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The finite symmetric trilinear integral transform is extended to distributions by using
quite different technique than Zemanian (1968) and Dube (1976) and an inversion for-
mula is established using Parseval’s identity. The operational calculus generated is applied
to find the temperature inside an equilateral prism of semi-infinite length.
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1. Introduction

Sen [6] with the help of trilinear coordinates has solved different types of boundary value
problems relating to boundaries in the form of an equilateral triangle.

An equilateral triangular region T is described by the set

{
x = (x1,x2,x3

)
/ 0 < xi < p, x1 + x2 + x3 = p, xi ∈R, i= 1,2,3

}
, (1.1)

where x1, x2, and x3 are the trilinear coordinates of a point and p is the height of an
equilateral triangle.

Sen [6] has also expressed two-dimensional Laplace operator in trilinear coordinates
as

∇2
1 ≡

∂2

∂x2
+
∂2

∂y2

≡ ∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3
− ∂2

∂x1∂x2
− ∂2

∂x2∂x3
− ∂2

∂x1∂x3
≡� (say).

(1.2)

Later Patil [4] has developed the symmetric integral transform of function of trilinear
coordinates which is defined on T as

S( f )(n)= F(n)=
∫ p

0

∫ p

0

∫ p

0
f
(
x1,x2,x3

)
ψn
(
x1,x2,x3

)
dx1dx2dx3, (1.3)
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2 Finite symmetric trilinear integral transform

where ψn(x1,x2,x3) = sinλnx1 + sinλnx2 + sinλnx3 are eigenfunctions corresponding to
the eigenvalues λn = 2nπ/p, n= 1,2,3, . . . , in an eigenvalue problem

�ψn + λ2
nψn = 0 (1.4)

subjected to the Dirichlet type of boundary conditions

ψn(x)= 0 at x1 = 0, x2 = 0, x3 = 0. (1.5)

If f (x1,x2,x3) is continuous, has piecewise continuous first- and second-order partial
derivatives on T , and satisfies the above Dirichlet type of boundary conditions, then in-
verse transform of (1.6) is given by

f
(
x1,x2,x3

)=
∞∑

n=1

F(n)cnψn
(
x1,x2,x3

)
, (1.6)

where 1/cn =
∫ p

0

∫ p
0

∫ p
0 ψ

2
ndx1dx2dx3 = 3p3/2 (see [4, page 129]).

In this paper we extend the finite symmetric trilinear integral transform to distribu-
tions analogous to the method employed in [1] which is quite different than Zemanian
[8] and Dube [2] and establish an inversion theorem by using Parseval’s identity as in [3].
At the end we find the temperature inside an equilateral prism of semi-infinite length.

2. The testing function space A

Let A denote the set of all infinitely differentiable complex-valued functions φ defined on
T which satisfy the following two conditions:

(i) �mφ satisfy Dirichlet type of boundary conditions on T for each m= 0,1,2, . . . ;
(ii)

αm(φ)= sup
x∈T

|�mφ(x)| <∞ for each m= 0,1,2, . . . . (2.1)

We note that A is nonempty and for each n∈N, eigenfunction ψn(x) is in A.
A is a linear space. The topology of A is that generated by the countable multinorm

{αm}∞m=0.

Theorem 2.1. A is complete and therefore a Fréchet space.

The proof of this theorem is similar to the proof of [7, Theorem 3.1].
For every φ ∈A, the finite symmetric trilinear integral transform

S(φ)(n)=
∫ p

0

∫ p

0

∫ p

0
φ(x)ψn(x)dx1dx2dx3 (2.2)

exists and by (1.6), one has

φ(x)=
∞∑

n=1

cnS(φ)(n)ψn(x). (2.3)



G. L. Waghmare and S. V. More 3

We call the sequence (S(φ)(n))n∈N as the finite symmetric trilinear integral transform
S(φ) of φ. Therefore

S(φ)= (S(φ)(n)
)
n∈N. (2.4)

The expression (2.3) can be seen as an inversion formula for the said transform.

