APPROXIMATION OF BOUNDED VARIATION FUNCTIONS BY A BÉZIER VARIANT OF THE BLEIMANN, BUTZER, AND HAHN OPERATORS

VIJAY GUPTA AND OGÜN DOĞRU

Received 21 March 2005; Revised 13 May 2006; Accepted 28 May 2006

We give a sharp estimate on the rate of convergence for the Bézier variant of Bleimann, Butzer, and Hahn operators for functions of bounded variation. We consider the case when $\alpha \geq 1$ and our result improves the recently established results of Srivastava and Gupta (2005) and de la Cal and Gupta (2005).

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Bleimann et al. [3] introduced an interesting sequence of positive linear operators defined on the space of real functions on the infinite interval $[0, \infty)$ by

$$
\begin{equation*}
L_{n}(f, x)=\sum_{k=0}^{n} b_{n, k}(x) f\left(\frac{k}{n-k+1}\right), \quad x \in[0, \infty), n \in \mathbb{N}, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{n, k}(x)=\binom{n}{k} \frac{x^{k}}{(1+x)^{n}} . \tag{1.2}
\end{equation*}
$$

The Bézier variant of these operators for $\alpha \geq 1$ is defined in [6] as

$$
\begin{equation*}
L_{n, \alpha}(f, x)=\sum_{k=0}^{n} Q_{n, k}^{(\alpha)}(x) f\left(\frac{k}{n-k+1}\right), \quad x \in[0, \infty), n \in \mathbb{N}, \tag{1.3}
\end{equation*}
$$

where $Q_{n, k}^{(\alpha)}(x)=J_{n, k}^{\alpha}(x)-J_{n, k+1}^{\alpha}(x)$ and $J_{n, k}(x)=\sum_{j=k}^{n} b_{n, j}(x)$.
As a special case $\alpha=1, L_{n, \alpha}(f, x)$ reduce to the operators $L_{n, 1}(f, x) \equiv L_{n}(f, x)$, defined by (1.1). Some approximation properties of the Bleimann, Butzer, and Hahn operators were discussed in [1, 2], and so forth. Very recently, de la Cal and Gupta [4] and Srivastava
and Gupta [6] studied the rate of approximation for the Bleimann, Butzer, and Hahn operators and its Bézier variant $(\alpha \geq 1)$, respectively.

We recall the Lebesgue-Stieltjes integral representation

$$
\begin{equation*}
L_{n, \alpha}(f, x)=\int_{0}^{\infty} f(t) d_{t}\left(K_{n, \alpha}(x, t)\right), \tag{1.4}
\end{equation*}
$$

where

$$
K_{n, \alpha}(x, t)= \begin{cases}\sum_{k \leq(n-k+1) t} Q_{n, k}^{(\alpha)}(x), & 0<t<\infty \tag{1.5}\\ 0, & t=0\end{cases}
$$

In this paper, we give a different and improved estimate on the rate of approximation for functions of bounded variation on the Bézier variant of Bleimann, Butzer, and Hahn operators.

2. Auxiliary results

In this section, we recall two lemmas, which are essential for our main theorem.
Lemma 2.1 [6, Lemma 3]. For all $x \in(0, \infty), \alpha \geq 1$, and $k \in \mathbb{N}$, there holds

$$
\begin{equation*}
Q_{n, k}^{(\alpha)}(x) \leq \alpha b_{n, k}(x)<\frac{\alpha(1+x)}{\sqrt{2 e n x}} . \tag{2.1}
\end{equation*}
$$

Lemma 2.2 [5, Lemma 3]. For $x \in(0, \infty)$,

$$
\begin{equation*}
\left|\sum_{k /(n-k+1)>x} b_{n, k}(x)-\frac{1}{2}\right| \leq \frac{|1-x|}{6 \sqrt{2 \pi(n+1) x}}+O\left(n^{-3 / 2}\right) \tag{2.2}
\end{equation*}
$$

