SUBCLASSES OF α-SPIRALLIKE FUNCTIONS ASSOCIATED WITH RUSCHEWEYH DERIVATIVES

NENG XU AND DINGGONG YANG

Received 9 May 2005; Revised 25 September 2005; Accepted 20 October 2005

Making use of the Ruscheweyh derivatives, we introduce the subclasses $T(n, \alpha, \lambda)$ ($n \in$ $\{0,1,2,3, \ldots\},-\pi / 2<\alpha<\pi / 2$, and $0 \leq \lambda \leq \cos ^{2} \alpha$) of functions $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ which are analytic in $|z|<1$. Subordination and inclusion relations are obtained. The radius of α-spirallikeness of order ρ is calculated. A convolution property and a special member of $T(n, \alpha, \lambda)$ are also given.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let A denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z:|z|<1\}$. Let $S \subset A$ consist of univalent functions in U. For $0 \leq \rho<1$, a function $f \in S$ is said to be starlike of order ρ if

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\rho \quad(z \in U) \tag{1.2}
\end{equation*}
$$

The class of such functions we denote by $S^{*}(\rho)(0 \leq \rho<1)$. A function $f \in S$ is said to be convex in U if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \quad(z \in U) \tag{1.3}
\end{equation*}
$$

We denote by K the class of all convex functions in U. For $-\pi / 2<\alpha<\pi / 2$ and $0 \leq \rho<1$, a function $f \in S$ is said to be α-spirallike of order ρ in U if

$$
\begin{equation*}
\operatorname{Re}\left\{e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right\}>\rho \cos \alpha \quad(z \in U) \tag{1.4}
\end{equation*}
$$

Further let $U C V \subset K$ be the class of functions introduced by Goodman [2] called uniformly convex in U. It was shown in $[4,7]$ that $f \in A$ is in $U C V$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in U) \tag{1.5}
\end{equation*}
$$

In [7], Ronning investigated the class S_{p} defined by

$$
\begin{equation*}
S_{p}=\left\{f \in S^{*}(0): f(z)=z g^{\prime}(z), g \in U C V\right\} . \tag{1.6}
\end{equation*}
$$

The uniformly convex and related functions have been studied by several authors (see, e.g., $[1-4,7,6,8,12]$).

If $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in A$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in A$, then the Hadamard product or convolution of f and g is defined by $(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}$. Let

$$
\begin{equation*}
D^{n} f(z)=\frac{z}{(1-z)^{n+1}} * f(z), \tag{1.7}
\end{equation*}
$$

for $f \in A$ and $n \in N_{0}=\{0,1,2,3, \ldots\}$. Then

$$
\begin{equation*}
D^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!} \tag{1.8}
\end{equation*}
$$

This symbol $D^{n} f$ is called the Ruscheweyh derivative of order n of f. It was introduced by Ruscheweyh [9].

In this paper we introduce and investigate the subclasses $T(n, \alpha, \lambda)$ of A as follows.
Definition 1.1. A function $f \in A$ is said to be in $T(n, \alpha, \lambda)$ if

$$
\begin{equation*}
\left(\operatorname{Re}\left\{e^{i \alpha} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}\right\}\right)^{2}+\lambda>\left|\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-1\right|^{2} \quad(z \in U) \tag{1.9}
\end{equation*}
$$

where $n \in N_{0},-\pi / 2<\alpha<\pi / 2$, and $0 \leq \lambda \leq \cos ^{2} \alpha$.
Note that, for $\lambda=0$,

$$
\begin{equation*}
T(n, \alpha, 0)=\left\{f \in A: \operatorname{Re}\left\{e^{i \alpha} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}\right\}>\left|\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-1\right|(z \in U)\right\} \tag{1.10}
\end{equation*}
$$

In particular, $T(0,0,0)=S_{p}$ and $T(1,0,0)=U C V$.

2. Properties of $T(n, \alpha, \lambda)$

Let f and g be analytic in U. Then we say that f is subordinate to g in U, written $f \prec g$, if there exists an analytic function w in U such that $|w(z)| \leq|z|$ and $f(z)=g(w(z))$ for $z \in U$. If g is univalent in U, then $f \prec g$ is equivalent to $f(0)=g(0)$ and $f(U) \subset g(U)$.

