STARLIKENESS AND CONVEXITY OF A CLASS OF ANALYTIC FUNCTIONS

NIKOLA TUNESKI AND HÜSEYİN IRMAK

Received 4 July 2006; Revised 4 August 2006; Accepted 10 August 2006

Let \mathcal{A} be the class of analytic functions in the unit disk that are normalized with f(0) = f'(0) - 1 = 0 and let $-1 \le B < A \le 1$. In this paper we study the class $G_{\lambda,\alpha} = \{f \in \mathcal{A} : |(1 - \alpha + \alpha z f''(z)/f'(z))/z f'(z)/f(z) - (1 - \alpha)| < \lambda, z \in \mathcal{U}\}, 0 \le \alpha \le 1$, and give sharp sufficient conditions that embed it into the classes $S^*[A,B] = \{f \in \mathcal{A} : zf'(z)/f(z) \prec (1 + Az)/(1 + Bz)\}$ and $K(\delta) = \{f \in \mathcal{A} : 1 + zf''(z)/f'(z) \prec (1 - \delta)(1 + z)/(1 - z) + \delta\}$, where " \prec " denotes the usual subordination. Also, sharp upper bound of $|a_2|$ and of the Fekete-Szegö functional $|a_3 - \mu a_2^2|$ is given for the class $G_{\lambda,\alpha}$.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and preliminaries

A region Ω from the complex plane \mathbb{C} is called convex if for every two points $\omega_1, \omega_2 \in \Omega$, the closed line segment $[\omega_1, \omega_2] = \{(1 - t)\omega_1 + t\omega_2 : 0 \le t \le 1\}$ lies in Ω . Fixing $\omega_1 = 0$ brings the definition of starlike region. If \mathcal{A} denotes the class of functions f(z) that are analytic in the unit disk $\mathcal{U} = \{z : |z| < 1\}$ and normalized by f(0) = f'(0) - 1 = 0, then a function $f \in \mathcal{A}$ is called *convex* or *starlike* if it maps \mathcal{U} into a convex or starlike region, respectively. Corresponding classes are denoted by K and S^* . It is well known that $K \subset S^*$, and it is well known that both are subclasses of the class of univalent functions and have the following analytical representations:

$$f \in K \iff \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0, \quad z \in \mathcal{U},$$

$$f \in S^* \iff \operatorname{Re}\frac{zf'(z)}{f(z)} > 0, \quad z \in \mathcal{U}.$$
(1.1)

More about these classes may be found in [2].

Further, let $f,g \in \mathcal{A}$. Then we say that f(z) is *subordinate* to g(z), and we write $f(z) \prec g(z)$, if there exists a function $\omega(z)$, analytic in the unit disk \mathcal{U} , such that $\omega(0) = 0$,

 $|\omega(z)| < 1$, and $f(z) = g(\omega(z))$ for all $z \in \mathcal{U}$. Specially, if g(z) is univalent in \mathcal{U} , then $f(z) \prec g(z)$ if and only if f(0) = g(0) and $f(\mathcal{U}) \subseteq g(\mathcal{U})$.

In terms of subordination, we have

$$S^* = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \frac{1+z}{1-z} \right\}, \qquad K = \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} \prec \frac{1+z}{1-z} \right\}.$$
(1.2)

If $-1 \le B < A \le 1$, then a generalization of class S^* is

$$S^*[A,B] = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz} \right\}.$$
(1.3)

Geometrically, this means that the image of \mathfrak{A} by zf'(z)/f(z) is inside the open disk centered on the real axis with diameter endpoints (1 - A)/(1 - B) and (1 + A)/(1 + B). Special selection of *A* and *B* leads us to the following classes: $S^*[1, -1] \equiv S^*$, $S^*[1 - 2\alpha, -1] \equiv S^*(\alpha)$ -class of starlike functions of order α , $0 \le \alpha < 1$, and $K(\alpha)$ is the class of convex functions of order α , $0 \le \alpha < 1$, defined by $f(z) \in K(\alpha)$ if and only if $zf'(z) \in S^*(\alpha)$, that is,

$$\operatorname{Re}\left(1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right) > \alpha, \quad z \in \mathcal{U}.$$
(1.4)