Proposition 2.2. The map φ→ S(φ) is a continuous linear transformation from A into l∞.

Proof. It can be proved by making use of the property of integrals and
∥
∥S(φ)

∥
∥
l∞ = sup

n

∣
∣S(φ)(n)

∣
∣≤ 3p3α0(φ). (2.5)

�

Let L2(T) denote the set of complex-valued functions φ defined on T such that

‖φ‖ =
[∫ p

0

∫ p

0

∫ p

0

∣
∣φ(x)

∣
∣2
dx1dx2dx3

]1/2

<∞. (2.6)

An inner product in L2(T) is defined by

(φ,ψ)=
∫ p

0

∫ p

0

∫ p

0
φ(x)ψ(x)dx1dx2dx3, φ,ψ ∈ L2(T), (2.7)

where ψ(x) denotes the complex conjugate of ψ(x).
We prove the following results which we need in subsequent sections.

Proposition 2.3. If φ ∈A, then

S
(
�mφ

)
(n)= (−1)mλ2m

n S(φ)(n) for every n∈N, m= 0,1,2, . . . . (2.8)

Proof. Integrating by parts and using boundary conditions, we get

S(�φ)(n)=
∫ p

0

∫ p

0

∫ p

0
φ(x)�ψn(x)dx1dx2dx3 = (−1)λ2

nS(φ)(n) for every n∈N. (2.9)

Using (2.9), it is quite simple to see that

S
(
�mφ

)
(n)= (−1)mλ2m

n S(φ)(n) for every n∈N, m= 0,1,2, . . . . (2.10)

�

Proposition 2.4. Let φ∈ A. Then the series

∞∑

n=1

cn
∣
∣S
(
�mφ

)
(n)
∣
∣2

(2.11)

converges and Bessel’s inequality

∞∑

n=1

cn
∣
∣S(�mφ

)
(n)
∣
∣2 ≤ ∥∥�mφ

∥
∥2
<∞ (2.12)

holds for each m= 0,1,2,3, . . ..
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Proof. Expanding the inner product and using the fact that {ψn} is an orthogonal set, we
get

0≤
∥
∥
∥
∥�mφ−

n∑

k=1

ckS
(
�mφ

)
(k)ψk

∥
∥
∥
∥

2

= ∥∥�mφ
∥
∥2−

n∑

k=1

ck
∣
∣S
(
�mφ

)
(k)
∣
∣2

(2.13)

and so, for any n∈N,

n∑

k=1

ck
∣
∣S
(
�mφ

)
(k)
∣
∣2 ≤ ∥∥�mφ

∥
∥2
. (2.14)

It is clear that the series (2.11) converges and taking the limit as n→∞ we get (2.12). �

Proposition 2.5. If φ ∈A, then the series

∞∑

n=1

(−1)mcnλ2m
n S(φ)(n)ψn(x), m= 0,1,2, . . . , (2.15)

converges absolutely and uniformly over T .

Proof. We have

∣
∣(−1)mcnλ2m

n S(φ)(n)ψn(x)
∣
∣≤ 3cnλ2m

n

∣
∣S(φ)(n)

∣
∣ (x ∈ T , n= 1,2, . . .). (2.16)

By using Proposition 2.3, Cauchy-Schwarz inequality, and (2.12), we get

k∑

n=1

3cnλ2m
n

∣
∣S(φ)(n)

∣
∣≤ 3c0

∥
∥Im+1φ

∥
∥ for every k ∈N, where c0 =

[ ∞∑

n=1

cn
λ4
n

]1/2

. (2.17)

In view of cn = 2/3p3 (see [4, page 129]), λn = 2nπ/p, and
∑∞

n=1(1/n4) = π4/90 (see [3,

page 112]), we have c0 = (1/6)
√
p/60.

It is obvious that
∑∞

n=1 3cnλ2m
n |S(φ)(n)| is convergent. By Weierstrass M test, the series

(2.15) converges absolutely and uniformly over T . �

Corollary 2.6. If φ∈ A, then

Imφ(x)=
∞∑

n=1

(−1)mcnλ2m
n S(φ)(n)ψn(x), m= 0,1,2, . . . , (2.18)

and the series converges uniformly over T .