Theorem 2.1. Let $n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2)$, and $\lambda \in\left[0, \cos ^{2} \alpha\right]$. A function $f \in A$ belongs to $T(n, \alpha, \lambda)$ if and only if

$$
\begin{equation*}
e^{i \alpha} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)} \prec h(z) \cos \alpha+i \sin \alpha \quad(z \in U), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
h(z)=1-\frac{\lambda}{2 \cos ^{2} \alpha}+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{(z+\beta) /(1+\beta z)}}{1-\sqrt{(z+\beta) /(1+\beta z)}}\right)^{2} \tag{2.2}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta=\left(\frac{e^{\mu}-1}{e^{\mu}+1}\right)^{2}, \quad \mu=\frac{\sqrt{\lambda} \pi}{2 \cos \alpha} . \tag{2.3}
\end{equation*}
$$

Proof. Let us define $w=u+i v$ by

$$
\begin{equation*}
e^{i \alpha} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=w(z) \cos \alpha+i \sin \alpha \quad(z \in U) \tag{2.4}
\end{equation*}
$$

Then $w(0)=1$ and the inequality (1.9) can be rewritten as

$$
\begin{equation*}
u>\frac{1}{2}\left(v^{2}+1-\frac{\lambda}{\cos ^{2} \alpha}\right) . \tag{2.5}
\end{equation*}
$$

Thus

$$
\begin{equation*}
w(U) \subset G=\{w=u+i v: u \text { and } v \text { satisfy (2.5) }\} . \tag{2.6}
\end{equation*}
$$

It follows from (2.2) that

$$
\begin{equation*}
h(0)=1-\frac{\lambda}{2 \cos ^{2} \alpha}+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{\beta}}{1-\sqrt{\beta}}\right)^{2}=1 . \tag{2.7}
\end{equation*}
$$

In order to prove the theorem, it suffices to show that the function $w=h(z)$ defined by (2.2) maps U conformally onto the parabolic region G.

Note that

$$
\begin{equation*}
0 \leq \frac{1}{2}\left(1-\frac{\lambda}{\cos ^{2} \alpha}\right)<1-\frac{\lambda}{2 \cos ^{2} \alpha} \leq 1, \tag{2.8}
\end{equation*}
$$

for $0 \leq \lambda \leq \cos ^{2} \alpha$. Consider the transformations

$$
\begin{equation*}
w_{1}=\sqrt{w-\left(1-\frac{\lambda}{2 \cos ^{2} \alpha}\right)}, \quad w_{2}=e^{\sqrt{2} \pi w_{1}}, \quad t=\frac{1}{2}\left(w_{2}+\frac{1}{w_{2}}\right) . \tag{2.9}
\end{equation*}
$$

4 Subclasses of α-spirallike functions
It is easy to verify that the composite function

$$
\begin{equation*}
t=\varphi(w)=\operatorname{ch}\left(\pi \sqrt{2 w-\left(2-\frac{\lambda}{\cos ^{2} \alpha}\right)}\right) \tag{2.10}
\end{equation*}
$$

maps $G^{+}=G \bigcap\{w=u+i v: v>0\}$ conformally onto the upper half plane $\operatorname{Im}(t)>0$ so that $w=(1 / 2)\left(1-\lambda / \cos ^{2} \alpha\right)$ corresponds to $t=-1$ and $w=1-\lambda / 2 \cos ^{2} \alpha$ to $t=1$. Applying the symmetry principle, the function $t=\varphi(w)$ maps G conformally onto $\Omega=\{t$: $|\arg (t+1)|<\pi\}$. Since $t=2((1+\zeta) /(1-\zeta))^{2}-1$ maps the unit disk $|\zeta|<1$ onto Ω, we see that

$$
\begin{align*}
w & =\varphi^{-1}(t)=1-\frac{\lambda}{2 \cos ^{2} \alpha}+\frac{1}{2 \pi^{2}}\left(\log \left(t+\sqrt{t^{2}-1}\right)\right)^{2} \\
& =1-\frac{\lambda}{2 \cos ^{2} \alpha}+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{\zeta}}{1-\sqrt{\zeta}}\right)^{2}=g(\zeta) \tag{2.11}
\end{align*}
$$

maps $|\zeta|<1$ conformally onto G so that $\zeta=\beta(0 \leq \beta<1)$ corresponds to $w=1$. Therefore the function

