ON THE CONVERGENCE OF A NEWTON-LIKE METHOD IN \mathbb{R}^{n} AND THE USE OF BERINDE'S EXIT CRITERION

RABINDRANATH SEN, SULEKHA MUKHERJEE, AND RAJESH PATRA
Received 1 January 2006; Revised 11 August 2006; Accepted 21 August 2006

Berinde has shown that Newton's method for a scalar equation $f(x)=0$ converges under some conditions involving only f and f^{\prime} and not $f^{\prime \prime}$ when a generalized stopping inequality is valid. Later Sen et al. have extended Berinde's theorem to the case where the condition that $f^{\prime}(x) \neq 0$ need not necessarily be true. In this paper we have extended Berinde's theorem to the class of n-dimensional equations, $F(x)=0$, where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, \mathbb{R}^{n} denotes the n-dimensional Euclidean space. We have also assumed that $F^{\prime}(x)$ has an inverse not necessarily at every point in the domain of definition of F.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let F be a nonlinear continuous operator mapping $D_{0} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. D_{0} is an open convex subset of \mathbb{R}^{n}, the n-dimensional Euclidean space. We introduce componentwise partial ordering in \mathbb{R}^{n}.

Componentwise partial ordering in \mathbb{R}^{n} is defined as follows. For $x, y \in \mathbb{R}^{n}, x \leq y$ if and only if $x_{i} \leq y_{i}, i=1,2, \ldots, n$. Let $\langle a, b\rangle$ denote the order interval $\left\{x \in \mathbb{R}^{n} \mid a \leq x \leq b\right\}$.

We seek the solution of

$$
\begin{equation*}
F(x)=0 \quad \text { in }\langle a, b\rangle \subset D_{0} . \tag{1.1}
\end{equation*}
$$

In case the finite derivative $F^{\prime}(x)$ has an inverse at the iteration points, Newton's method is given by the iteration

$$
\begin{equation*}
x_{m+1}=x_{m}-\left[F^{\prime}\left(x_{m}\right)\right]^{-1} F\left(x_{m}\right), \quad x_{0} \in\langle a, b\rangle, m \geq 0 . \tag{1.2}
\end{equation*}
$$

The importance of Newton's method lies in the fact that it offers a quadratic convergence. Nevertheless this quadratic convergence is achieved after making certain assumptions about $F, F^{\prime}, F^{\prime \prime}$ (Ortega and Rheinboldt [6]). In case $F(x)=0$ is a scalar equation, Berinde (Berinde [1-4]) without making any assumption about the existence of $F^{\prime \prime}(x)$
has achieved linear convergence under the condition that $F^{\prime}(x) \neq 0$ in the interval under consideration. In the case of a scalar equation we have not assumed the conditions that $F^{\prime}(x) \neq 0$ (Sen et al. [9]). It has been shown that the sequence $\left\{x_{m}\right\}$ given by

$$
\begin{equation*}
x_{m+1}=x_{m}-\frac{2 F\left(x_{m}\right)}{F^{\prime}\left(x_{m}\right)+M_{m}^{\prime}}, \quad x_{0} \text { prechosen, } m=0,1,2, \ldots \tag{1.3}
\end{equation*}
$$

is convergent. In the above expression, $M=\sup _{x \in[a, b]}\left|F^{\prime}(x)\right|, M_{m}^{\prime}=M \cdot \operatorname{Sign} F^{\prime}\left(x_{m}\right)$.
In case $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ we proceed as follows. Let F be differentiable in $D_{0} \subseteq \mathbb{R}^{n}$ and let $F^{\prime}(x)=\left(a_{i j}(x)\right)$.

Let

$$
\begin{equation*}
A=\left(C_{i j}\right), \quad \text { where } 0 \geq C_{i j}=-\sup _{x}\left|a_{i j}(x)\right|, i \neq j, C_{i i} \geq \sup _{x} \sum_{j=1}^{n}\left|a_{i j}(x)\right| . \tag{1.4}
\end{equation*}
$$

We can show that under certain conditions $A+F^{\prime}(x)$ has an inverse even if $F^{\prime}(x)$ may not have an inverse. The Newton-like iterative sequence $\left\{x_{m}\right\}$ is given by

$$
\begin{equation*}
x_{m+1}=x_{m}-2\left[A+F^{\prime}\left(x_{m}\right)\right]^{-1} F\left(x_{m}\right), \quad x_{0} \in\langle a, b\rangle, m=0,1,2, \ldots . \tag{1.5}
\end{equation*}
$$

We show that under certain assumptions $\left\{x_{m}\right\}$ given by (1.2) converges to a solution of $F(x)=0$. The exit criterion has been established. Section 2 presents the mathematical preliminaries. Section 3 contains the convergence theorem, Section 4 an extension of Newton's method, Section 5 contains a numerical example, and Section 6 the discussion.