Proof. From (1.6), we have

φ(x)= lim
n→∞

n∑

k=1

ckS(φ)(k)ψk(x),

Imφ(x)= lim
n→∞I

m

( n∑

k=1

ckS(φ)(k)ψk(x)

)

= lim
n→∞

n∑

k=1

ck(−1)mλ2m
k S(φ)(k)ψk(x).

(2.19)
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In view of (2.19) and in view of Proposition 2.5, it is inferred that the series
∑∞

n=1(−1)mcnλ2m
n S(φ) · (n)ψn(x) converges to Imφ uniformly on T for each m= 0,1,2, . . ..

�

The following is an immediate consequence of Corollary 2.6.

Corollary 2.7. For all φ∈ A, φn→ φ in A, where φn(x)=∑n
k=1 ckS(φ)(k)ψk(x).

Theorem 2.8. For every φ∈ A, Parseval’s identity holds, that is,

∞∑

n=1

cn
∣
∣S(φ)(n)

∣
∣2 = ‖φ‖2. (2.20)

Equivalently

(
S
(
φ1
)
,S
(
φ2
))=

∞∑

n=1

cnS
(
φ1
)
(n)S

(
φ2
)
(n)= (φ1,φ2

)
. (2.21)

Proof. We have from Proposition 2.4 that

∥
∥φ− tn

∥
∥2 = ‖φ‖2−

n∑

k=1

ck
∣
∣S(φ)(k)

∣
∣2

, where tn(x)=
n∑

k=1

ckS(φ)(k)ψk(x). (2.22)

But

∥
∥φ− tn

∥
∥2 =

∫ p

0

∫ p

0

∫ p

0

∣
∣φ(x)− tn(x)

∣
∣2
dx1dx2dx3 ≤

[
α0
(
φ− tn

)]2
p3. (2.23)

Hence

0≤ ‖φ‖2−
n∑

k=1

ck
∣
∣S(φ)(k)

∣
∣2 ≤ [α0

(
φ− tn

)]2
p3. (2.24)

Taking the limit as n→∞ and using Corollary 2.7, we get (2.20).
By using polarization identity, we get (2.21). �

3. The space of rapidly decreasing sequences

Let B be the set of all complex sequences (an)n∈N satisfying

∞∑

n=1

cnλ
2m
n

∣
∣an

∣
∣ <∞ ∀m= 0,1,2, . . . . (3.1)

B is a linear space and

βm
((
an
)
n∈N

)
=

∞∑

n=1

cnλ
2m
n

∣
∣an

∣
∣, m= 0,1,2, . . . , (3.2)

defines a countable multinorm on B. B is complete and therefore a Fréchet space.
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Theorem 3.1. For each continuous linear functional h defined on B, there exist a positive
constant C and a nonnegative integer r such that for every (an)n∈N ∈ B,

∣
∣〈h,

(
an
)
n∈N

〉∣∣≤ Cmax
0≤k≤rβk

((
an
)
n∈N

)
. (3.3)

The proof is similar to the proof of [8, Theorem 1.8.1].

Theorem 3.2. The finite symmetric trilinear integral transform S is a homeomorphism from
A onto the space B.

Proof. If φ∈A, then, by Proposition 2.5,
∑∞

n=1 cnλ
2m
n |S(φ)(n)|<∞ for every m=0,1,2, . . ..

It is simple to prove that the mapping S : A→ B defined by S(φ) = (S(φ)(n))n∈N is
one-one and onto.

Hence S−1 : B→ A exists and is given by

S−1(a)(x)= S−1
((
an
)
n∈N

)
(x)=

∞∑

n=1

cnanψn(x), x ∈ T , for each a= (an
)
n∈N ∈ B.

