inequality, extend the auxiliary problem technique to suggest and analyze an it-
erative method to compute the approximate solutions of the generalized nonlinear mixed
variational-like inequality, and establish the convergence criteria of the iterative method.
The results presented in this paper improve, extend, and unify many known results in this
area.
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1. Introduction

Variational inequality theory has appeared as an effective and powerful tool to study and
investigate a wide class of problems arising in pure and applied sciences including elas-
ticity, optimization, economics, transportation, and structural analysis, see, for exam-
ple, [1–8, 10–37] and the references therein. The classical variational inequality problem
has been generalized in various directions for its own development and its applications.
Mixed variational-like inequality is an important and useful generalization of the classical
variational inequality. On the other hand, constructing effective numerical algorithm is
an important and difficult problem in the variational inequality theory. Cohen [3] first
extended the auxiliary variational inequality technique to suggest and analyze an inno-
vative iterative method for solutions of mixed variational inequalities in reflexive Banach
spaces. Ding [8] proved an existence-uniqueness theorem of solutions of a new class of
nonlinear mixed variational-like inequalities in reflexive Banach spaces by making use
of minimax inequality due to Ding and Tan [9]. Following the idea of Cohen [3], Ding
suggested and analyzed a quite general iterative method to compute the approximate so-
lutions and proved the convergence of the iterative method.

Motivated and inspired by the research work going on in this field, we will introduce
and study a new class of generalized nonlinear mixed variational-like inequalities in re-
flexive Banach spaces, which includes many variational inequalities and variational-like
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inequalities as special cases, for details, see [1–8, 10–37] and the references therein. Fol-
lowing the idea of Ding [8], we prove several existence and uniqueness theorems of solu-
tions for the generalized nonlinear mixed variational-like inequality, extend the auxiliary
problem technique to suggest and analyze an iterative method to compute the approxi-
mate solutions of the generalized nonlinear mixed variational-like inequality, and obtain
the convergence criteria of the iterative method. The results presented in this paper im-
prove, extend, and unify many known results in this area.

2. Preliminaries

Let D be a nonempty convex subset of a Banach space E with dual E∗ and let 〈u,v〉 be
the dual pairing between u∈ E∗ and v ∈ E. Let T ,A,B,C : D→ E∗, M,N : E∗ ×E∗ → E∗,
and η : D×D→ E be mappings. Let b : D×D→ R be a real-valued functional. Now we
consider the following generalized nonlinear mixed variational-like inequality problem.
For a given w∗ ∈ E∗, find u∈D such that

〈
N(Tu,Au)−M(Bu,Cu) +w∗,η(v,u)

〉
+ b(u,v)− b(u,u)≥ 0, ∀v ∈D, (2.1)

where the functional b is nondifferential and satisfies the following conditions:
(c1) b is linear in the first argument;
(c2) for each u∈D,b(u,·) is a convex and lower semicontinuous functional on D;
(c3) b is bounded, that is, there exists a constant ν > 0 such that

b(u,v)≤ ν‖u‖‖v‖, ∀u,v ∈D, (2.2)

(c4) for all u,v,w ∈D, b(u,v)− b(u,w)≤ b(u,v−w).

Special cases. (A) If M(Bu,Cu) = 0 for all u ∈ D, and −w∗ is given, then the problem
(2.1) reduces to the following variational-like inequality problem: for a given w∗ ∈ E∗,
find u∈D such that

〈
N(Tu,Au)−w∗,η(v,u)

〉
+ b(u,v)− b(u,u)≥ 0, ∀v ∈D, (2.3)

which was introduced and studied by Ding [8].
(B) If M(Bu,Cu) =M(Bu) for all u ∈ D, then the problem (2.1) is equivalent to the

following problem: for a given w∗ ∈ E∗, find u∈D such that

〈
N(Tu,Au)−M(Bu) +w∗,η(v,u)

〉
+ b(u,v)− b(u,u)≥ 0, ∀v ∈D. (2.4)

(C) If M(Bu)=w∗ for all u∈D, then the problem (2.4) is equivalent to the following
problem: find u∈D such that

〈
N(Tu,Au),η(v,u)

〉
+ b(u,v)− b(u,u)≥ 0, ∀v ∈D, (2.5)

which was introduced and considered by Liu and Tang [26].
(D) If η(v,u)= v−u, N(Tu,Au)= Tu−w∗, and b(u,v)= f (v) for all u,v ∈D, where

f : D→ (−∞,+∞), then the problem (2.5) is equivalent to the following problem: find
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u∈D such that

〈
Tu−w∗,v−u

〉
+ f (v)− f (u)≥ 0, ∀v ∈D, (2.6)

which is originally considered by Cohen [3].
For the appropriate and suitable choices of mappingsM,N , η, b, T ,A, B,C,D,w∗, and

the space E, we can obtain many known and new classes of variational inequalities and
variational-like inequalities as special cases of the problem (2.1), see [1–4, 6, 7, 16–19, 25]
and the references therein. In brief, the problem (2.1) is more general and a unifying one,
which is also one of the main motivations of this paper.