2. Preliminaries

By componentwise partial ordering in \mathbb{R}^{n}, we mean for $x, y \in \mathbb{R}^{n}$,

$$
\begin{gather*}
x<y \Longleftrightarrow x_{i}<y_{i}, \quad \forall i \\
x \leq y \Longleftrightarrow x_{i} \leq y_{i}, \quad \forall i, \text { but } x \neq y, \tag{2.1}\\
x \leqq y \Longleftrightarrow x_{i} \leq y_{i} .
\end{gather*}
$$

Let $L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ be the class of matrices which maps $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Let $P \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $P=\left(\tilde{a}_{i j}\right)$.

$$
\begin{gather*}
P>0 \Longleftrightarrow \tilde{a}_{i j}>0, \quad \forall i, j, \\
P \geqq 0 \Longleftrightarrow \tilde{a}_{i j} \geq 0, \quad \forall i, j, \tag{2.2}\\
P \geq 0 \Longleftrightarrow \tilde{a}_{i j} \geq 0, \quad \forall i, j, \text { but } P \neq 0 .
\end{gather*}
$$

Definition 2.1 (M-matrix, a Stieltjes matrix). A matrix $Q=\left(q_{i j}\right) \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ is said to be an M-matrix if $q_{i j} \leq 0$, for all $i, j, i \neq j$. Q^{-1} exists and $Q^{-1} \geq 0$ (Ortega and Rheinboldt [6]). A symmetric M-matrix is called a Stieltjes matrix.

Definition 2.2 (spectral radius). A spectral radius of a matrix H is denoted by $\rho(H)$ and $\rho(H)=\sup _{i}\left|\lambda_{i}\right|$, where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of H.

Theorem 2.3 (Ortega and Rheinboldt [6]). $A=\left(C_{i j}\right)$ is an M-matrix if and only if (i) the diagonal elements of A are positive, and (ii) the matrix $H=I-D^{-1} A$ where $D=$ $\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right)$ satisfies $\rho(H)<1$.

Lemma 2.4. The following results hold:
(i) $A=\left(C_{i j}\right)$ is an M-matrix,
(ii) $\left[A+F^{\prime}(x)\right]$ is an M-matrix, provided the condition

$$
\begin{equation*}
\sup _{x}\left(\sum_{k=1}^{n}\left|a_{i k}(x)\right|\right)+a_{i i}(x)>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left(\sup _{x}\left|a_{i j}(x)\right|-a_{i j}(x)\right) \tag{2.3}
\end{equation*}
$$

holds.
Proof. (i) Let D denote the diagonal matrix $\left(C_{i i}\right)$. Then $D>0$. Moreover $I-D^{-1} A$ is a matrix with zero diagonal elements and (i, j) th element $=-C_{i j} / C_{i i}, i \neq j$.

Therefore $\left\|I-D^{-1} A\right\|_{l_{1}}=\sup _{i}\left(\sum_{j, i \neq j}\left|C_{i j}\right| / C_{i i}\right)<1$, where $\|\cdot\|_{l_{1}}$ denotes l_{1}-norm.
Thus $\rho\left(I-D^{-1} A\right)$, the spectral radius (Ortega and Rheinboldt [6]) of $\left(I-D^{-1} A\right)$, is less than 1 . Hence A is an M-matrix.
(ii) We write $F^{\prime}(x)=D_{1}(x)-B_{1}(x)$ where the diagonal matrix $D_{1}(x)=\left(a_{i i}(x)\right)$ and the matrix $B_{1}(x)=\left(b_{i j}(x)\right)$, where $b_{i i}(x)=0$ and $b_{i j}(x)=-a_{i j}(x)$, for $i \neq j$.