These classes are widely studied during the past decades, mainly in two different directions: for developing criteria for starlikeness or convexity and for obtaining properties of the Maclaurin coefficients of a starlike or convex function. In this paper sufficient conditions (some of them sharp) that embed the class

$$G_{\lambda,\alpha} = \left\{ f \in \mathcal{A} : \left| \frac{1 - \alpha + \alpha z f''(z) / f'(z)}{z f'(z) / f(z)} - (1 - \alpha) \right| < \lambda, z \in \mathcal{U} \right\},\tag{1.5}$$

 $0 < \alpha \le 1, \lambda > 0$, into the classes $S^*[A, B]$ and $K(\delta), 0 \le \delta < 1$, will be given, together with sharp upper bound of the Fekete-Szegö functional $|a_3 - \mu a_2^2|, \mu \in \mathbb{R}$. Sufficient motivation for studying the class $G_{\lambda,\alpha}$ is the fact that it makes close connection between classes,

$$G_{\lambda,1/2} = \left\{ f \in \mathcal{A} : \left| \frac{1 + zf''(z)/f'(z)}{zf'(z)/f(z)} - 1 \right| < 2\lambda, z \in \mathcal{U} \right\},$$

$$G_{\lambda,1} = \left\{ f \in \mathcal{A} : \left| \frac{f(z)f''(z)}{f'^2(z)} \right| < \lambda, z \in \mathcal{U} \right\},$$

$$G_{\lambda,1/(2-\gamma)} = \left\{ f \in \mathcal{A} : \left| \frac{1 - \gamma + zf''(z)/f'(z)}{zf'(z)/f(z)} - (1 - \gamma) \right| < \lambda(2 - \gamma), z \in \mathcal{U} \right\},$$
(1.6)

studied in [1, 6-9, 11-13] and other references.

2. Conditions for starlikeness and convexity

For obtaining the result for convexity and starlikeness of the class $G_{\lambda,\alpha}$, we will use the method of differential subordinations. Valuable reference on this topic is [5]. The general theory of differential subordinations, as well as the theory of first-order differential

subordinations, was introduced by Miller and Mocanu in [3, 4]. Namely, if $\phi : \mathbb{C}^2 \to \mathbb{C}$ is analytic in a domain *D*, if h(z) is univalent in \mathfrak{U} , and if p(z) is analytic in \mathfrak{U} with $(p(z), zp'(z)) \in D$ when $z \in \mathfrak{U}$, then p(z) is said to satisfy a first-order differential subordination if

$$\phi(p(z), zp'(z)) \prec h(z). \tag{2.1}$$

The univalent function q(z) is said to be a *dominant* of the differential subordination (2.1) if $p(z) \prec q(z)$ for all p(z) satisfying (2.1). If $\tilde{q}(z)$ is a dominant of (2.1) and $\tilde{q}(z) \prec q(z)$ for all dominants of (2.1), then we say that $\tilde{q}(z)$ is the *best dominant* of the differential subordination (2.1).

From the theory of first-order differential subordinations, we will make use of the following lemma.

LEMMA 2.1 (see [4]). Let q(z) be univalent in the unit disk \mathfrak{A} , and let $\theta(\omega)$ and $\phi(\omega)$ be analytic in a domain D containing $q(\mathfrak{A})$, with $\phi(\omega) \neq 0$ when $\omega \in q(\mathfrak{A})$. Set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$, and suppose that

(i) $Q(z) \in S^*$;

(ii) $\operatorname{Re}(zh'(z)/Q(z)) = \operatorname{Re}\{\theta'(q(z))/\phi(q(z)) + zQ'(z)/Q(z)\} > 0, z \in \mathcal{U}.$ If p(z) is analytic in \mathcal{U} , with $p(0) = q(0), p(\mathcal{U}) \subseteq D$, and

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)) = h(z),$$
(2.2)

then $p(z) \prec q(z)$, and q(z) is the best dominant of (2.2).

In the beginning, using Lemma 2.1 we will prove the following result.

Theorem 2.2. Let $f \in A$, $-1 \le B < A \le 1$, and $(1 + |A|)/(3 + |A|) \le \alpha \le 1$. If

$$\frac{1 - \alpha + \alpha z f''(z) / f'(z)}{z f'(z) / f(z)} \prec \alpha + (1 - 2\alpha) \frac{1 + Bz}{1 + Az} + \frac{\alpha z (A - B)}{(1 + Az)^2} \equiv h(z),$$
(2.3)

then $f \in S^*[A, B]$. This result is sharp.