(3.4)

Assume that (φk)k∈N→ φ in A as k→∞. By Proposition 2.3,

λ2m
n

∣
∣S
(
φk
)
(n)− S(φ)(n)

∣
∣

= ∣∣S(Im(φk −φ
))

(n)
∣
∣

≤ 3p3αm
(
φk −φ

)−→ 0 as k −→∞, ∀n∈N, m= 0,1,2, . . . ,

βm
(
S
(
φk
)− S(φ)

)

=
∞∑

n=1

cnλ
2m
n

∣
∣S
(
φk
)
(n)− S(φ)(n)

∣
∣−→ 0 as k −→∞, for each m= 0,1,2, . . . .

(3.5)

This proves S is continuous. To prove S−1 is continuous, we proceed as follows.

Let ak → a in B as k→∞, where ak = (a(k)
n )n∈N, a= (an)n∈N. Using (3.4),

S−1(ak − a)(x)=
∞∑

n=1

cn
(
a(k)
n − an

)
ψn(x), x ∈ T ,

αm
(
S−1(ak − a))= sup

x∈T

∣
∣
∣
∣
∣

∞∑

n=1

cn
(
a(k)
n − an

)
(−1)mλ2m

n ψn(x)
∣
∣
∣
∣ (by Corollary 2.6)

≤ 3
∞∑

n=1

cnλ
2m
n

∣
∣a(k)

n − an
∣
∣−→ 0 as k −→∞, for each m= 0,1,2, . . . .

(3.6)

This completes the proof. �
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4. Distribution space

In this section we will introduce the space of distributions and study its basic properties.

Definition 4.1. A linear functional U on a Fréchet space A, U : A→ C, is called a distri-
bution if there exists a sequence (χn)n∈N in A such that

〈U ,φ〉 = lim
n→∞

∫ p

0

∫ p

0

∫ p

0
χn(x)φ(x)dx1dx2dx3 exists for each φ ∈A. (4.1)

The set of all distributions is a complex linear space and it will be denoted by A′.
Let A0 denote the set of all functions f (x) which are continuous, have piecewise con-

tinuous first- and second-order partial derivatives on T , and satisfy the Dirichlet type of
boundary conditions on T .

Proposition 4.2. Let f ∈A0. Then the formula

〈
Uf ,φ

〉=
∫ p

0

∫ p

0

∫ p

0
f (x)φ(x)dx1dx2dx3, φ∈ A, (4.2)

defines a distribution Uf on A. A0 can be embedded in A′.

Proof. Uf is clearly linear. Define χn(x)=∑n
k=1 ckS( f )(k)ψk(x), χn∈A, for all values of n.

Moreover, χn→ f uniformly on T follows from Corollary 2.6. Therefore

〈
Uf ,φ

〉= lim
n→∞

∫ p

0

∫ p

0

∫ p

0
χn(x)φ(x)dx1dx2dx3 (4.3)

which proves that (4.2) defines a distribution Uf on A.
It is clear that the map f →Uf is linear, one-to-one, and continuous.
Finally, if Ufn →Uf in image of A0, then

∫ p

0

∫ p

0

∫ p

0

(
fn− f

)
(x)φ(x)dx1dx2dx3 =

〈
Ufn −Uf ,φ

〉−→ 0 (4.4)

as n→∞ for all φ ∈A.
This implies fn→ f as n→∞. Thus A0 can be embedded in A′. �

There are distributions that do not have the form (4.2) with f ∈A0.

Example 4.3. Dirac function δx centered at x ∈ T is given by

〈
δx,φ

〉= φ(x), φ ∈A. (4.5)

It is easy to prove that δx is linear.
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Take χn(y)=∑n
k=1 ckψk(x)ψk(y), x, y∈T , and x is fixed. Then χn is in A for each n∈N,

lim
n→∞

∫ p

0

∫ p

0

∫ p

0
χn(y)φ(y)dy1dy2dy3 = lim

n→∞

n∑

k=1

ckS(φ)(k)ψk(x)= φ(x)= 〈δx,φ
〉
. (4.6)

So δx ∈ A′.
Define d(φ,ψ) =∑∞

m=0(1/2m)(αm(φ − ψ)/(1 + αm(φ − ψ))). Then d is a compatible
translation invariant metric on A [5, page 27]. Furthermore (A,d) is a complete metric
space.