Now, we recall the following definitions and some known results.

Definition 2.1. Let D be a nonempty subset of a Banach space E with the dual space E∗.
Let T : D→ E∗ and η : D×D→ E be two mappings. The mapping T is called

(1) η-strongly monotone if there exists a constant α > 0 such that

〈
Tu−Tv,η(u,v)

〉≥ α‖u− v‖2, ∀u,v ∈D; (2.7)

(2) η-relaxed Lipschitz if there exists a constant α≥ 0 such that

〈
Tu−Tv,η(u,v)

〉≤−α‖u− v‖2, ∀u,v ∈D; (2.8)

(3) Lipschitz continuous if there exists a constant L > 0 such that

‖Tu−Tv‖ ≤ L‖u− v‖, ∀u,v ∈D; (2.9)

(4) η-generalized pseudocontractive if there exists a constant α > 0 such that

〈
Tu−Tv,η(u,v)

〉≤ α‖u− v‖2, ∀u,v ∈D; (2.10)

(5) η-relaxed monotone if there exists a constant α > 0 such that

〈
Tu−Tv,η(u,v)

〉≥−α‖u− v‖2, ∀u,v ∈D. (2.11)

Definition 2.2. Let D be a nonempty subset of a Banach space E with the dual space E∗,
let T ,A : D→ E∗, N : E∗ × E∗ → E∗, and η : D×D→ E be mappings, let N(T ,A)(u) =
N(Tu,Au).

(1) N is said to be Lipschitz continuous in the first argument if there exists a constant
α > 0 such that

∥
∥N(u,w)−N(v,w)

∥
∥≤ α‖u− v‖, ∀u,v,w ∈ E∗. (2.12)

(2) N is said to be η-cocoercive in the first argument with respect to T if there exists
a constant α > 0 such that

〈
N(Tu,w)−N(Tv,w),η(u,v)

〉≥ α‖Tu−Tv‖2, ∀u,v ∈D, w ∈ E∗. (2.13)
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(3) N is said to be η-strongly monotone in the first argument with respect to A if there
exists a constant α > 0 such that

〈
N(Au,w)−N(Av,w),η(u,v)

〉≥ α‖u− v‖2, ∀u,v ∈D, w ∈ E∗. (2.14)

(4) N is said to be η-relaxed monotone in the first argument with respect to A if there
exists a constant α > 0 such that

〈
N(Au,w)−N(Av,w),η(u,v)

〉≥−α‖u− v‖2, ∀u,v ∈D, w ∈ E∗. (2.15)

(5) N is said to be Lipschitz continuous in the first argument with respect to A if there
exists a constant α > 0 such that

∥
∥N(Au,w)−N(Av,w)

∥
∥≤ α‖u− v‖, ∀u,v ∈D, w ∈ E∗. (2.16)

(6) η is said to be Lipschitz continuous if there exists a constant δ ≥ 0 such that

∥
∥η(u,v)

∥
∥≤ δ‖u− v‖, ∀u,v ∈D. (2.17)

Similarly, the Lipschitz continuity, η-strong monotonicity, relaxed monotonicity, cocoer-
civity, and generalized pseudocontractivity of N can be defined in the second argument.

(7) N(Tu,Au) is said to be η-strongly monotone, if there exists a constant α > 0 such
that

〈
N(Tu,Au)−N(Tw,Aw),η(u,w)

〉≥ α‖u−w‖2, ∀u,w ∈D. (2.18)

(8) N(Tu,Au) is said to be η-generalized pseudocontractive if there exists a constant
α > 0 such that

〈
N(Tu,Au)−N(Tw,Aw),η(u,w)

〉≤ α‖u−w‖2, ∀u,w ∈D. (2.19)

The following notion is a generalization of the corresponding notion introduced by
Ding and Tarafdar [10].