3. Rate of convergence

Our main result is stated as follows.
Theorem 3.1. Let foe a function of bounded variation on every finite subinterval of $[0, \infty)$. Let $f(t)=O\left(t^{r}\right)$ for some $r \in \mathbb{N}$ as $t \rightarrow \infty$. Then for $x \in(0, \infty), \alpha \geq 1$, and for $n \rightarrow \infty$,

$$
\begin{align*}
& \left|L_{n, \alpha}(f, x)-2^{-\alpha} f(x+)-\left(1-2^{-\alpha}\right) f(x-)\right| \\
& \quad \leq \frac{9 \alpha(1+x)^{2}}{(n+2) x} \sum_{k=1}^{n} V_{x-x / \sqrt{k}}^{x+x / \sqrt{k}}\left(f_{x}\right)+\frac{\alpha|1-x|}{6 \sqrt{2 \pi(n+1) x}}|f(x+)-f(x-)| \tag{3.1}\\
& \quad+\frac{\alpha(1+x)}{\sqrt{2 e n x}} \varepsilon_{n}(x)|f(x)-f(x-)|+O\left(n^{-1}\right),
\end{align*}
$$

where

$$
\begin{align*}
& \varepsilon_{n}(x)= \begin{cases}1, & \text { if } \frac{x(n+1)}{1+x} \in \mathbb{N}, \\
0, & \text { otherwise },\end{cases} \\
& f_{x}(t)= \begin{cases}f(t)-f(x-), & \text { if } 0 \leq t<x, \\
0, & \text { if } t=x, \\
f(t)-f(x+), & \text { if } x<t<\infty,\end{cases} \tag{3.2}
\end{align*}
$$

and $V_{a}^{b}\left(f_{x}\right)$ is the total variation of f_{x} on $[a, b]$.
Proof. We have

$$
\begin{align*}
f(t)- & 2^{-\alpha} f(x+)-\left(1-2^{-\alpha}\right) f(x-) \\
= & f_{x}(t)+2^{-\alpha}(f(x+)-f(x-)) \operatorname{sign}^{(\alpha)}(t-x) \tag{3.3}\\
& +\left(f(x)-2^{-\alpha} f(x+)-\left(1-2^{-\alpha}\right) f(x-)\right) \delta_{x}(t)
\end{align*}
$$

where

$$
\operatorname{sign}^{(\alpha)}(t-x):=\left\{\begin{array}{ll}
2^{\alpha}-1, & \text { if } t>x, \tag{3.4}\\
0, & \text { if } t=x, \\
-1, & \text { if } t<x,
\end{array} \quad \delta_{x}(t)= \begin{cases}1, & \text { if } x=t \\
0, & \text { if } x \neq t\end{cases}\right.
$$

Therefore, we can write

$$
\begin{align*}
& \left|L_{n, \alpha}(f, x)-2^{-\alpha} f(x+)-\left(1-2^{-\alpha}\right) f(x-)\right| \\
& \leq\left|L_{n, \alpha}\left(f_{x}, x\right)\right|+\mid 2^{-\alpha}(f(x+)-f(x-)) L_{n, \alpha}\left(\operatorname{sign}^{(\alpha)}(t-x), x\right) \tag{3.5}\\
& +
\end{align*}
$$

and our first estimates are

$$
\begin{align*}
& L_{n, \alpha}\left(\operatorname{sign}^{(\alpha)}(t-x), x\right)=2^{\alpha} \sum_{k>(n-k+1) x} Q_{n, k}^{(\alpha)}(x)-1+\varepsilon_{n}(x) Q_{n, k^{\prime}}^{(\alpha)}(x) \\
&=2^{\alpha}\left(\sum_{k>(n-k+1) x} b_{n, k}(x)\right)^{\alpha}-1+\varepsilon_{n}(x) Q_{n, k^{\prime}}^{(\alpha)}(x), \tag{3.6}\\
& L_{n, \alpha}\left(\delta_{x}, x\right)=\varepsilon_{n}(x) Q_{n, k^{\prime}}^{(\alpha)}(x) .
\end{align*}
$$

4 Approximation by a Bézier variant of the BBH operators
Then we have

$$
\begin{align*}
G:= & \mid 2^{-\alpha}(f(x+)-f(x-)) L_{n, \alpha}\left(\operatorname{sign}^{(\alpha)}(t-x), x\right) \\
& +\left[f(x)-2^{-\alpha} f(x+)-\left(1-2^{-\alpha}\right) f(x-)\right] L_{n, \alpha}\left(\delta_{x}, x\right) \mid \\
= & \left|2^{-\alpha}(f(x+)-f(x-))\left[2^{\alpha} \sum_{k>(n-k+1) x} Q_{n, k}^{(\alpha)}(x)-1\right]+(f(x)-f(x-)) \varepsilon_{n}(x) Q_{n, k^{\prime}}^{(\alpha)}(x)\right| . \tag{3.7}
\end{align*}
$$