Let $\tilde{A}=A+F^{\prime}(x)=D_{2}(x)-B_{2}(x)$, where the diagonal matrix is given by $D_{2}(x)=$ $\left(C_{i i}+a_{i i}(x)\right), C_{i i}+a_{i i}(x)>0$, and the matrix $B_{2}(x)=\left(b_{i j}^{\prime}(x)\right)$, where $b_{i j}^{\prime}(x)=\left(-C_{i j}-\right.$ $\left.a_{i j}(x)\right), b_{i i}^{\prime}=0$. Moreover, $b_{i j}^{\prime}(x)=\sup _{x}\left|a_{i j}(x)\right|-a_{i j}(x) \geqq 0$.

Let $I-D_{2}(x)^{-1} \tilde{A}=\left(e_{i j}(x)\right)$, where $e_{i i}(x)=0$ and

$$
\begin{equation*}
e_{i j}(x)=\frac{-C_{i j}-a_{i j}(x)}{C_{i i}+a_{i i}(x)} \leq \frac{\sup _{x}\left|a_{i j}(x)\right|-a_{i j}(x)}{\sup _{x} \sum_{k=1}^{n}\left|a_{i k}(x)\right|+a_{i i}(x)}, \quad i \neq j . \tag{2.4}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\left\|I-D_{2}(x)^{-1} \tilde{A}\right\|_{l_{1}} & =\sup _{i} \sum_{\substack{j=1 \\
j \neq i}}^{n}\left|e_{i j}(x)\right|=\sup _{i} \frac{\sum_{\substack{j \\
j \neq i}}\left|C_{i j}+a_{i j}(x)\right|}{\left|C_{i i}+a_{i i}(x)\right|} \tag{2.5}\\
& \leq \sup _{i} \frac{\sum_{j \neq i}^{j}\left(\sup _{x}\left|a_{i j}(x)\right|-a_{i j}(x)\right)}{\sup _{x} \sum_{k=1}^{n}\left|a_{i k}(x)\right|+a_{i i}(x)}<1
\end{align*}
$$

provided that

$$
\begin{equation*}
\sup _{x} \sum_{k=1}^{n}\left|a_{i k}(x)\right|+a_{i i}(x)>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left(\sup \left|a_{i j}(x)\right|-a_{i j}(x)\right), \quad \forall i . \tag{2.6}
\end{equation*}
$$

Thus $\rho\left(I-D_{2}(x)^{-1} \tilde{A}\right)<1$ provided the relation (2.6) holds for all i, j.

4 On convergence of a Newton-like method

3. Convergence

Theorem 3.1. Let the following conditions be fulfilled.
(i) $F: D_{0} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
(ii) D_{0} is an open convex subset $\subseteq \mathbb{R}^{n}$.
(iii) F is continuously differentiable in D_{0}.
(iv) F has a solution in the order-interval $\langle a, b\rangle \subseteq D_{0}$.
(v) $x_{0} \in\langle a, b\rangle$ is an initial approximation to the solution.
(vi) $A=\left(C_{i j}\right)$ is a matrix defined by (1.4).
(vii) $\left[A+F^{\prime}(x)\right]$ is a Stieltjes matrix.
(viii) $F^{\prime}(x)$ is symmetric for each x and $F^{\prime}(x) \geq 0$.
(ix) The eigenspaces of $\left[A+F^{\prime}(x)\right]^{-1}$ and of $F^{\prime}(x)$, respectively, have nonempty intersection.
(x) $\rho\left(F^{\prime}(x)\right)<\rho\left(\left[A+F^{\prime}(x)\right]^{-1}\right)^{-1}$, where ρ stands for the spectral radius.
(xi) $\rho(C(x))<1$ and $\rho(C(x))(1-\rho(C(x)))<1 / 2$, where

$$
\begin{equation*}
C(x)=\left[A+F^{\prime}(x)\right]^{-1} F^{\prime}\left(x+t\left(x^{*}-x\right)\right), \quad 0<t<1 . \tag{3.1}
\end{equation*}
$$

Then $\left\{x_{m}\right\}$ given by

$$
\begin{equation*}
x_{m+1}=x_{m}-2\left[A+F^{\prime}\left(x_{m}\right)\right]^{-1} F\left(x_{m}\right) \tag{3.2}
\end{equation*}
$$

will converge to a solution x^{*} of $F(x)=0$, provided that $\left\{x_{m}\right\} \subseteq\langle a, b\rangle$.
Proof. It follows from (3.2) and the application of mean-value theorem in \mathbb{R}^{n} that