$$
\begin{equation*}
w=h(z)=g\left(\frac{z+\beta}{1+\beta z}\right) \quad(z \in U) \tag{2.12}
\end{equation*}
$$

maps U conformally onto G and the proof of the theorem is complete.
Corollary 2.2. Let $f \in T(n, \alpha, \lambda), n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2), \lambda \in\left[0, \cos ^{2} \alpha\right]$, and h be given by (2.2). Then

$$
\begin{gather*}
\frac{D^{n} f(z)}{z} \prec \exp \left(e^{-i \alpha} \cos \alpha \int_{0}^{z} \frac{h(t)-1}{t} d t\right) \tag{2.13}\\
\exp \left(\int_{0}^{1} \frac{h(-\rho|z|)-1}{\rho} d \rho\right) \leq\left|\left(\frac{D^{n} f(z)}{z}\right)^{e^{i \alpha} \sec \alpha}\right| \leq \exp \left(\int_{0}^{1} \frac{h(\rho|z|)-1}{\rho} d \rho\right) \tag{2.14}
\end{gather*}
$$

for $z \in U$. The bounds in (2.14) are sharp with the extremal function $f_{0} \in A$ defined by

$$
\begin{equation*}
D^{n} f_{0}(z)=z \exp \left(e^{-i \alpha} \cos \alpha \int_{0}^{z} \frac{h(t)-1}{t} d t\right) \tag{2.15}
\end{equation*}
$$

Proof. From Theorem 2.1 we have

$$
\begin{equation*}
\frac{e^{i \alpha}}{\cos \alpha}\left(\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-1\right) \prec h(z)-1 \tag{2.16}
\end{equation*}
$$

for $f \in T(n, \alpha, \lambda)$. Since the function $h-1$ is univalent and starlike (with respect to the origin) in U, using (2.16) and the result of Suffridge [11, Theorem 3], we obtain

$$
\begin{equation*}
\frac{e^{i \alpha}}{\cos \alpha} \log \frac{D^{n} f(z)}{z}=\frac{e^{i \alpha}}{\cos \alpha} \int_{0}^{z}\left(\frac{\left(D^{n} f(t)\right)^{\prime}}{D^{n} f(t)}-\frac{1}{t}\right) d t \prec \int_{0}^{z} \frac{h(t)-1}{t} d t . \tag{2.17}
\end{equation*}
$$

This implies (2.13).
Noting that the univalent function h maps the disk $|z|<\rho(0<\rho \leq 1)$ onto a region which is convex and symmetric with respect to the real axis, we get

$$
\begin{equation*}
h(-\rho|z|) \leq \operatorname{Re} h(\rho z) \leq(\rho|z|) \quad(z \in U) \tag{2.18}
\end{equation*}
$$

Now, (2.17) and (2.18) lead to

$$
\begin{equation*}
\int_{0}^{1} \frac{h(-\rho|z|)-1}{\rho} d \rho \leq \log \left|\left(\frac{D^{n} f(z)}{z}\right)^{e^{i \alpha} \sec \alpha}\right| \leq \int_{0}^{1} \frac{h(\rho|z|)-1}{\rho} d \rho, \tag{2.1}
\end{equation*}
$$

for $z \in U$, which yields (2.14).
The bounds in (2.14) are best possible since the equalities are attained for the function f_{0} in $T(n, \alpha, \lambda)$ defined by (2.15).

Theorem 2.3. Let $f \in T(n, \alpha, \lambda), n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2), \lambda \in\left[0, \cos ^{2} \alpha\right]$. Then $D^{n} f$ is α-spirallike of order ρ in $|z|<r$, where

$$
\begin{align*}
r=r(\rho, \alpha, \lambda)= & \frac{\beta+\left(\tan \left((\pi / 4) \sqrt{2(1-\rho)-\lambda / \cos ^{2} \alpha}\right)\right)^{2}}{1+\beta\left(\tan \left((\pi / 4) \sqrt{2(1-\rho)-\lambda / \cos ^{2} \alpha}\right)\right)^{2}} \tag{2.20}\\
& \times\left(\frac{1}{2}\left(1-\frac{\lambda}{\cos ^{2} \alpha}\right) \leq \rho<1-\frac{\lambda}{2 \cos ^{2} \alpha}\right)
\end{align*}
$$

and β is given by (2.2). The result is sharp.
Proof. It follows from (2.20) and (2.2) that

$$
\begin{equation*}
0<2(1-\rho)-\frac{\lambda}{\cos ^{2} \alpha} \leq 1, \quad 0 \leq \beta<r \leq 1 . \tag{2.21}
\end{equation*}
$$