Proof. We choose p(z) = f(z)/zf'(z), q(z) = (1 + Bz)/(1 + Az), $\theta(\omega) = (1 - 2\alpha)\omega + \alpha$, and $\phi(\omega) = -\alpha$. Then q(z) is convex, thus univalent, because 1 + zq''(z)/q'(z) = (1 - Az)/(1 + Az); $\theta(\omega)$ and $\phi(\omega)$ are analytic in the domain $D = \mathbb{C}$ which contains $q(\mathcal{U})$ and $\phi(\omega)$ when $\omega \in q(\mathcal{U})$. Further,

$$Q(z) = zq'(z)\phi(q(z)) = \frac{\alpha(A-B)z}{(1+Az)^2}$$
(2.4)

is starlike because zQ'(z)/Q(z) = (1 - Az)/(1 + Az). Further,

$$h(z) = \theta(q(z)) + Q(z) = \alpha + (1 - 2\alpha)\frac{1 + Bz}{1 + Az} + \frac{\alpha z(A - B)}{(1 + Az)^2},$$

$$\operatorname{Re}\frac{zh'(z)}{Q(z)} = \operatorname{Re}\left(1 - \frac{1}{\alpha} + \frac{2}{1 + Az}\right) > 1 - \frac{1}{\alpha} + \frac{2}{1 + |A|},$$
(2.5)

 $z \in \mathcal{U}$, which is greater or equal to zero if and only if $\alpha \ge (1 + |A|)/(3 + |A|)$. Therefore from Lemma 2.1, it follows that $p(z) \prec q(z)$, that is, $f \in S^*[A, B]$.

The result is sharp as the functions ze^{Az} and $z(1+Bz)^{A/B}$ show in the cases B = 0 and $B \neq 0$, respectively.

Remark 2.3. According to the definition of subordination, the sharpness of the result of Theorem 2.2 means that $h(\mathfrak{A})$ is the greatest region in the complex plane with the property that if

$$\frac{1 - \alpha + \alpha z f^{\prime\prime}(z) / f'(z)}{z f^{\prime}(z) / f(z)} \in h(\mathfrak{A})$$
(2.6)

for all $z \in \mathcal{U}$, then $f(z) \in S^*[A, B]$.

The following corollary gives sharp sufficient conditions that embed $G_{\lambda,\alpha}$ into $S^*[A,B]$. COROLLARY 2.4. Let $-1 \le B < A \le 1$ and $(1 + |A|)/(3 + |A|) \le \alpha \le 1$. Then

$$\lambda = (A - B) \cdot \frac{(1 - 2\alpha)|A| - (1 - 3\alpha)}{(1 + |A|)^2}$$
(2.7)

is the greatest number such that $G_{\lambda,\alpha} \subseteq S^*[A,B]$ *.*

Proof. In order to prove this corollary, due to Theorem 2.2 it is enough to show that

$$\lambda = \min\left\{ \left| h(z) - (1 - \alpha) \right| : |z| = 1 \right\} \equiv \widehat{\lambda},$$
(2.8)

where h(z) is defined as in the statement of the theorem and

$$h(z) - (1 - \alpha) = -z(A - B) \cdot \frac{A(1 - 2\alpha)z + 1 - 3\alpha}{(1 + Az)^2}.$$
(2.9)

Further, let

$$\psi(t) \equiv |h(e^{i\gamma\pi/2}) - (1-\alpha)|^2$$

= $(A-B)^2 \cdot \frac{[(1-2\alpha)^2 A^2 + 2(1-3\alpha)(1-2\alpha)At + (1-3\alpha)^2]}{(1+2At+A^2)^2},$ (2.10)

 $t = \cos(\gamma \pi/2) \in [-1, 1]$. Thus $\hat{\lambda} = \min\{\sqrt{\psi(t)} : -1 \le t \le 1\}$.

If $\alpha \le 1/2$, then $1 - 2\alpha \ge 0$ and having in mind that $1 - 3\alpha \le -2|A|/(3 + |A|) \le 0$, we receive that $\psi(t)$ is a monotone function and

$$\hat{\lambda} = \min\left\{\sqrt{\psi(-1)}, \sqrt{\psi(1)}\right\} = \min\left\{\left|h(-1) - (1-\alpha)\right|, \left|h(1) - (1-\alpha)\right|\right\} = \lambda.$$
(2.11)

The last equality holds because $1 - 3\alpha \pm A(1 - 2\alpha) \ge 0$ is equivalent to $\alpha \ge (1 + |A|)/(3 + |A|) \ge (1 - |A|)/(3 - 2|A|)$.