Definition 2.3. Let D be a nonempty convex subset of a Banach space E. Let T : D→ E∗

and η : D×D→ E be mappings. T and η are said to have 0-diagonally concave relation
with respect to w∗ ∈ E∗, if the function ϕ : D×D→ (−∞,+∞] defined by

ϕ(u,v)= 〈Tu+w∗,η(u,v)
〉

(2.20)

is 0-diagonally concave in v, that is, for any finite set {v1, . . . ,vm} ⊂ D and for any u =
∑m

i=1 λivi with λi ≥ 0 and
∑m

i=1 λi = 1,
∑m

i=1 λiϕ(u,vi)≤ 0.

Remark 2.4. Let D be a nonempty convex subset of a Banach space E with the dual space
E∗. Let T : D→ E∗ and η : D×D→ E be mappings such that η(u,u) = 0 for all u ∈ D.
Suppose that for given u∈D and w∗ ∈ E∗, the functional v → 〈Tu+w∗,η(u,v)〉 is con-
cave. Then T and η have the 0-diagonally concave relation with respect to w∗.

Lemma 2.5 [8]. Let D be a nonempty convex subset of a topological vector space and let
ϕ : D×D→ [−∞,+∞] be such that
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(a) for each x ∈ D, y → ϕ(x, y) is lower semicontinuous on each nonempty compact
subset of D,

(b) for each nonempty finite set {x1, . . . ,xm} ⊂D and for each y =∑m
i=1 λixi with λi ≥ 0

and
∑m

i=1 λi = 1, min1≤i≤mϕ(xi, y)≤ 0,
(c) there exist a nonempty compact convex subset X0 of D and a nonempty compact

subset K of D such that for each y ∈ D \K , there is an x ∈ co(X0 ∪ {y}) with
ϕ(x, y) > 0.

Then there exists a ỹ ∈ K such that ϕ(x, ỹ)≤ 0 for all x ∈D.

3. Existence and uniqueness theorems

We now prove the following results.

Theorem 3.1. Let D be a nonempty convex subset of a reflexive Banach space E with dual
space E∗. Let T ,A,B,C : D → E∗, M,N : E∗ × E∗ → E∗, η : D×D → E be mappings, let
w∗ ∈ E∗ be given, and let b : D×D→ (−∞,+∞] be a functional such that

(a) the mapping u →N(Tu,Au) is continuous from the weak topology on E to the strong
topology on E∗ such thatN is η-strongly monotone in the first argument with respect
to T with constant α > 0, and is η-relaxed monotone in the second argument with
respect to A with constant λ > 0,

(b) the mapping u →M(Bu,Cu) is continuous from the weak topology on E to the
strong topology on E∗ such that M is η-generalized pseudocontractive in the first
argument with respect to B with constant β > 0, and is η-relaxed Lipschitz in the
second argument with respect to C with constant ξ > 0,

(c) η is Lipschitz continuous with constant δ ≥ 0 and for each v ∈ D, u → η(u,v) is
continuous from the weak topology to the weak topology and η(v,u)=−η(u,v) for
all u,v ∈D,

(d) the mapping u → N(Tu,Au)−M(Bu,Cu) and η have the 0-diagonally concave
relation with respect to w∗,

(e) b satisfies conditions (c1)–(c4) with ν + λ+β < α+ ξ.
Then the generalized nonlinear mixed variational-like inequality (2.1) has a unique so-

lution û∈D.

Proof. We first prove that for each fixed u∗ ∈D, there exists a unique ŵ ∈D such that

〈
N(Tŵ,Aŵ)−M(Bŵ,Cŵ) +w∗,η(v,ŵ)

〉
+ b
(
u∗,v

)− b
(
u∗,ŵ

)≥ 0, ∀v ∈D. (3.1)

For any fixed u∗ ∈D, define a functional ϕ : D×D→ (−∞,+∞] by

ϕ(v,w)= 〈N(Tw,Aw)−M(Bw,Cw) +w∗,η(w,v)
〉

+ b
(
u∗,w

)− b
(
u∗,v

)
, ∀v,w ∈D.

(3.2)

Since b satisfies the conditions (c3) and (c4), it is easy to see that b also satisfies
∣
∣b(u,v)− b(u,w)

∣
∣≤ ν‖u‖‖v−w‖, ∀u,v,w ∈D, (3.3)

and hence for each fixed u∈D, b(u,·) is continuous on D. Notice that the mappings w →
N(Tw,Aw) and w →M(Bw,Cw) are continuous from the weak topology to the strong
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topology. For each w ∈ D and any sequence {wn} ⊂ D with wn⇀ w in the weak topol-
ogy, we have limn→∞N(Twn,Awn) = N(Tw,Aw), limn→∞M(Bwn,Cwn) =M(Bw,Cw),
and η(wn,v)⇀ η(w,v) as n→∞ in the weak topology and the sequence {η(wn,v)} is
bounded. It follows that for each v ∈D,