Let h be given by (2.2). Then

$$
\begin{align*}
h(-r) & =1-\frac{\lambda}{2 \cos ^{2} \alpha}+\frac{2}{\pi^{2}}\left(\log \frac{1+i \sqrt{(r-\beta) /(1-\beta r)}}{1-i \sqrt{(r-\beta) /(1-\beta r)}}\right)^{2} \tag{2.22}\\
& =1-\frac{\lambda}{2 \cos ^{2} \alpha}-\frac{8}{\pi^{2}}\left(\arctan \sqrt{\frac{r-\beta}{1-\beta r}}\right)^{2}
\end{align*}
$$

and hence

$$
\begin{equation*}
\inf _{|z|<r} \operatorname{Re} h(z)=h(-r)=\rho . \tag{2.23}
\end{equation*}
$$

If $f \in T(n, \alpha, \lambda)$, then from Theorem 2.1 and (2.23) we have

$$
\begin{equation*}
\operatorname{Re}\left\{e^{i \alpha} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}\right\}>\rho \cos \alpha \quad(|z|<r) \tag{2.24}
\end{equation*}
$$

that is, $D^{n} f$ is α-spirallike of order ρ in $|z|<r$. Further, the result is sharp with the extremal function f_{0} defined by (2.15).

Taking $\rho=(1 / 2)\left(1-\lambda / \cos ^{2} \alpha\right)$, Theorem 2.3 yields.
Corollary 2.4. Let $f \in T(n, \alpha, \lambda), n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2), \lambda \in\left[0, \cos ^{2} \alpha\right]$. Then $D^{n} f$ is α-spirallike of order $(1 / 2)\left(1-\lambda / \cos ^{2} \alpha\right)$ in U and the result is sharp.

Theorem 2.5. Let $f \in T(n, \alpha, \lambda), n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2), \lambda \in\left[0, \cos ^{2} \alpha\right]$. Then $D^{n} f \in$ $S^{*}((1-\lambda) / 2)$ and the order $(1-\lambda) / 2$ is sharp.
Proof. Let h be given by (2.2). Then it follows from the proof of Theorem 2.1 that

$$
\begin{equation*}
\partial h(U)=\left\{w=u+i v: u=\frac{1}{2}\left(v^{2}+1-\frac{\lambda}{\cos ^{2} \alpha}\right)\right\} . \tag{2.25}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\min _{|z|=1(z \neq 1)} \operatorname{Re}\left\{e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha)\right\}=\min _{u \geq(1 / 2)\left(1-\lambda / \cos ^{2} \alpha\right)} g(u) \cos \alpha+\sin ^{2} \alpha, \tag{2.26}
\end{equation*}
$$

where

$$
\begin{equation*}
g(u)=u \cos \alpha-|\sin \alpha| \sqrt{2 u-1+\frac{\lambda}{\cos ^{2} \alpha}} \quad\left(u \geq \frac{1}{2}\left(1-\frac{\lambda}{\cos ^{2} \alpha}\right)\right) . \tag{2.27}
\end{equation*}
$$

Since

$$
\begin{equation*}
g^{\prime}(u)=\cos \alpha-\frac{|\sin \alpha|}{\sqrt{2 u-1+\lambda / \cos ^{2} \alpha}} \quad\left(u>\frac{1}{2}\left(1-\frac{\lambda}{\cos ^{2} \alpha}\right)\right) \tag{2.28}
\end{equation*}
$$

the function g attains its minimum value at $u=(1-\lambda) / 2 \cos ^{2} \alpha$. Thus

$$
\begin{equation*}
\min _{|z|=1(z \neq 1)} \operatorname{Re}\left\{e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha)\right\}=g\left(\frac{1-\lambda}{2 \cos ^{2} \alpha}\right) \cos \alpha+\sin ^{2} \alpha=\frac{1-\lambda}{2} . \tag{2.29}
\end{equation*}
$$

Let $f \in T(n, \alpha, \lambda)$. Then, by Theorem 2.1 and (2.29), we conclude that $D^{n} f$ is starlike of order $(1-\lambda) / 2$ in U, and the function f_{0} defined by (2.15) shows that the order $(1-$ $\lambda) / 2$ is sharp.