Theorem 4.4. Every distribution is a continuous linear functional on A.

The proof is similar to the proof of [3, Theorem 3.143].

Proposition 4.5. A′ is the dual of A, that is, A′ is precisely the collection of all continuous
linear functionals from A into C.

Proof. Let f :A→ C be a continuous linear functional. For each φ ∈A, by Corollary 2.7,

En(φ)=
n∑

k=1

ckS(φ)(k)ψk −→ φ in A. (4.7)

We have

〈 f ,φ〉 = lim
n→∞

〈
f ,En(φ)

〉= lim
n→∞

∫ p

0

∫ p

0

∫ p

0
φ(x)χn(x)dx1dx2dx3. (4.8)

Thus the condition in the definition of distribution is satisfied with

χn(x)=
n∑

k=1

ck
〈
f ,ψk

〉
ψk(x). (4.9)

�

Proposition 4.6. A is a subspace of A′ and the topology of A is stronger than that induced
on it by A′.

Proof. Let f ∈A. By Proposition 4.2,

〈 f ,φ〉 =
∫ p

0

∫ p

0

∫ p

0
f (x)φ(x)dx1dx2dx3 (4.10)

defines a distribution Uf . Therefore A⊂ A′.
Further

ξφ( f )= ∣∣〈 f ,φ〉∣∣≤ α0( f )α0(φ)p3 f ∈ A, φ∈ A, (4.11)

implies the second statement. �
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Proposition 4.7. For each f ∈ A′, there exist a nonnegative integer r and a positive con-
stant C such that

∣
∣〈 f ,φ〉∣∣≤ Cmax

0≤m≤rαm(φ). (4.12)

Here C and r depend on f but not on φ.

The proof is similar to proof of [8, Theorem 1.8.1].

5. Generalized finite symmetric trilinear integral transform

The generalized finite symmetric trilinear integral transform S′ of f ∈A′ is defined by

〈
S′( f ),

(
an
)
n∈N

〉=
〈

f (x),
∞∑

n=1

cnanψn(x)

〉

,
(
an
)
n∈N ∈ B. (5.1)

If φ(x)=∑∞
n=1 cnanψn(x), then, by Theorem 3.2, (an)n∈N = (S(φ)(n))n∈N = S(φ) and (5.1)

can be written as

〈
S′( f ),S(φ)

〉= 〈 f ,φ〉. (5.2)

Theorem 5.1. S′ is a homeomorphism from B′ onto the space A′.

Proof. This result can be seen as a consequence of Theorem 3.2 and [8, Theorem 1.10.2].
�

Proposition 5.2. The finite symmetric trilinear integral transform S is a special case of the
generalized transform S′. That is, S′ f = S f for every f ∈A.

Proof. By using Proposition 4.6, (5.1), Theorems 3.2, and 2.8, it is simple to prove

〈
S′ f ,

(
an
)
n∈N

〉=
∞∑

n=1

cnS( f )(n)an =
〈

(S( f )(n))n∈N, (an)n∈N
〉

,
(
an
)
n∈N ∈ B. (5.3)

�

Motivated by the above result, we define the generalized integral transform S′ f of
f ∈ A′ as

S′( f )= (〈 f (x),ψn(x)
〉)

n∈N (5.4)

and we set

S′( f )(n)= 〈 f (x),ψn(x)
〉

, ψn ∈A, n∈N. (5.5)

We now state and prove an inversion theorem for the elements of A′ that can be seen
as an inversion formula for the S′-transformation.
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Theorem 5.3. Let f ∈A′. Then

f = lim
n→∞

n∑

k=1

ck
〈
f ,ψk

〉
ψk, (5.6)

where the limit is taken in the sense of A′.