∣
∣〈N

(
Twn,Awn

)−M
(
Bwn,Cwn

)
+w∗,η

(
wn,v

)〉

− 〈N(Tw,Aw)−M(Bw,Cw) +w∗,η(w,v)
〉∣∣

≤ ∣∣〈N(Twn,Awn
)−N(Tw,Aw),η

(
wn,v

)〉∣∣

+
∣
∣〈M

(
Bwn,Cwn

)−M(Bw,Cw),η
(
wn,v

)〉∣∣

+
∣
∣N(Tw,Aw)−M(Bw,Cw) +w∗,η

(
wn,v

)−η(w,v)
〉∣∣

≤ ∥∥N(Twn,Awn
)−N(Tw,Aw)

∥
∥
∥
∥η
(
wn,v

)∥∥

+
∥
∥M

(
Bwn,Cwn

)−M(Bw,Cw)
∥
∥
∥
∥η
(
wn,v

)∥∥

+
∣
∣〈N(Tw,Aw)−M(Bw,Cw) +w∗,η

(
wn,v

)−η(w,v)
〉∣∣−→ 0 as n−→∞.

(3.4)

It follows that for each v ∈ D, the functional w → 〈N(Tw,Aw) −M(Bw,Cw) +w∗,
η(w,v)〉 is weakly continuous on D. Therefore, w → ϕ(v,w) is weakly lower semicon-
tinuous on D. We claim that ϕ satisfies the condition (b) of Lemma 2.5. If it is false, then
there exists a finite set {v1, . . . ,vm} ⊂ D and w =∑m

i=1 λivi with λi ≥ 0,
∑m

i=1 λi = 1, such
that ϕ(vi,w) > 0 for all i= 1, . . . ,m, that is,

〈
N(Tw,Aw)−M(Bw,Cw) +w∗,η(w,vi)

〉
+ b(u∗,w)− b

(
u∗,vi

)
> 0, i= 1, . . . ,m.

(3.5)

It follows that

m∑

i=1

λi
〈
N(Tw,Aw)−M(Bw,Cw) +w∗,η(w,vi)

〉
+ b
(
u∗,w

)−
m∑

i=1

b
(
u∗,vi

)
> 0. (3.6)

Note that b(u,v) is convex in the second argument. It follows that

m∑

i=1

λi
〈
N(Tw,Aw)−M(Bw,Cw) +w∗,η(w,vi)

〉
> 0, (3.7)

which contradicts the condition (d) of Theorem 3.1. Therefore the condition (b) of
Lemma 2.5 holds. Let

r = 1
α− λ−β+ ξ

[
δ
∥
∥N
(
Tu∗,Au∗

)−M
(
Bu∗,Cu∗

)∥∥+ δ
∥
∥w∗

∥
∥+ ν

∥
∥u∗

∥
∥],

K = {w ∈D :
∥
∥w−u∗

∥
∥≤ r

}
.

(3.8)
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Then K and X0 = {u∗} are both weakly compact convex subsets of D. By the assumptions
(a)–(d), for each w ∈D \K , there exists a u∗ ∈ co(X0∪{w}) such that

ϕ
(
u∗,w

)= 〈N(Tw,Aw)−M(Bw,Cw) +w∗,η
(
w,u∗

)〉
+ b
(
u∗,w

)− b
(
u∗,u∗

)

= 〈N(Tw,Aw)−N
(
Tu∗,Aw

)
,η
(
w,u∗

)〉

+
〈
N
(
Tu∗,Aw

)−N
(
Tu∗,Au∗

)
,η
(
w,u∗

)〉

− 〈M(Bw,Cw)−M
(
Bu∗,Cw

)
,η
(
w,u∗

)〉

− 〈M(Bu∗,Cw
)−M

(
Bu∗,Cu∗

)
,η
(
w,u∗

)〉

+
〈
N
(
Tu∗,Au∗

)−M
(
Bu∗,Cu∗

)
+w∗,η

(
w,u∗

)〉

+ b
(
u∗,w

)− b
(
u∗,u∗

)

≥ ∥∥w−u∗
∥
∥[(α− λ−β+ ξ)

∥
∥w−u∗

∥
∥− δ

∥
∥w∗

∥
∥− δ

∥
∥

N
(
Tu∗,Au∗

)−M
(
Bu∗,Cu∗

)∥∥− ν
∥
∥u∗

∥
∥] > 0.