Theorem 2.6. $T(n+1, \alpha, \lambda) \subset T(n, \alpha, \lambda)$, where $n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2), \lambda \in\left[0, \cos ^{2} \alpha\right]$.

Proof. It follows from (1.7) that

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime}=(n+1) D^{n+1} f(z)-n D^{n} f(z) \quad(z \in U) \tag{2.30}
\end{equation*}
$$

for $f \in A$. Set

$$
\begin{equation*}
p(z)=e^{i \alpha} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)} \quad(z \in U) \tag{2.31}
\end{equation*}
$$

Then (2.30) and (2.31) lead to

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{D^{n} f(z)}=\frac{e^{-i \alpha} p(z)+n}{n+1} \quad(z \in U) . \tag{2.32}
\end{equation*}
$$

Differentiating both sides of (2.32) logarithmically and using (2.31), we get

$$
\begin{equation*}
e^{i \alpha} \frac{z\left(D^{n+1} f(z)\right)^{\prime}}{D^{n+1} f(z)}=p(z)+\frac{z p^{\prime}(z)}{e^{-i \alpha} p(z)+n} \quad(z \in U) \tag{2.33}
\end{equation*}
$$

If $f \in T(n+1, \alpha, \lambda)$, then by Theorem 2.1 and (2.33) we have

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{e^{-i \alpha} p(z)+n} \prec h(z) \cos \alpha+i \sin \alpha \quad(z \in U) \tag{2.34}
\end{equation*}
$$

where h is given by (2.2). The function $Q(z)=e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha)+n$ is univalent and convex in U and

$$
\begin{equation*}
\operatorname{Re} Q(z)>\frac{1-\lambda}{2}+n \geq 0 \quad(z \in U) \tag{2.35}
\end{equation*}
$$

because of (2.29). Hence an application of the result of Miller and Mocanu [5, Corollary 1.1] yields

$$
\begin{equation*}
p(z)=e^{i \alpha} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)} \prec h(z) \cos \alpha+i \sin \alpha \quad(z \in U) . \tag{2.36}
\end{equation*}
$$

Now, by Theorem 2.1, we know that $f \in T(n, \alpha, \lambda)$ and the theorem is proved.
Remark 2.7. Combining Theorem 2.6 with Corollary 2.4 , we see that each function in $T(n, \alpha, \lambda)$ is α-spirallike of order $(1 / 2)\left(1-\lambda / \cos ^{2} \alpha\right)$ in U. In view of Theorems 2.5 and 2.6 we have $T(n, \alpha, \lambda) \subset S^{*}((1-\lambda) / 2)$.

Theorem 2.8. A function $f \in A$ is in $T(n, \alpha, \lambda)$ if and only if

$$
\begin{equation*}
F(z)=\frac{n+1}{z^{n}} \int_{0}^{z} t^{n-1} f(t) d t \tag{2.37}
\end{equation*}
$$

is in $T(n+1, \alpha, \lambda)$, where $n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2), \lambda \in\left[0, \cos ^{2} \alpha\right]$.

Proof. It follows from (2.37) that $F \in A$ and

$$
\begin{equation*}
(n+1) f(z)=n F(z)+z F^{\prime}(z) \quad(z \in U) \tag{2.38}
\end{equation*}
$$

for $f \in A$. By using (2.30) and (2.38), we obtain

$$
\begin{equation*}
D^{n} f(z)=\frac{n D^{n} F(z)+z\left(D^{n} F(z)\right)^{\prime}}{n+1}=D^{n+1} F(z) \quad(z \in U) \tag{2.39}
\end{equation*}
$$

which proves the assertions of the theorem.
Let $R(\rho)$ be the class of prestarlike functions of order ρ in U consisting of functions $f \in A$ satisfying

$$
\begin{equation*}
\frac{z}{(1-z)^{2-2 \rho}} * f(z) \in S^{*}(\rho) \tag{2.40}
\end{equation*}
$$

for some $\rho(0 \leq \rho<1)$. The following lemma is due to Ruscheweyh [10].
Lemma 2.9. If $f \in S^{*}(\rho)$ and $g \in R(\rho)(0 \leq \rho<1)$, then for any analytic function F in U,