$$
\begin{align*}
x_{m+1}-x^{*} & =x_{m}-x^{*}-2\left[A+F^{\prime}\left(x_{m}\right)\right]^{-1}\left(F\left(x_{m}\right)-F\left(x^{*}\right)\right) \\
& =\int_{0}^{1}\left[I-2\left[A+F^{\prime}\left(x_{m}\right)\right]^{-1} F^{\prime}\left(x_{m}+t\left(x^{*}-x_{m}\right)\right)\right] \cdot\left(x_{m}-x^{*}\right) d t \tag{3.3}
\end{align*}
$$

or

$$
\begin{equation*}
\left\|x_{m+1}-x^{*}\right\| \leq \sup _{0<t<1}\left\|I-2\left[A+F^{\prime}\left(x_{m}\right)\right]^{-1} F^{\prime}\left(x_{m}+t\left(x^{*}-x_{m}\right)\right)\right\|\left\|x_{m}-x^{*}\right\| . \tag{3.4}
\end{equation*}
$$

Since $F^{\prime}(x) \geq 0, F^{\prime}\left(x_{m}+t\left(x^{*}-x_{m}\right)\right) \geq 0$.
Also, $\left[A+F^{\prime}(x)\right]$ being a Stieltjes matrix is both symmetric and an M-matrix, $[A+$ $\left.F^{\prime}(x)\right]^{-1} \geq 0$. Therefore,

$$
\begin{equation*}
C(x)=\left[A+F^{\prime}(x)\right]^{-1} F^{\prime}\left(x+t\left(x^{*}-x\right)\right) \geq 0 . \tag{3.5}
\end{equation*}
$$

Let $B(x)=\left[I-2\left[A+F^{\prime}(x)\right]^{-1} F^{\prime}\left(x+t\left(x^{*}-x\right)\right)\right]$.
Since $C(x) \geq 0$, by the Perron-Frobenius theorem (Varga [12]), for a given $x, C(x)$ has an eigenvalue $\lambda(x)=\rho(C(x))$, with ρ being the spectral radius. Therefore, for a given x,
$B(x)$ has an eigenvalue $\mu(x)=1-2 \lambda^{\prime}(x)$, where $\lambda^{\prime}(x)$ is an eigenvalue of $C(x)$. If we use Euclidean norm of a vector and then matrix norm induced by the vector norm,

$$
\begin{equation*}
\|B\|=\left[\rho\left(B^{T} B\right)\right]^{1 / 2}, \quad \rho\left(B^{T} B\right)=\sup \left|\mu^{*} \mu\right|=\sup _{\lambda^{\prime}}\left|\left(1-2 \lambda^{\prime}\right)^{*}\left(1-2 \lambda^{\prime}\right)\right|<1 \tag{3.6}
\end{equation*}
$$

if $\left.\left|1-4 \operatorname{Re} \lambda^{\prime}+4\right| \lambda^{\prime}\right|^{2} \mid<1$ for all λ^{\prime}, or, if $\left|\lambda^{\prime}\right|^{2}<\operatorname{Re} \lambda^{\prime}<1 / 2+\left|\lambda^{\prime}\right|^{2}$.
Thus $\|B\|<1$ if

$$
\begin{equation*}
\rho(C(x))^{2}<\rho(C(x))<\frac{1}{2}+\rho(C(x))^{2} . \tag{3.7}
\end{equation*}
$$

The left-hand inequality in (3.7) yields $\rho(C(x))<1$, and the right-hand inequality in (3.7) yields $\rho(C(x))(1-\rho(C(x)))<1 / 2$ always true.

Thus by condition (xi) $\|B\|<1$.
If

$$
\begin{equation*}
\|B\|=\alpha<1, \quad\left\|x_{m+1}-x^{*}\right\| \leq \alpha\left\|x_{m}-x^{*}\right\| . \tag{3.8}
\end{equation*}
$$

Remark 3.2. The sequence $\left\{x_{m}\right\}$ given by (3.2) is convergent if conditions (ii)-(iv) of Theorem 3.1 are satisfied, if $\left[A+F^{\prime}(x)\right]$ is an M-matrix and $\left\|I-2\left[A+F^{\prime}\left(x_{m}\right)\right]^{-1} F^{\prime}(x)\right\|<1$.