If $\alpha > 1/2$, we have the following analysis. Equation $\psi'_t(t) = 0$ has unique solution

$$t_* = -\frac{A^2(1-\alpha)(1-2\alpha) + (1-3\alpha)(1-4\alpha)}{2A(1-2\alpha)(1-3\alpha)}.$$
(2.12)

It can be verified that $|t_*| > 1$ is equivalent to

$$\varphi(A,\alpha) \equiv A^2(1-\alpha)(1-2\alpha) - 2|A|(1-2\alpha)(1-3\alpha) + (1-3\alpha)(1-4\alpha) > 0.$$
(2.13)

Now, $\varphi(A, \alpha)$ is a decreasing function of $|A| \in [0, 1]$ which implies that $\varphi(A, \alpha) \ge \varphi(1, \alpha) = 2\alpha^2 > 0$. Thus, $|t_*| > 1$, which implies that $\psi(t)$ is a monotone function on [-1, 1] leading to $\hat{\lambda} = \min\{\sqrt{\psi(t)} : -1 \le t \le 1\} = \min\{\sqrt{\psi(-1)}, \sqrt{\psi(1)}\} = \min\{|h(-1) - (1 - \alpha)|, |h(1) - (1 - \alpha)|\}$. At the end, the function

$$\eta(A,\alpha) \equiv |h(1) - (1-\alpha)| - |h(-1) - (1-\alpha)| = 2A \cdot \frac{1 - A^2 - 2\alpha(2 - A^2)}{(1+A)^2(1-A)^2}$$
(2.14)

has the opposite sign of the sign of coefficient A. Therefore,

$$\hat{\lambda} = \begin{cases} |h(1) - (1 - \alpha)|, & A \ge 0\\ |h(-1) - (1 - \alpha)|, & A < 0 \end{cases} = \lambda.$$
(2.15)

Sharpness of the result follows from the sharpness of Theorem 2.2 (see Remark 2.3) and the fact that the obtained λ is the greatest, which embeds the disk $|\omega - (1 - \alpha)| < \lambda$ in $h(\mathcal{U})$.

The following example exhibits some concrete conclusions that can be obtained from the results of the previous section by specifying the values α , *A*, *B*.

Example 2.5. Let $-1 \le B < A \le 1$.

- (i) $G_{\lambda,1/2} \subseteq S^*[A,B]$ when $\lambda = (A B)/2(1 + |A|)^2$.
- (ii) $G_{\lambda,1} \subseteq S^*[A,B]$ when $\lambda = (A-B) \cdot (2-|A|)/2(1+|A|)^2$.
- (iii) $G_{\lambda,1/(2-\gamma)} \subseteq S^*[A,B]$ when $\gamma \ge -(1-|A|)/(1+|A|)$ and $\lambda = (A-B) \cdot (1+\gamma \gamma|A|)/2(1+|A|)^2$.
- (iv) $G_{\lambda,\alpha} \subseteq S^*$ when $1/2 \le \alpha \le 1$ and $\lambda = \alpha/2$.

(v) $G_{\lambda,\alpha} \subseteq S^*[0,B] \subset S^*(1/(1-B))$ when $1/3 \leq \alpha \leq 1, -1 \leq B < 0$ and $\lambda = B(1-3\alpha)$. The value of λ in each of the above cases is the greatest that makes the corresponding inclusion true.

Remark 2.6. The result from Example 2.5(i) is the same as in [13, Corollary 2.6]. Also, for $\alpha = 1/2$ in Example 2.5(v), we receive the same result as in [6, Theorem 1]. Finally, for $\alpha = 1$ and B = -1 in Example 2.5(v), we receive the same result as in [11, Corollary 2].

Next theorem studies connection between $G_{\lambda,\alpha}$ and the class of convex functions of some order.

THEOREM 2.7.
$$G_{\lambda,\alpha} \subseteq K(2-1/\alpha)$$
 when $1/2 \leq \alpha < 1$ and $\lambda = (1-\alpha)(3\alpha-1)/\sqrt{2}(5\alpha^2-4\alpha+1)$.