(3.9)

Hence the condition (c) of Lemma 2.5 is also satisfied. By Lemma 2.5, there exists a ŵ ∈ K
such that ϕ(v,ŵ)≤ 0 for all v ∈D, that is,

〈
N(Tŵ,Aŵ)−M(Bŵ,Cŵ) +w∗,η(ŵ,v)

〉
+ b
(
u∗,ŵ

)− b
(
u∗,v

)≤ 0, ∀v ∈D.
(3.10)

Since η(ŵ,v)=−η(v,ŵ), we see that

〈
N(Tŵ,Aŵ)−M(Bŵ,Cŵ) +w∗,η(v,ŵ)

〉
+ b
(
u∗,v

)− b
(
u∗,ŵ

)≥ 0, ∀v ∈D.
(3.11)

Now we prove that ŵ is a unique solution of the problem (3.1). Suppose that w1,w2 are
arbitrary two solutions of the problem (3.1). It follows that for all v ∈D,

〈
N
(
Tw1,Aw1

)−M
(
Bw1,Cw1

)
+w∗,η

(
v,w1

)〉
+ b
(
u∗,v

)− b
(
u∗,w1

)≥ 0, (3.12)
〈
N
(
Tw2,Aw2

)−M
(
Bw2,Cw2

)
+w∗,η

(
v,w2

)〉
+ b
(
u∗,v

)− b
(
u∗,w2

)≥ 0. (3.13)

Taking v = w2 in (3.12) and v = w1 in (3.13), and adding these inequalities, we obtain
that

〈
N
(
Tw1,Aw1

)−M
(
Bw1,Cw1

)−N
(
Tw2,Aw2

)
+M

(
Bw2,Cw2

)
,η(w2,w1)

〉≥ 0. (3.14)

By the η-strong monotonicity of N in the first argument and η-relaxed strong mono-
tonicity of N in the second argument, the η-generalized pseudocontractivity of M in the
first argument and η-relaxed Lipschitz continuity of M in the second argument, we get
that

(α− λ−β+ ξ)
∥
∥w1−w2

∥
∥2 ≤ 0. (3.15)
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Since β+ λ+ ν < α+ ξ, it follows that w1 =w2 and ŵ is the unique solution of the problem
(3.1). Thus we have proved that for each u∈D, there exists a unique solution w(u) satis-
fying (3.1). Define a mapping F : D→D by u →w(u)= Fu. We prove that the mapping F
is a contraction mapping. Indeed, for any u1,u2 ∈D, there exist w1 = F(u1), w2 = F(u2)
such that for all v ∈D,

〈
N
(
Tw1,Aw1

)−M
(
Bw1,Cw1

)
+w∗,η

(
v,w1

)〉
+ b
(
u1,v

)− b
(
u1,w1

)≥ 0, (3.16)
〈
N
(
Tw2,Aw2

)−M
(
Bw2,Cw2

)
+w∗,η

(
v,w2

)〉
+ b
(
u2,v

)− b
(
u2,w2

)≥ 0. (3.17)

Taking v =w2 in (3.16) and v =w1 in (3.17) and adding these inequalities, and consider-
ing the assumption on b and η, we have

∥
∥w1−w2

∥
∥≤ ν

α−β− λ+ ξ

∥
∥u1−u2

∥
∥, (3.18)

which implies that F is a contraction mapping. Hence there exists a unique point û∈D
such that û= F(û), that is,

〈
N(Tû,Aû)−M(Bû,Cû) +w∗,η(v, û)

〉
+ b(û,v)− b(û, û)≥ 0, ∀v ∈D, (3.19)

and û∈D is the unique solution of the generalized nonlinear mixed variational-like in-
equality problem (2.1). This completes the proof. �

As in the proof of Theorem 3.1, we have the following result.

Theorem 3.2. Let D, E, E∗, η, w∗ be as in Theorem 3.1. Let T ,A,B,C : D→ E∗, M,N :
E∗ ×E∗ → E∗ be mappings, and let b : D×D→ (−∞,+∞] be a functional such that

(a) the mapping u →N(Tu,Au) is continuous from the weak topology on E to the strong
topology on E∗ and η-strongly monotone with constant α1 > 0,

(b) the mapping u→M(Bu,Cu) is continuous from the weak topology on E to the
strong topology on E∗ and η-generalized pseudocontractive with constant α2 > 0,

(c) η satisfies the condition (c) of Theorem 3.1, and the condition (d) of Theorem 3.1
still holds,

(d) b satisfies conditions (c1)–(c4) with ν +α2 < α1.
Then the generalized nonlinear mixed variational-like inequality (2.1) has a unique so-

lution ū∈D.