The following theorem determines the stopping inequality.
Theorem 3.3. Let the conditions of Theorem 3.1 be true. Then the numerical computation of the sequence $\left\{x_{m}\right\}$ given by (3.2) is stopped when the following inequality is valid:

$$
\begin{equation*}
\left\|x_{m}-x^{*}\right\| \leq\left\|\left[I+A^{-1} F^{\prime}\left(x_{m}\right)\right]\right\|\|A\| \cdot\left(\sup _{0<t<1}\left\|F^{\prime}\left(x_{m}+t\left(x^{*}-x_{m}\right)\right)\right\|\right)^{-1}\left\|x_{m+1}-x_{m}\right\| . \tag{3.9}
\end{equation*}
$$

Proof. Equation (3.2) can be written as

$$
\begin{align*}
\left\|x_{m+1}-x_{m}\right\| & =2\left\|\left[A+F^{\prime}\left(x_{m}\right)\right]^{-1}\left[F\left(x_{m}\right)-F\left(x^{*}\right)\right]\right\| \\
& =\sup _{0<t<1}\left\|\int_{0}^{1}\left[A+F^{\prime}\left(x_{m}\right)\right]^{-1} F^{\prime}\left(x_{m}+t\left(x^{*}-x_{m}\right)\right) \cdot\left(x^{*}-x_{m}\right) d t\right\| \tag{3.10}\\
& \leq\left\|\left[A+F^{\prime}\left(x_{m}\right)\right]^{-1}\right\| \sup _{0<t<1}\left\|F^{\prime}\left(x_{m}+t\left(x^{*}-x_{m}\right)\right)\right\| \cdot\left\|x^{*}-x_{m}\right\| .
\end{align*}
$$

Since A and $A+F^{\prime}\left(x_{m}\right)$ are both M-matrices, $\left[I+A^{-1} F^{\prime}\left(x_{m}\right)\right]^{-1}$ exists, and therefore $\left\|\left(\left[I+A^{-1} F^{\prime}\left(x_{m}\right)\right]^{-1}\right)^{-1}\right\| \leq\left\|I+A^{-1} F^{\prime}\left(x_{m}\right)\right\|$.

Thus,

$$
\begin{align*}
\left\|x^{*}-x_{m}\right\| & \leq\left\|\left(\left[A+F^{\prime}\left(x_{m}\right)\right]^{-1}\right)^{-1}\right\|\left(\sup _{0<t<1}\left\|F^{\prime}\left(x_{m}+t\left(x^{*}-x_{m}\right)\right)\right\|\right)^{-1}\left\|x^{*}-x_{m}\right\| \\
& \leq\left\|I+A^{-1} F^{\prime}\left(x_{m}\right)\right\|\|A\|\left(\sup _{0<t<1}\left\|F^{\prime}\left(x_{m}+t\left(x^{*}-x_{m}\right)\right)\right\|\right)^{-1} \cdot\left\|x_{m+1}-x_{m}\right\| . \tag{3.11}
\end{align*}
$$

Note 3.4. The inequality (3.11) may be termed as "the exit criterion" because if $\| x_{m+1}-$ $x_{m} \|<\varepsilon, \varepsilon$ a small positive quantity, then $\left\|x^{*}-x_{m}\right\| \leq C_{m} \varepsilon$, where

$$
\begin{equation*}
C_{m}=\left\|\left[I+A^{-1} F^{\prime}\left(x_{m}\right)\right]\right\|\|A\|\left(\sup _{0<t<1}\left\|F^{\prime}\left(x_{m}+t\left(x^{*}-x_{m}\right)\right)\right\|\right)^{-1} \tag{3.12}
\end{equation*}
$$

4. The extension of Newton's method

However $\langle a, b\rangle$ is generally not an invariant set with respect to iterations (3.2); that is, it is possible to obtain a certain p such that $x_{p} \notin\langle a, b\rangle$. In case $x_{p}<a$ or $x_{p}>b$, the mapping $F(x)$ is extended throughout \mathbb{R}^{n} in the light of Berinde's extension, and the sequence $\left\{x_{m}\right\}$ given by (3.2) is extended throughout \mathbb{R}^{n}.

Theorem 4.1. Let the following conditions be fulfilled:
(i) $F(a) \leq 0$,
(ii) $F(x)$ is differentiable at a and A is an M-matrix (Ortega and Rheinboldt [6]),
(iii) $F(b) \geq 0$,
(iv) $F(x)$ is differentiable at b.