Proof. Let $f \in G_{\lambda,\alpha}$ and $B = \lambda/(1 - 3\alpha)$. Then, by Example 2.5(v) we have $f \in S^*[0,B]$, that is, $|f(z)/zf'(z) - 1| < B, z \in \mathcal{U}$. Further,

$$1 + \frac{zf''(z)}{f'(z)} - \left(2 - \frac{1}{\alpha}\right) = \frac{zf'(z)}{\alpha f(z)} \cdot \frac{1 - \alpha + \alpha zf''(z)/f'(z)}{zf'(z)/f(z)},$$
(2.16)

and for all $z \in \mathcal{U}$, we obtain

$$\left| \arg\left(1 + \frac{zf''(z)}{f'(z)} - 2 + \frac{1}{\alpha}\right) \right| \leq \left| \arg\frac{zf'(z)}{f(z)} \right| + \left| \arg\frac{1 - \alpha + \alpha zf''(z)/f'(z)}{zf'(z)/f(z)} \right|$$
$$\leq \arcsin|B| + \arcsin\frac{\lambda}{1 - \alpha}$$
$$= \arcsin\left(\frac{\lambda}{1 - \alpha}\sqrt{1 - B^2} + |B|\sqrt{1 - \frac{\lambda^2}{(1 - \alpha)^2}}\right)$$
$$= \arcsin1 = \frac{\pi}{2},$$
$$(2.17)$$

 \square

that is, $f \in K(2 - 1/\alpha)$.

Example 2.8. For $\alpha = 1/2$ and $\alpha = 1/(2 - \gamma)$ in the previous theorem, we get

(i)
$$G_{\lambda,1/2} \subseteq K$$
 when $\lambda = \sqrt{2}/4$;

(ii) $G_{\lambda,1/(2-\gamma)} \subseteq K(\gamma)$ when $0 \le \gamma < 1$ and $\lambda = (1-\gamma^2)/[(2-\gamma)\sqrt{2(1+\gamma^2)}]$.

Remark 2.9. By putting $\alpha = 1/(2 - \gamma)$, $0 \le \gamma < 1$, we get the result from [10, Theorem 2].

3. Sharp estimate of the Fekete-Szegö functional

In this section we give sharp estimates of $|a_2|$ and of the Fekete-Szegö functional $|a_3 - \mu a_2^2|$ for a function $f \in G_{\lambda,\alpha}$. We will use following lemmas.

LEMMA 3.1 [2, page 41]. Let $p \in \mathcal{P}$, that is, let p be analytic in \mathfrak{A} , be given by $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$ and $\operatorname{Re} p(z) > 0$ for $z \in \mathfrak{A}$. Then $|p_n| \le 2$ and for all $n \in \mathbb{N}$, $|p_2 - p_1^2/2| \le 2 - |p_1|^2/2$.

LEMMA 3.2. Let $\omega(z) = \sum_{n=1}^{\infty} c_n z^n$ be an analytic function in the unit disk \mathfrak{A} and $|\omega(z)| < 1$, $z \in \mathfrak{A}$. Then $|c_1| \le 1$ and $|c_2| \le 1 - |c_1|^2$.

Proof. Define a function $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \in \mathcal{P}$ by $p(z) = (1 - \omega(z))/(1 + \omega(z))$. Then $c_1 = -p_1/2, c_2 = (p_1^2/2 - p_2)/2$ and the rest follows from Lemma 3.1.

THEOREM 3.3. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in G_{\lambda,\alpha}$ for some $\lambda > 0$ and $0 \le \alpha \le 1$. Then $|a_2| \le \lambda/|1 - 3\alpha|$ and for any complex μ , the following bound is sharp:

$$|a_3 - \mu a_2^2| \le \max\left\{\frac{\lambda}{2|4\alpha - 1|}, \frac{\lambda^2|1 - \mu|}{(1 - 3\alpha)^2}\right\}.$$
 (3.1)

Proof. If $f \in G_{\lambda,\alpha}$, then

$$(1-\alpha)f(z)f''(z) + \alpha z f(z)f''(z) = z f'^{2}(z)[1-\alpha + \lambda \omega(z)],$$
(3.2)

where $\omega(z) = \sum_{n=1}^{\infty} c_n z^n$ is such that $|\omega(z)| < 1$, $z \in \mathcal{U}$. After equating the coefficients, we get $a_2 = \lambda c_1/(3\alpha - 1)$ and

$$a_3 = \frac{\lambda c_2}{2(4\alpha - 1)} + \frac{\lambda^2 c_1^2}{(1 - 3\alpha)^2}.$$
(3.3)