Remark 3.3. Theorems 3.1 and 3.2 improve and generalize Dien [4, Theorem 2], Ding [6–
8, Theorems 3.1 and 3.2], Parida et al. [31, Theorems 3.1 and 3.9], and Yao [36, Theorem
3.1].

4. Iterative method and convergence

In this section, by using the auxiliary principle technique, we will give a general itera-
tive method of approximate solutions of the generalized nonlinear mixed variational-like
inequality problem (2.1) and convergence analysis of the iterative method.
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Let D be a nonempty convex subset of a reflexive Banach space E with dual space E∗.
Let N : E∗ × E∗ → E∗, T ,A,B,C : D → E∗ be mappings. Suppose that η : D×D → E is
a mapping such that η(v,u) = η(v,z) + η(z,u) for all v,u,z ∈ D. We consider an auxil-
iary differentiable convex functional K : D→ (−∞,+∞] and a positive number ρ > 0. For
given w∗ ∈D and u∗ ∈D, we introduce the following auxiliary minimizing problem:

min
w∈D

{
K(w) + ρ

〈
N
(
Tu∗,Au∗

)−M
(
Bu∗,Cu∗

)
+w∗,η

(
w,u∗

)〉

− 〈K ′(u∗),w〉+ ρb
(
u∗,w

)}
.

(4.1)

If the function w → 〈N(Tu∗,Au∗)−M(Bu∗,Cu∗) + w∗,η(w,u∗)〉 is convex, then the
solution w of the auxiliary problem (4.1) can be characterized by the following auxiliary
variational inequality problem:

〈
K ′(w)−K ′

(
u∗
)
,v−w

〉

≥−ρ〈N(Tu∗,Au∗
)−M

(
Bu∗,Cu∗

)
+w∗,η(v,u)

〉

+ ρb
(
u∗,w

)− ρb
(
u∗,v

)
, ∀v ∈D.

(4.2)

We note that if w = u∗, then u∗ is a solution of the generalized nonlinear mixed
variational-like inequality problem (2.1). Based on these observations, we suggest the fol-
lowing iterative method for computing the approximate solutions of the problem (2.1).

Algorithm 4.1. (a) At n= 0, start with some initial u0.
(b) At step n, solve the auxiliary minimizing problem (4.1) or the auxiliary variational

inequality problem (4.2) with u∗ = un. Let un+1 denote the solution of problem (4.1) or
(4.2).

(c) If, for given ε > 0, ‖un+1−un‖ ≤ ε, stop. Otherwise, repeat (b).

We now consider the convergence of Algorithm 4.1.

Theorem 4.2. Let D be a nonempty convex subset of a reflexive Banach space E with dual
space E∗. Let M,N : E∗ × E∗ → E∗, T ,A,B,C : D→ E∗ and η : D×D→ E be mappings.
Let w∗ ∈ E∗ be given let b : D×D→ (−∞,+∞] be a functional, and let K : E→ (−∞,+∞]
be a differentiable convex functional such that

(a) the mapping w → N(Tw,Aw) is continuous from the weak topology to the strong
topology, N is η-cocoercive in the first argument with respect to T with constant α >
0, and η-strongly monotone in the second argument with respect to A with constant
ξ > 0, and is Lipschitz continuous in the first and second arguments with constants
σ1 and σ2, respectively,

(b) the mapping w →M(Bw,Cw) is continuous from the weak topology to the strong
topology, M is η-generalized pseudocontractive in the first argument with respect to
B with constant β > 0, and η-relaxed Lipschitz in the second argument with respect
to C with constants σ > 0 and β > σ , and is Lipschitz continuous in the first and
second arguments with constants σ3 > 0 and σ4 > 0, respectively,

(c) A,B,C : D→ E∗ are Lipschitz continuous with constants σA,σB,σC, respectively,
(d) η is Lipschitz continuous with constant δ ≥ 0 such that
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(1) for each v ∈D, u → η(u,v) is continuous from the weak topology to the weak
topology;

(2) for all u,v,z ∈D, η(u,v)= η(u,z) +η(z,v);
(3) for each fixed u,w ∈ D, the function v → 〈N(Tu,Au)−M(Bu,Cu) + w∗,

η(w,v)〉 is concave,
(e) b satisfies conditions (c1)–(c4) and β+ ν < ξ + σ ,
(f) the derivative K ′ of K is strongly convex with constant μ > 0 and the mapping w →

K ′(w) is continuous from the weak topology to the strong topology.
Then

(A) the generalized nonlinear mixed variational-like inequality problem has a unique
solution (2.1) û∈D;

(B) for each ρ > 0, there exists a unique solution un+1 ∈ D of Problems (4.1) or (4.2)
with un substituted for u∗;

(C) if

0 < ρ <
2αμ(ξ + σ −β− ν)

σ2
1δ2(ξ + σ −β− ν) +α(σ2δσA + ν + σ3δσB + σ4δσC)2

, (4.3)

then the sequence {un} defined by Algorithm 4.1 strongly converges to û.