$$
\begin{equation*}
\frac{g *(F f)}{g * f}(U) \subset \overline{\mathrm{co}}(F(U)) \tag{2.41}
\end{equation*}
$$

where $\overline{\mathrm{co}}(F(U))$ stands for the convex hull of $F(U)$.
Applying the lemma, we derive the following.
Theorem 2.10. Let $f \in T(n, \alpha, \lambda)$ and $g \in R((1-\lambda) / 2)$. Then

$$
\begin{equation*}
f * g \in T(n, \alpha, \lambda) \tag{2.42}
\end{equation*}
$$

where $n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2), \lambda \in\left[0, \cos ^{2} \alpha\right]$.
Proof. Let $f \in T(n, \alpha, \lambda)$. Making use of Theorems 2.1 and 2.5, we have

$$
\begin{equation*}
F(z)=\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)} \prec e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha), \quad D^{n} f \in S^{*}\left(\frac{1-\lambda}{2}\right) \tag{2.43}
\end{equation*}
$$

If we put $\varphi=f * g$, then for $z \in U$,

$$
\begin{align*}
\frac{z\left(D^{n} \varphi(z)\right)^{\prime}}{D^{n} \varphi(z)} & =\frac{z\left(g(z) * D^{n} f(z)\right)^{\prime}}{g(z) * D^{n} f(z)}=\frac{g(z) *\left(z\left(D^{n} f(z)\right)^{\prime}\right)}{g(z) * D^{n} f(z)} \tag{2.44}\\
& =\frac{g(z) *\left(F(z) D^{n} f(z)\right)}{g(z) * D^{n} f(z)} .
\end{align*}
$$

Since the univalent function $e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha)$ is convex in U and $g \in R((1-\lambda) / 2)$, from (2.43), (2.44), and the lemma we deduce that

$$
\begin{equation*}
\frac{z\left(D^{n} \varphi(z)\right)^{\prime}}{D^{n} \varphi(z)} \prec e^{-i \alpha}(h(z) \cos \alpha+i \sin \alpha) . \tag{2.45}
\end{equation*}
$$

Therefore, by using Theorem 2.1, $\varphi \in T(n, \alpha, \lambda)$ and the proof is complete.
Note that $R(1 / 2)=S^{*}(1 / 2)$. Since $R\left(\rho_{1}\right) \subset R\left(\rho_{2}\right)$ for $0 \leq \rho_{1}<\rho_{2}<1$ (see [10]), we have $K=R(0) \subset R((1-\lambda) / 2)$. Thus Theorem 2.10 yields the following.
Corollary 2.11. (i) If $f \in T(n, \alpha, 0), n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2)$, and $g \in S^{*}(1 / 2)$, then $f * g \in T(n, \alpha, 0)$.
(ii) If $f \in T(n, \alpha, \lambda), n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2), \lambda \in\left[0, \cos ^{2} \alpha\right]$, and $g \in K$, then $f * g \in$ $T(n, \alpha, \lambda)$.

Theorem 2.12. Let $n \in N_{0}, \alpha \in(-\pi / 2, \pi / 2), \lambda \in\left[0, \cos ^{2} \alpha\right]$. The function $f \in A$ defined by

$$
\begin{equation*}
D^{n} f(z)=\frac{z}{(1-b z)^{2 e^{-i x} \cos \alpha}} \quad(z \in U) \tag{2.46}
\end{equation*}
$$

is in $T(n, \alpha, \lambda)$, where b is complex and

$$
|b|= \begin{cases}\frac{\cos ^{2} \alpha+\lambda}{3 \cos ^{2} \alpha-\lambda} & \left(0 \leq \lambda \leq(3-2 \sqrt{2}) \cos ^{2} \alpha\right) \tag{2.47}\\ \sqrt{\frac{\sqrt{\lambda}}{2 \cos \alpha+\sqrt{\lambda}}} & \left((3-2 \sqrt{2}) \cos ^{2} \alpha \leq \lambda \leq \cos ^{2} \alpha\right)\end{cases}
$$

The result is sharp, that is, $|b|$ cannot be increased.
Proof. Let $f \in A$ be given by (2.46). Then

$$
\begin{equation*}
e^{i \alpha} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=\frac{1+b z}{1-b z} \cos \alpha+i \sin \alpha \tag{2.48}
\end{equation*}
$$