From Lemma 3.2, we get $|a_2| \le \lambda/|1 - 3\alpha|$. Further,

$$a_3 - \mu a_2^2 = \frac{\lambda c_2}{2(4\alpha - 1)} + \frac{\lambda^2 c_1^2}{(1 - 3\alpha)^2} (1 - \mu).$$
(3.4)

So, for $x = |c_1| \le 1$,

$$|a_3 - \mu a_2^2| \le Ax^2 + \frac{\lambda}{2|1 - 4\alpha|} \equiv H(x),$$
 (3.5)

where $A = \lambda^2 |1 - \mu| / (1 - 3\alpha)^2 - \lambda / 2 |1 - 4\alpha|$ and

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} H(1) = \frac{\lambda^{2}|1 - \mu|}{(1 - 3\alpha)^{2}}, & A \ge 0, \\ H(0) = \frac{\lambda}{2|1 - 4\alpha|}, & A < 0. \end{cases}$$
(3.6)

The upper bound is sharp due to the functions $f_1(z) = z(1-3\alpha)/(1-3\alpha+\lambda z)$ and $f_2(z) = z \cdot \sqrt{(1-4\alpha)/(1-4\alpha+\lambda z^2)}$.

Remark 3.4. By putting $\alpha = 1/(2 - \gamma)$, $0 \le \gamma < 1$, we get the result from [10, Theorem 3].

Acknowledgments

The work on this paper was done under the Joint Research Project financed by The Ministry of Education and Science of the Republic of Macedonia (MESRM) (Project no. 17/1383/1) and The Scientific and Technical Research Council of Turkey (TUBITAK) (Project no. TBGA-U-105T056).

References

- T. Bulboacă and N. Tuneski, New criteria for starlikeness and strongly starlikeness, Mathematica (Cluj) 43(66) (2001), no. 1, 11–22 (2003).
- [2] P. L. Duren, *Univalent Functions*, Fundamental Principles of Mathematical Sciences, vol. 259, Springer, New York, 1983.
- [3] S. S. Miller and P. T. Mocanu, *Differential subordinations and univalent functions*, The Michigan Mathematical Journal 28 (1981), no. 2, 157–172.
- [4] _____, On some classes of first-order differential subordinations, The Michigan Mathematical Journal 32 (1985), no. 2, 185–195.
- [5] _____, Differential Subordinations. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker, New York, 2000.
- [6] M. Obradowič and N. Tuneski, On the starlike criteria defined by Silverman, Zeszyty Naukowe Politechniki Rzeszowskiej. Matematyka 181 (2000), no. 24, 59–64 (2001).
- [7] V. Ravichandran, M. Darus, and N. Seenivasagan, *On a criteria for strong starlikeness*, The Australian Journal of Mathematical Analysis and Applications **2** (2005), no. 1, article 6, 12.
- [8] H. Silverman, *Convex and starlike criteria*, International Journal of Mathematics and Mathematical Sciences 22 (1999), no. 1, 75–79.
- [9] V. Singh, On some criteria for univalence and starlikeness, Indian Journal of Pure and Applied Mathematics 34 (2003), no. 4, 569–577.
- [10] V. Singh and N. Tuneski, On criteria for starlikeness and convexity of analytic functions, Acta Mathematica Scientia. Series B 24 (2004), no. 4, 597–602.

- [11] N. Tuneski, *On certain sufficient conditions for starlikeness*, International Journal of Mathematics and Mathematical Sciences **23** (2000), no. 8, 521–527.
- [12] _____, On a criteria for starlikeness of analytic functions, Integral Transforms and Special Functions 14 (2003), no. 3, 263–270.
- [13] _____, On the quotient of the representations of convexity and starlikeness, Mathematische Nachrichten 248/249 (2003), no. 1, 200–203.

Nikola Tuneski: Faculty of Mechanical Engineering, Ss. Cyril and Methodius University, Karpoš II b.b., 1000 Skopje, Macedonia *E-mail address*: nikolat@mf.edu.mk

Hüseyın Irmak: Department of Mathematics Education, Faculty of Education, Başkent University, Bağlica Campus, Bağlica, Etimesgut, 06530 Ankara, Turkey *E-mail address*: hisimya@baskent.edu.tr