Proof. Let Fn(x)=∑n
k=1 ck〈 f ,ψk〉ψk. Since Fn ∈A for every n, by Proposition 4.2,

〈
Fn,ψm

〉=
⎧
⎨

⎩

〈
f ,ψm

〉
if m≤ n,

0 if m> n.
(5.7)

By using Theorem 2.8, Parseval’s identity, we have

〈
Fn,φ

〉=
∞∑

k=1

ck
〈
Fn,ψk

〉
S(φ)(k)

=
n∑

k=1

ck〈 f ,ψk〉S(φ)(k) (by (5.7))

= 〈 f ,En(φ)
〉

for every φ ∈A, En(φ)=
n∑

k=1

ckS(φ)(k)ψk.

(5.8)

By Corollary 2.7, En(φ)→ φ for all φ ∈A. Therefore

lim
n→∞

〈
Fn,φ

〉= lim
n→∞

〈
f ,En(φ)

〉= 〈 f ,φ〉, ∀φ∈ A. (5.9)

�

Theorem 5.4 (uniqueness theorem). If f ,g ∈ A′ are such that S′( f )(n) = S′(g)(n) for
every n, then f = g in the sense of equality in A′.

The following example illustrates the inversion theorem.

Example 5.5. Dirac function δx centered at x ∈ T is given by

〈
δx,φ

〉= φ(x), φ ∈A. (5.10)

In Example 4.3, we have shown that δx is in A′. The finite symmetric trilinear integral
transform of δx is given as

S′
(
δx
)
(n)= 〈δx(t),ψn(t)

〉= ψn(x). (5.11)

By virtue of Proposition 4.2, for all φ(t)∈A,

〈 N∑

m=0

cmψm(x)ψm(t),φ(t)

〉

=
N∑

m=0

cmS(φ)(m)ψm(x)−→ φ(x) as N−→∞. (5.12)

But φ(x)= 〈δx(t),φ(t)〉. Therefore δx(t)= limN→∞
∑N

m=0 cmψm(x)ψm(t).
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A trivial consequence of Theorem 5.3 is the following version of Parseval’s identity.

Corollary 5.6. Let φ ∈A and f ∈A′. Then

〈 f ,φ〉 =
∞∑

n=1

cn
〈
f ,ψn

〉
S(φ)(n)= 〈S′ f ,Sφ〉. (5.13)

6. Characterization of distributions in A′ and their generalized finite symmetric
trilinear integral transform S′

Proposition 6.1. LetH : B→ C. ThenH ∈ B′ if and only if there exists a complex sequence
(bn)n∈N such that

∣
∣bn

∣
∣≤ Cλ2k

n , n∈N, (6.1)

for some C > 0 and some k ∈N, for which

〈
H ,
(
an
)
n∈N

〉=
∞∑

n=1

cnanbn,
(
an
)
n∈N ∈ B. (6.2)

Proof. Assume that H takes the form (6.2) where (bn)n∈N satisfies (6.1). By using (3.2)
it is simple to prove H ∈ B′. Conversely, let H ∈ B′. Then by Theorem 3.1, there exists
k ∈N such that

∣
∣〈H ,

(
an
)
n∈N

〉∣∣≤ Cmax
0≤m≤k

∞∑

n=1

cnλ
2m
n

∣
∣an

∣
∣≤ C

∞∑

n=1

cnλ
2k
n

∣
∣an

∣
∣,

(
an
)
n∈N ∈ B. (6.3)

We now define the mapping, J : B→ J(B)⊂ l1
(
an
)
n∈N −→

(
λ2k
n an

)
n∈N, (6.4)

J is one-one.
Moreover, the linear mapping M : J(B)⊂ l1 → C

(
λ2k
n an

)
n∈N −→

〈
H ,
(
an
)
n∈N

〉
(6.5)

is continuous by virtue of (6.3).
By Hahn-Banach theorem, M can be extended to l1 as a member of l′1. Then there

exists (dn)n∈N ∈ l∞ such that

M
(
λ2k
n an

)
n∈N =

〈
H ,
(
an
)
n∈N

〉=
∞∑

n=1

dnanλ
2k
n ,

(
an
)
n∈N ∈ B. (6.6)