Proof. (A) In view of conditions (a) and (b), we get that the mapping u →N(Tu,Au) is η-
strongly monotone with constant ξ > 0 and the mapping u →M(Bu,Cu) is η-generalized
pseudocontractive with constant β− σ , respectively. Hence the conditions (a) and (b) of
Theorem 3.2 are satisfied. By (3) of (d), for each u ∈ D, the function v → 〈(Tu,Au)−
M(Bu,Cu) + w∗,η(u,v)〉 is concave, it follows from Remark 2.4 that condition (d) of
Theorem 3.1 holds. Noting that condition (2) of (d) implies that η(u,u)=0 and η(u,v)=
−η(v,u) for all u,v ∈D, it is easy to check that all conditions of Theorem 3.2 are satisfied.
By Theorem 3.2, the conclusion (A) holds.

(B) For each fixed ρ > 0 and un ∈D, define a functional ϕ : D×D→ [−∞,+∞] by

ϕ(v,w)= 〈K ′(un
)−K ′(w),v−w

〉

− ρ
〈
N
(
Tun,Aun

)−M
(
Bun,Cun

)
+w∗,η(v,w)

〉

+ ρb
(
un,w

)− ρb
(
un,v

)
.

(4.4)

Since w → K ′(w) is continuous from the weak topology to the strong topology, it is easy
to show that the function w → 〈K ′(w),w〉 is weakly continuous on D and for each v ∈D,
w → ϕ(v,w) is weak lower semicontinuous. By using similar argument as in the proof of
Theorem 3.1, it is easy to show that ϕ satisfied all conditions of Lemma 2.5, and hence
there exists ŵ ∈D such that

〈
K ′(ŵ)−K ′

(
un
)
,v− ŵ

〉

≥−ρ〈N(Tun,Aun
)−M

(
Bun,Cun

)
+w∗,η(v,ŵ)

〉

+ ρb
(
un,ŵ

)− ρb
(
un,v

)
, ∀v ∈D.

(4.5)
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It is easy to show that ŵ is unique, and hence un+1 = ŵ is a unique solution of the auxiliary
variational inequality problem (4.2).

(C) Let û be the unique solution of the generalized nonlinear mixed variational-like
inequality problem (2.1). Define a functional Λ : D→ (−∞,+∞] by

Λ(u)= K(û)−K(u)− 〈K ′(u), û−u
〉

, ∀u∈D. (4.6)

Since K ′ is strongly convex, it follows that

Λ(u)≥ μ

2
‖u− û‖2. (4.7)

Note that η(v,u)=−η(u,v) for all v,u∈D. It follows from (4.5) with un+1 = ŵ and v = û
that

Λ
(
un
)−Λ

(
un+1

)

= K
(
un+1

)−K
(
un
)− 〈K ′(un

)
,un+1−un

〉
+
〈
K ′
(
un+1

)−K ′
(
un
)
, û−un+1

〉

≥ μ

2

∥
∥un+1−un

∥
∥2

+ ρ
〈
N
(
Tun,Aun

)−M
(
Bun,Cun

)
+w∗,η

(
un+1, û

)〉

+ ρb
(
un,un+1

)− ρb
(
un, û

)

= μ

2

∥
∥un+1−un

∥
∥2

+ ρ
〈
N
(
Tun,Aun

)−M
(
Bun,Cun

)− (N(Tû,Aû)−M(Bû,Cû)),η
(
un+1, û

)〉

+ ρ
〈
N(Tû,Aû)−M(Bû,Cû) +w∗,η

(
un+1, û

)〉

+ ρb
(
un,un+1

)− ρb
(
un, û

)
.