Then if x_{p} goes out of $\langle a, b\rangle, x_{p+1}$ will lie in $\langle a, b\rangle$.
Extend $F(x)$ throughout \mathbb{R}^{n} as follows:

$$
\widetilde{F}(x)= \begin{cases}A(x-a)+F(a) & x \leq a \tag{4.1}\\ F(x) & x \in\langle a, b\rangle \\ A(x-b)+F(b) & x \geq b\end{cases}
$$

Proof. If some iteration x_{p} does not lie in $\langle a, b\rangle$ we have either $x_{p}<a$ or $x_{p}>b$. In the first case applying (3.2) after extension to $\widetilde{F}(x)$ we get

$$
\begin{align*}
x_{p+1} & =x_{p}-2\left[A+\widetilde{F}^{\prime}\left(x_{p}\right)\right]^{-1} \widetilde{F}\left(x_{p}\right)=x_{p}-2[2 A]^{-1}\left[A\left(x_{p}-a\right)+F(a)\right] \\
& =x_{p}-\left(x_{p}-a\right)-A^{-1} F(a)=a-A^{-1} F(a)>a, \tag{4.2}
\end{align*}
$$

since A is an M-matrix and $F(a) \leq 0$. Therefore, $x_{p+1} \in\langle a, b\rangle$.
If $x_{p}>b$, repeating the same steps as above we get

$$
\begin{equation*}
x_{p+1}=x_{p}-2[2 A]^{-1}\left[A\left(x_{p}-b\right)+F(b)\right]=x_{p}-\left(x_{p}-b\right)-A^{-1} F(b)=b-A^{-1} F(b) \tag{4.3}
\end{equation*}
$$

Since A is an M-matrix and $F(b) \geq 0, A^{-1} F(b) \geq 0$. Hence $x_{p+1} \in\langle a, b\rangle$.

Thus beginning from a step $p_{0} \geq 0$, we necessarily have $x_{m} \in[a, b]$. If Theorems 3.1 and 4.1 are valid, $x_{m} \subseteq\langle a, b\rangle$ for $m \geq p_{0}$, and the convergence of $\left\{x_{m}\right\}$ to a solution x^{*} in $\langle a, b\rangle$ is guaranteed. Furthermore, the error estimate (3.8) and the exit criterion or the stopping inequality (3.9) are both valid.

5. Numerical example

Let $z=[x, y]^{T}, D_{0}=\langle-(\pi / 2), \pi\rangle \times\langle 0,1\rangle$.
$F(z)=\left\{\begin{array}{l}f_{1}(x, y) \\ f_{2}(x, y)\end{array}\right\}=\left\{\begin{array}{l}\left(x-\frac{\pi}{2}\right)^{3}+\left(\left(x-\frac{\pi}{2}\right) \sin \left(x-\frac{\pi}{2}\right)\right) y-0.752 \\ \pi^{2} y+\pi^{2} y^{3}-\left(x-\frac{\pi}{2}\right) \cos \left(x-\frac{\pi}{2}\right)+\sin \left(x-\frac{\pi}{2}\right)-\frac{5 \pi^{2}}{8}-0.152 .\end{array}\right.$

We are interested in solving $F(z)=0$ for $z \in D_{0}$.
Initial approximation $z_{0}=\left(x_{0}, y_{0}\right)^{T}$.

$$
\begin{gather*}
\frac{\partial f_{1}}{\partial x}=3\left(x-\frac{\pi}{2}\right)^{2}+\left(\sin \left(x-\frac{\pi}{2}\right)\right) y+\left(\left(x-\frac{\pi}{2}\right) \cos \left(x-\frac{\pi}{2}\right)\right) y \\
\frac{\partial f_{1}}{\partial y}=\left(x-\frac{\pi}{2}\right) \sin \left(x-\frac{\pi}{2}\right) \tag{5.2}\\
\frac{\partial f_{2}}{\partial x}=\left(x-\frac{\pi}{2}\right) \sin \left(x-\frac{\pi}{2}\right) \\
\frac{\partial f_{2}}{\partial y}=\pi^{2}+3 \pi^{2} y^{2}
\end{gather*}
$$

$F^{\prime}(z)$ is symmetric.
$F^{\prime}(z) \geq 0$ for all $x \in\langle-\pi, \pi\rangle$ and $y \in\langle 0,1\rangle$ except at $x=-\pi, y=\pi$.