Taking bn = dnλ2k
n /cn, where cn = 2/3p3 [4, page 129], n∈N. Since every sequence in l∞

is bounded sequence, we have

〈
H ,
(
an
)
n∈N

〉=
∞∑

n=1

cnanbn. (6.7)

�
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Theorem 6.2. Let (bn)n∈N be a complex sequence. There exists f ∈ A′ such that F(n) =
S′( f )(n)= bn, n∈N, if and only if there exist C > 0 and k ∈N such that

∣
∣bn

∣
∣≤ Cλ2k

n , n∈N. (6.8)

Proof. The condition is necessary and follows from Proposition 4.7.
Let (bn)n∈N be a sequence satisfying condition (6.8).
For any φ ∈A,

lim
k→∞

〈 k∑

n=1

cnbnψn(x),φ(x)

〉

≡
∞∑

n=1

cnbnS(φ)(n). (6.9)

From (6.8) and Theorem 3.2, it is clear that the series
∑∞

n=1 cnbnS(φ)(n) is absolutely con-
vergent.

Define f : A→ C by the formula

〈 f ,φ〉 =
∞∑

n=1

cnbnS(φ)(n), φ ∈A. (6.10)

Then f is a linear functional on A and

〈 f ,φ〉 = lim
n→∞

∫ p

0

∫ p

0

∫ p

0
φ(x)χn(x)dx1dx2dx3, (6.11)

where χn(x)=∑n
k=1 ckbkψk(x)∈ A for every n∈N.

By using orthogonal relations, we have S′( f )(n)= bn, n∈N.
Thus the condition is sufficient. �

7. Operational calculus

Integrating by parts and using boundary conditions, one can easily prove that if f ∈ A0,
then

〈I f ,φ〉 = 〈 f ,Iφ〉 for every φ ∈A. (7.1)

It allows us to define that for any f ∈A′,

〈I f ,φ〉 = 〈 f ,Iφ〉, φ ∈A. (7.2)

It is clear that I f ∈A′.
It can also be seen inductively that for any integer m,

〈
Im f ,φ

〉= 〈 f ,Imφ
〉

for every φ ∈A (7.3)

and Im f ∈A′.
Therefore

〈
Im f ,ψn

〉= 〈 f ,Imψn
〉= (−1)mλ2m

n

〈
f ,ψn

〉
. (7.4)
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That is,

S′
(
Im f

)
(n)= (−1)mλ2m

n S′( f )(n) (7.5)

which gives an operation transform formula.
Now consider the partial differential equation of the form

G(I) f = h, (7.6)

where given h and unknown f are required to be in A′, and G is a polynomial such that
G(−λ2

n) �= 0, n= 1,2,3, . . ..
By applying the operation transform formula (7.5) to (7.6), we obtain

G
(− λ2

n

)
F(n)=H(n), F(n)= (S′ f )(n), H(n)= (S′h)(n),

F(n)= H(n)
G
(− λ2

n

) .
(7.7)

By applying the inversion theorem (Theorem 5.3), we get

f =
∞∑

n=1

cn
H(n)

G
(− λ2

n

)ψn, G
(− λ2

n

) �= 0, for n= 1,2, . . . . (7.8)

8. Application

In this section we apply the present theory to find the temperature inside an equilateral
prism of semi-infinite length. The formulation of the problem is given below.

Find the conventional function v(x,z) on the domain

R≡ {(x,z)= (x1,x2,x3,z
)
/ 0 < xi < p, i= 1,2,3, x1 + x2 + x3 = p, 0 < z <∞} (8.1)

that satisfies Laplace equation

∂2v

∂x2
1

+
∂2v

∂x2
2

+
∂2v

∂x2
3
− ∂2v

∂x1∂x2
− ∂2v

∂x1∂x3
− ∂2v

∂x2∂x3
+
∂2v

∂z2
= 0 (8.2)

in R and the following boundary conditions:
(i) as z→ 0+, v(x,z)→ f (x)∈A′ in the sense of convergence in A′;

(ii) as xi → 0+, i= 1,2,3, v(x,z), converges to zero uniformly on Z ≤ z <∞ for each
Z > 0;