Using the mean value theorem, we get

$$
\begin{equation*}
\left|\sum_{k>(n-k+1) x} Q_{n, k}^{(\alpha)}(x)-2^{-\alpha}\right|=\alpha\left(\xi_{n, k}(x)\right)^{\alpha-1}\left|\sum_{k>(n-k+1) x} b_{n, k}(x)-2^{-1}\right|, \tag{3.8}
\end{equation*}
$$

where $\xi_{n, k}(x)$ lies between 2^{-1} and $\sum_{k>(n-k+1) x} b_{n, k}(x)$. Because of Lemma 2.2, it is easily seen that the intermediate point $\xi_{n, k}(x)$ is close to 2^{-1} for sufficiently large n. Then we can write $\xi_{n, k}(x)=(2+\varepsilon)^{-1}$ for each $\varepsilon>0$. Thus, we have

$$
\begin{equation*}
\left(\xi_{n, k}(x)\right)^{\alpha-1}=(2+\varepsilon)^{1-\alpha} \leq 1 \tag{3.9}
\end{equation*}
$$

for each $\alpha \geq 1$. By using (3.9) and Lemma 2.2 in (3.8), we obtain

$$
\begin{equation*}
\left|\sum_{k>(n-k+1) x} Q_{n, k}^{(\alpha)}(x)-2^{-\alpha}\right| \leq \frac{\alpha|1-x|}{6 \sqrt{2 \pi(n+1) x}}+O\left(n^{-3 / 2}\right) \tag{3.10}
\end{equation*}
$$

Hence, by using (3.10) in (3.7) and Lemma 2.1, we obtain

$$
\begin{equation*}
G \leq \frac{\alpha|1-x|}{6 \sqrt{2 \pi(n+1) x}}|f(x+)-f(x-)|+\frac{\alpha(1+x)}{\sqrt{2 e n x}} \varepsilon_{n}(x)|f(x)-f(x-)|+O\left(n^{-3 / 2}\right) \tag{3.11}
\end{equation*}
$$

On the other hand, to estimate $L_{n, \alpha}\left(f_{x}, x\right)$, we break the Lebesgue-Stieltjes integral into four parts as follows:

$$
\begin{equation*}
L_{n, \alpha}\left(f_{x}, x\right)=\left(\int_{0}^{x-x / \sqrt{n}}+\int_{x-x / \sqrt{n}}^{x+x / \sqrt{n}}+\int_{x+x / \sqrt{n}}^{2 x}+\int_{2 x}^{\infty}\right) f_{x}(t) d_{t}\left(K_{n, \alpha}(x, t)\right) \tag{3.12}
\end{equation*}
$$

then, by proceeding along the lines of [6], we get

$$
\begin{equation*}
\left|L_{n, \alpha}\left(f_{x}, x\right)\right| \leq \frac{9 \alpha(1+x)^{2}}{(n+2) x} \sum_{k=1}^{n} V_{x-x / \sqrt{k}}^{x+x) \sqrt{k}}\left(f_{x}\right)+O\left(n^{-1}\right) \tag{3.13}
\end{equation*}
$$

Using (3.11) and (3.13) in (3.5), we get the desired result. This completes the proof of Theorem 3.1.

Notice that for the case $0<\alpha<1$, these results can be found in [5].

Acknowledgment

The authors are thankful to the referees for making valuable suggestions leading to the overall improvement of this paper.

References

[1] U. Abel and M. Ivan, Some identities for the operator of Bleimann, Butzer and Hahn involving divided differences, Calcolo 36 (1999), no. 3, 143-160.
[2] ,Best constant for a Bleimann-Butzer-Hahn moment estimation, East Journal on Approximations 6 (2000), no. 3, 349-355.
[3] G. Bleimann, P. L. Butzer, and L. Hahn, A Bernštečn-type operator approximating continuous functions on the semi-axis, Indagationes Mathematicae 42 (1980), no. 3, 255-262.
[4] J. de la Cal and V. Gupta, On the approximation of locally bounded functions by operators of Bleimann, Butzer and Hahn, Journal of Inequalities in Pure and Applied Mathematics 6 (2005), no. 1, 1-10, article 4.
[5] V. Gupta and A. Lupas, Rate of approximation for Bézier variant of Bleiman, Butzer and Hahn operators, General Mathematics 13 (2005), no. 1, 41-54.
[6] H. M. Srivastava and V. Gupta, Rate of convergence for the Bézier variant of the Bleimann-ButzerHahn operators, Applied Mathematics Letters 18 (2005), no. 8, 849-857.

Vijay Gupta: School of Applied Sciences, Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi 110045, India
E-mail address: vijay@nsit.ac.in
Ogün Doğru: Department of Mathematics, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
E-mail address: dogru@science.ankara.edu.tr