$$
\begin{gather*}
F(a)=\left.F(x)\right|_{\substack{x=-\pi / 2 \\
y=0}}= \begin{cases}-\pi^{3}-0.752 \\
-\frac{5 \pi^{2}}{8}-\pi-0.152\end{cases} \\
F(b)=\left.F(x)\right|_{\substack{x=\pi \\
y=1}}= \begin{cases}\frac{\pi^{3}}{8}+\frac{\pi}{2}-0.752 \\
\frac{3 \pi^{2}}{8}+1-0.152\end{cases} \tag{5.3}
\end{gather*}
$$

$\left.F^{\prime}(z)\right|_{\substack{x=\pi / 2 \\ y=0}}$ does not have an inverse.
We choose A as

$$
A=\left(\begin{array}{cc}
2 & -1.5708 \tag{5.4}\\
-1.5708 & 22
\end{array}\right)
$$

and $\in=10^{-11}$, the desired accuracy is achieved in 17 iterations.

Starting from $x_{0}=1.5708$ and $y_{0}=0$, we obtain $x_{1}=2.67715530056448$ and $y_{1}=$ 0.45117812654687 ; and $x_{17}=2.35205300236830$ and $y_{17}=0.50014720328245$.

6. Discussion

(i) Convergence of Newton's method as proposed by Kantorovich (see [11]) is based on majorization principle which ensures that all the members of the sequence $\left\{x_{m}\right\}$ will lie in a small neighborhood of the initial approximation x_{0}. Hence majorization principle has not been used. But in order to ensure that $\left\{x_{m}\right\}$ does not go beyond $\langle a, b\rangle$, barring a finite number of members, an extended formula of the mapping F is taken.
(ii) Here the condition that $F^{\prime}(x) \neq 0$ has been relaxed and the extended method is called Newton-like method.
(iii) The convergence is linear.
(iv) The numerical equation under consideration being nonlinear has more than one solution, the x-component of one solution being $x^{*}=1.087961617$. In our case, the initial point taken is close to a point where the Jacobian becomes singular and the purpose is to show that the sequence of iterations (1.5) with the initial point mentioned above still converges to a solution of the given equation.
(v) For other modifications of Newton's method please see (Ortega and Rheinboldt [6], Keller [5], Sen [7, 8], Sen and Guhathakurta [10]).

Acknowledgment

The authors are grateful to the referees for constructive criticism.

References

[1] V. Berinde, An extension of the Newton-Raphson method for solving non-linear equations, Proceedings of the International Scientific Conference MICROCAD-SYSTEMS, Technical University, Kösice, 1993, pp. 63-64.
[2] \qquad , On some exit criteria for the Newton method, Novi Sad Journal of Mathematics 27 (1997), no. 1, 19-26.
[3] \qquad , On the convergence of the Newton method, Transactions of the Technical University of Kosice (1997), no. 1, 68-77.
[4] On the extended Newton's method, Advances in Difference Equations (S. Elaydi, I. Györi, and G. Ladas, eds.), Gordon and Breach, Amsterdam, 1997, pp. 81-88.
[5] H. B. Keller, Newton's method under mild differentiability conditions, Journal of Computer and System Sciences 4 (1970), no. 1, 15-28.
[6] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
[7] R. Sen, A modification of the Newton-Kantorovitch method, Mathematica (Cluj) 8 (31) (1966), 155-161.
[8] __ On a variant of Newton's method under relaxed differentiability conditions, Bulletin Mathématique de la Société des Sciences Mathématiques de la R. S. Roumanie 22(70) (1978), no. 1, 87-93.
[9] R. Sen, A. Biswas, R. Patra, and S. Mukherjee, An extension on Berinde's criterion for the convergence of a Newton-like method, to appear in Bulletin of the Calcutta Mathematical Society.
[10] R. Sen and P. Guhathakurta, On a variant of Ball Newton method under relaxed differentiability condition, Soochow Journal of Mathematics 19 (1993), no. 2, 199-211.
[11] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-day, California, 1964, with a chapter on Newton's method by L. V. Kantorovich and G. P. Akilov.
[12] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, New Jersey, 1962.
Rabindranath Sen: Department of Applied Mathematics, University College of Science, 92 A.P.C. Road, Calcutta 700009, India
E-mail address: rabindra33@rediffmail.com
Sulekha Mukherjee: Department of Mathematics, University of Kalyani, Kalyani 741 235, West Bengal, India
E-mail address: sulekham33@rediffmail.com
Rajesh Patra: Department of Mathematics, University of Kalyani, Kalyani 741 235, West Bengal, India
E-mail address: rajeshpatra33@rediffmail.com