(iii) as z→∞, v(x,z) converges uniformly to zero uniformly on 0 < xi < p, i= 1,2,3.
Every section of the prism by a plane perpendicular to z-axis is an equilateral triangle
with its centroid on the z-axis,

set V(n,z)= S′(v(x,z)
)= 〈v,ψn

〉
. (8.3)
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By applying the finite symmetric trilinear integral transform S′ to (8.2), we arrive at

−λ2
nV(n,z) +

∂2

∂z2
V(n,z)= 0, (8.4)

whose general solution is

V(n,z)=A(n)eλnz +B(n)e−λnz, A(n) and B(n) do not depend on z. (8.5)

In view of boundary condition (iii), it is reasonable to choose A(n)= 0 and B(n)= F(n)
because of boundary condition (i). Therefore,

V(n,z)= F(n)e−λnz. (8.6)

Applying the inversion theorem (Theorem 5.3) to the above equation, we get

v(x,z)=
∞∑

n=1

cnF(n)e−λnzψn(x). (8.7)

We now verify that (8.7) is truly a solution of (8.2).
By Theorem 6.2, there exist C > 0 and k ∈N such that |F(n)| ≤ Cλ2k

n . For Z ≤ z <∞
where Z > 0, the nth term of the series (8.7) satisfies the condition

∣
∣cnF(n)e−λnzψn(x)

∣
∣≤ 3cnCλ2k

n e
−λnZ . (8.8)

Using cn = 2/3p3, λn = 2nπ/p, and e−λnz < (2k+ 2)!/λ2k+2
n Z2k+2, we get

∣
∣cnF(n)e−λnzψn(x)

∣
∣ < C∗

1
n2

, where C∗ <
(2k+ 2)!C

2π2P ·Z2k+2
. (8.9)

By Weierstrass M test, the series on the right-hand side of (8.7) converges absolutely and
uniformly over R. The factor e−λnz ensures the uniform convergence of any series ob-
tained by term-by-term differentiation of (8.7) with respect to xi, i= 1,2,3, or z. We may
apply the operator I+D2

z under the summation sign in (8.7). Since e−λnzψn(x1,x2,x3) sat-
isfies Laplace equation, so does v. Thus the differential equation (8.2) is satisfied in the
conventional sense.

To verify the boundary condition (i), we have to show that for each φ ∈A,

〈
v(x,z),φ(x)

〉−→ 〈 f ,φ〉 as z −→ 0+. (8.10)
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Now, for any fixed z > 0, the series (8.7) defines a function in A0, and by Proposition 4.2
we have for every φ ∈A,

〈v,φ〉 =
∫ p

0

∫ p

0

∫ p

0

[ ∞∑

n=1

cnF(n)e−λnzψn(x)

]

φ(x)dx1dx2dx3

=
∞∑

n=1

cnF(n)e−λnzS(φ)(n).

(8.11)

The series in (8.11) converges uniformly for all z > 0. By taking the limit as z→ 0+, one
has

lim
z→0+

〈v,φ〉 =
∞∑

n=1

cnF(n)S(φ)(n)

= lim
N→∞

〈 N∑

n=1

cnF(n)ψn(x),φ(x)

〉

= 〈 f ,φ〉 by virtue of Theorem 5.3.

(8.12)

Finally, for Z ≤ z ≤∞ (Z > 0), we have from (8.7) that

∣
∣v(x,z)

∣
∣≤

∞∑

n=1

cn
∣
∣F(n)

∣
∣e−λnZ

∣
∣ψn(x)

∣
∣. (8.13)

The series in (8.13) converges absolutely and uniformly on T . So we may take limit as
xi→ 0+ under the summation sign in (8.13), which verifies boundary condition (ii).

In the same way we have

∣
∣v(x,z)

∣
∣≤ 3

∞∑

n=1

cn
∣
∣F(n)

∣
∣e−λnz. (8.14)

The series in (8.14) converges uniformly on 0 < z <∞. By taking the limit as z→∞ under
the summation sign in (8.14), one verifies boundary condition (iii).
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