Hence, by Theorem 2.1, $f \in T(n, \alpha, \lambda)$ if and only if

$$
\begin{equation*}
\frac{1+b z}{1-b z} \prec h(z) \tag{2.49}
\end{equation*}
$$

where h is given by (2.2), or, equivalently, when

$$
\begin{equation*}
\left\{w:\left|w-\frac{1+|b|^{2}}{1-|b|^{2}}\right|<\frac{2|b|}{1-|b|^{2}}\right\} \subset h(U) \tag{2.50}
\end{equation*}
$$

for $0<|b|<1$.

Let δ denote the minimum distance from the point $\left(1+|b|^{2}\right) /\left(1-|b|^{2}\right)$ to the points on the parabola $\partial h(U)$ given by (2.25). Then

$$
\begin{equation*}
\delta=\min _{u \geq(1 / 2)\left(1-\lambda / \cos ^{2} \alpha\right)} \sqrt{g(u)}, \quad g(u)=\left(u-\frac{1+|b|^{2}}{1-|b|^{2}}\right)^{2}+2 u-1+\frac{\lambda}{\cos ^{2} \alpha} . \tag{2.51}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{1+|b|^{2}}{1-|b|^{2}}>\frac{1}{2}\left(1-\frac{\lambda}{\cos ^{2} \alpha}\right), \quad g^{\prime}(u)=2\left(u-\frac{2|b|^{2}}{1-|b|^{2}}\right) . \tag{2.52}
\end{equation*}
$$

(i) If

$$
\begin{equation*}
0 \leq \lambda \leq(3-2 \sqrt{2}) \cos ^{2} \alpha, \quad|b|=\frac{\cos ^{2} \alpha+\lambda}{3 \cos ^{2} \alpha-\lambda}, \tag{2.53}
\end{equation*}
$$

then $\lambda^{2}-6 \lambda \cos ^{2} \alpha+\cos ^{4} \alpha \geq 0$. Thus

$$
\begin{equation*}
|b|^{2}=\left(\frac{\cos ^{2} \alpha+\lambda}{3 \cos ^{2} \alpha-\lambda}\right)^{2} \leq \frac{\cos ^{2} \alpha-\lambda}{5 \cos ^{2} \alpha-\lambda}, \quad \frac{2|b|^{2}}{1-|b|^{2}} \leq \frac{1}{2}\left(1-\frac{\lambda}{\cos ^{2} \alpha}\right) . \tag{2.54}
\end{equation*}
$$

From (2.51), (2.52) and (2.54), we have $g^{\prime}(u) \geq 0$ and hence

$$
\begin{equation*}
\delta=\sqrt{g\left(\frac{1}{2}\left(1-\frac{\lambda}{\cos ^{2} \alpha}\right)\right)}=\frac{1+|b|^{2}}{1-|b|^{2}}-\frac{1}{2}\left(1-\frac{\lambda}{\cos ^{2} \alpha}\right)=\frac{2|b|}{1-|b|^{2}} . \tag{2.55}
\end{equation*}
$$

(ii) If $0 \leq \lambda<(3-2 \sqrt{2}) \cos ^{2} \alpha$ and

$$
\begin{equation*}
\frac{\cos ^{2} \alpha+\lambda}{3 \cos ^{2} \alpha-\lambda}<|b|<\sqrt{\frac{\cos ^{2} \alpha-\lambda}{5 \cos ^{2} \alpha-\lambda}} \tag{2.56}
\end{equation*}
$$

then $g^{\prime}(u)>0$ and

$$
\begin{equation*}
\delta=\frac{1+|b|^{2}}{1-|b|^{2}}-\frac{1}{2}\left(1-\frac{\lambda}{\cos ^{2} \alpha}\right)<\frac{2|b|}{1-|b|^{2}} . \tag{2.57}
\end{equation*}
$$