(4.8)

Since û is a solution of the generalized nonlinear mixed variational-like inequality prob-
lem (2.1) and un+1 ∈D, it follows that

〈
N(Tû,Aû)−M(Bû,Cû) +w∗,η

(
un+1, û

)〉
+ b
(
û,un+1

)− b(û, û)≥ 0, (4.9)

which implies that

Λ
(
un
)−Λ

(
un+1

)≥ μ

2

∥
∥un−un+1

∥
∥2

+Q, (4.10)

where

Q = ρ
〈
N
(
Tun,Aun

)−M
(
Bun,Cun

)− (N(Tû,Aû)−M(Bû,Cû)
)
,η
(
un+1, û

)〉

− ρ
[
b
(
un− û, û−un

)
+ b
(
un− û,un−un+1

)]
.

(4.11)
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By the conditions (a)–(f), we deduce that

Q = ρ
〈
N
(
Tun,Aun

)−N(Tû,Aû),η
(
un+1,un

)〉

− ρ
〈
M
(
Bun,Cun

)−M(Bû,Cû),η
(
un+1,un

)〉

+ ρ
〈
N
(
Tun,Aun

)−N(Tû,Aû),η
(
un, û

)〉

− ρ
〈
M
(
Bun,Cun

)−M(Bû,Cû),η
(
un, û

)〉

− ρ
[
b
(
un− û, û−un

)
+ b
(
un− û,un−un+1

)]

≥ ρ
〈
N
(
Tun,Aun

)−N
(
Tû,Aun

)
,η
(
un, û

)〉

+ ρ
〈
N
(
Tû,Aun

)−N(Tû,Aû),η
(
un, û

)〉

+ ρ
〈
N
(
Tun,Aun

)−N
(
Tû,Aun

)
,η
(
un+1,un

)〉

+ ρ
〈
N
(
Tû,Aun

)−N(Tû,Aû),η
(
un+1,un

)〉

− ρ
〈
M
(
Bun,Cun

)−M
(
Bû,Cun

)
,η
(
un, û

)〉

− ρ
〈
M
(
Bû,Cun

)−M(Bû,Cû),η
(
un, û

)〉

− ρ
〈
M
(
Bun,Cun

)−M
(
Bû,Cun

)
,η
(
un+1,un

)〉

− ρ
〈
M
(
Bû,Cun

)−M(Bû,Cû),η
(
un+1,un

)〉

− ρν
[∥∥un− û

∥
∥2

+
∥
∥un− û

∥
∥
∥
∥un−un+1

∥
∥]

≥ ρ
[
α
∥
∥Tun−Tû

∥
∥2− σ1δ

∥
∥Tun−Tû

∥
∥
∥
∥un+1−un

∥
∥]

+ ρξ
∥
∥un− û

∥
∥2− ρσ2δσA

∥
∥un− û

∥
∥
∥
∥un+1−un

∥
∥− ρν

∥
∥un− û

∥
∥2

− ρν
∥
∥un− û

∥
∥
∥
∥un−un+1

∥
∥− ρβ

∥
∥un− û

∥
∥2

+ ρσ
∥
∥un− û

∥
∥2

− ρδσ3σB
∥
∥un− û

∥
∥
∥
∥un+1−un

∥
∥− ρδσ4σC

∥
∥un− û

∥
∥
∥
∥un+1−un

∥
∥

≥ ρ
[
− σ2

1δ
2

4α

]∥
∥un+1−un

∥
∥2

− ρ
(
σ2δσA + ν + δσ3σB + δσ4σC

)∥∥un− û
∥
∥
∥
∥un+1−un

∥
∥

+ ρ(ξ + σ −β− ν)
∥
∥un− û

∥
∥2
.

(4.12)

Therefore, we have

Λ
(
un
)−Λ

(
un+1

)

≥ 1
2

(
μ− ρσ2

1δ
2

2α

)∥
∥un+1−un

∥
∥2

− ρ
(
σ2δσA + ν + δσ3σB + δσ4σC

)∥∥un− û
∥
∥
∥
∥un+1−un

∥
∥

+ ρ(ξ + σ −β− ν)
∥
∥un− û

∥
∥2

≥
[

ρ(ξ + σ −β− ν)− ρ2
(
σ2δσA + ν + δσ3σB + δσ4σC

)2

2
(
μ− ρσ2

1δ2/2α
)

]
∥
∥un− û

∥
∥2
.

(4.13)
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The conditions (4.3), (4.7), and (4.13) show that the sequence {Λ(un)} is non-negative
and decreasing. Hence it converges to some number and the sequence {un} converges
strongly to û as n→∞. This completes the proof. �

Remark 4.3. Theorem 4.2 improves and generalizes Ding [7, Theorem 4.1], Ding [8, The-
orem 4.1 and Corollary 4.1], and Cohen [3, Theorem 2.2].
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