(iii) If

$$
\begin{equation*}
(3-2 \sqrt{2}) \cos ^{2} \alpha \leq \lambda \leq \cos ^{2} \alpha, \quad|b|=\sqrt{\frac{\sqrt{\lambda}}{2 \cos \alpha+\sqrt{\lambda}}}, \tag{2.58}
\end{equation*}
$$

then $\lambda^{2}-6 \lambda \cos ^{2} \alpha+\cos ^{4} \alpha \leq 0$ and so

$$
\begin{equation*}
|b|^{2}=\frac{\sqrt{\lambda}}{2 \cos \alpha+\sqrt{\lambda}} \geq \frac{\cos ^{2} \alpha-\lambda}{5 \cos ^{2} \alpha-\lambda}, \quad \frac{2|b|^{2}}{1-|b|^{2}} \geq \frac{1}{2}\left(1-\frac{\lambda}{\cos ^{2} \alpha}\right) . \tag{2.59}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\delta=\sqrt{g\left(\frac{2|b|^{2}}{1-|b|^{2}}\right)}=\sqrt{\frac{4|b|^{2}}{1-|b|^{2}}+\frac{\lambda}{\cos ^{2} \alpha}}=\frac{2|b|}{1-|b|^{2}} . \tag{2.60}
\end{equation*}
$$

(iv) If $(3-2 \sqrt{2}) \cos ^{2} \alpha \leq \lambda \leq \cos ^{2} \alpha$ and $\sqrt{\sqrt{\lambda} /(2 \cos \alpha+\sqrt{\lambda})}<|b|<1$, then

$$
\begin{equation*}
\delta=\sqrt{\frac{4|b|^{2}}{1-|b|^{2}}+\frac{\lambda}{\cos ^{2} \alpha}}<\frac{2|b|}{1-|b|^{2}} . \tag{2.61}
\end{equation*}
$$

By virtue of (2.49), (2.50), (2.55), (2.57), (2.60), and (2.61), the proof of the theorem is now complete.

Letting $n=\alpha=0$ in Theorem 2.12, we have the following.
Corollary 2.13. The function $f(z)=z /(1-b z)^{2}$ is in $T(0,0, \lambda)$, where $\lambda \in[0,1], b$ is complex and

$$
|b|= \begin{cases}\frac{1+\lambda}{3-\lambda} & (0 \leq \lambda \leq 3-2 \sqrt{2}) \tag{2.62}\\ \sqrt{\frac{\sqrt{\lambda}}{2+\sqrt{\lambda}}} & (3-2 \sqrt{2} \leq \lambda \leq 1)\end{cases}
$$

The result is sharp, that is, $|b|$ cannot be increased.

References

[1] K. K. Dixit and I. B. Misra, A class of uniformly convex functions of order α with negative and fixed finitely many coefficients, Indian Journal of Pure and Applied Mathematics 32 (2001), no. 5, 711-716.
[2] A. W. Goodman, On uniformly convex functions, Annales Polonici Mathematici 56 (1991), no. 1, 87-92.
[3] ___ On uniformly starlike functions, Journal of Mathematical Analysis and Applications 155 (1991), no. 2, 364-370.
[4] W. C. Ma and D. Minda, Uniformly convex functions, Annales Polonici Mathematici 57 (1992), no. 2, 165-175.
[5] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, The Michigan Mathematical Journal 32 (1985), no. 2, 185-195.
[6] F. Rønning, A survey on uniformly convex and uniformly starlike functions, Annales Universitatis Mariae Curie-Skłodowska. Sectio A. Mathematica 47 (1993), 123-134.
[7] , Uniformly convex functions and a corresponding class of starlike functions, Proceedings of the American Mathematical Society 118 (1993), no. 1, 189-196.
[8] _. On uniform starlikeness and related properties of univalent functions, Complex Variables. Theory and Application 24 (1994), no. 3-4, 233-239.
[9] S. Ruscheweyh, New criteria for univalent functions, Proceedings of the American Mathematical Society 49 (1975), 109-115.
[10] \qquad Convolutions in Geometric Function Theory, Seminar on Higher Mathematics, vol. 83, Presses de l'Université de Montréal, Quebec, 1982.
[11] T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Mathematical Journal 37 (1970), no. 4, 775-777.
[12] D. Yang and S. Owa, Properties of certain p-valently convex functions, International Journal of Mathematics and Mathematical Sciences 2003 (2003), no. 41, 2603-2608.

Neng Xu: Department of Mathematics, Changshu Institute of Technology,
Changshu, Jiangsu 215500, China
E-mail address: xuneng11@pub.sz.jsinfo.net
Dinggong Yang: Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, China

