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We consider a sequence of positive linear operators which approximates continuous func-
tions having exponential growth at infinity. For these operators, we give a Voronovskaya-
type theorem.
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1. Introduction

Sequences of positive linear operators are often used in approximation theory. Let (Ln)n≥1

be such a sequence, where the operators Ln are defined on a suitable linear subspace E of
C(I), I ⊂R an interval. An important problem is the investigation of the limit

lim
n→∞n

(
Ln f − f

)
(1.1)

in order to obtain information about the rate of convergence and the saturation proper-
ties of the sequence (Ln).

The above formula is called Voronovskaya’s formula for the sequence (Ln)n≥1.
This paper is devoted to establishing a Voronovskaya-type formula for the sequence

of positive linear operators introduced in [1], which approximate continuous functions
of exponential order. To obtain the operators, we consider g(z) =∑∞

n=0 anz
n, g(1) �= 0,

an analytic function in the disk |z| < R, R > 1, and we define the polynomials pk by the
relation

g(u)cosh(ux)=
∞∑

k=0

pk(x)uk, (1.2)

where coshx =∑∞
k=0(x2k/(2k)!) is the hyperbolic cosine of x. Therefore, the polynomials

are

pk(x)=
k∑

ν=0

aν
xk−ν

(k− ν)!
· 1 + (−1)k−ν

2
. (1.3)
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2 A Voronovskaya-type theorem for a positive linear operator

Let C[0,∞) be the set of all real-valued functions continuous on [0,∞) and wp(x) =
e−px, x ≥ 0, p > 0, the weight function. We will work in the space of functions Cp = { f ∈
C[0,∞) : wp f is uniformly continuous and bounded on [0,∞)}, with the norm ‖ f ‖p =
supx∈[0,∞)wp(x)| f (x)|.

We define the operator Pn : Cp → Cr , r > p, by the relation

Pn( f ;x)= 1
g(1)cosh(nx)

∞∑

k=0

pk(nx) f
(
k

n

)
. (1.4)

We consider that an/g(1)≥ 0, n= 0,1, . . . , which implies that the Pn operator is positive.
We proved in [1] the following theorem.

Theorem 1.1. If f ∈ Cp, then for each x ≥ 0, limn→∞Pn( f ;x) = f (x), the convergence
being uniform in each interval [0,a].

Remark 1.2. (1) If in (1.2) we consider g(u)= coshu, the operator Pn becomes

Ln( f ;x)= 1
cosh1cosh(nx)

∞∑

k=0

p2k(nx) f
(

2k
n

)
, (1.5)

where

p2k(x)= (1 + x)2k + (1− x)2k

2(2k)!
, (1.6)

which was studied in [2].
(2) If instead of (1.2) we consider the relation

cosh(ux)=
∞∑

k=0

pk(x)uk, (1.7)

we obtain

p2k(x)= x2k

(2k)!
. (1.8)

The operator

L∗n ( f ;x)= 1
cosh(nx)

∞∑

k=0

(nx)2k

(2k)!
f
(

2k
n

)
(1.9)

was studied by Leśniewicz and Rempulska [3].

2. Auxiliary results

In order to prove a Voronovskaya-type theorem, we need some auxiliary results.
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Lemma 2.1. For x ∈ [0,∞) and n∈N,

Pn
(
e0;x

)= 1,

Pn
(
e1;x

)= x tanh(nx) +
1
n
· g

′(1)
g(1)

,

Pn
(
e2;x

)= x2 +
x

n
tanh(nx)

2g′(1) + g(1)
g(1)

+
1
n2
· g

′′(1) + g′(1)
g(1)

,

(2.1)

where ei(x)= xi, i∈ {0,1,2}, and tanhx is the hyperbolic tangent of x.

Lemma 2.2. For x ∈ [0,∞) and n∈N, the following hold:

Pn(t− x;x)=−x(1− tanh(nx)
)

+
1
n
· g

′(1)
g(1)

,

Pn
(
(t− x)2;x

)= (1− tanh(nx)
)
[

2x2− x

n

(

1 +
2g′(1)
g(1)

)]

+
x

n
+

1
n2
· g

′′(1) + g′(1)
g(1)

,

Pn
(
(t− x)4;x

)= (1− tanh(nx)
)
(
a1x

4− a2
x3

n
+ a3

x2

n2
− a4

x

n3

)
+ a5

x2

n2
+ a6

x

n3
+ a7

1
n4

,

(2.2)

where ai, i= 1,7, are positive constants:

a1 = 8, a2 = 12 +
16g′(1)
g(1)

, a3 = 4

(

1 +
6g′(1) + 3g′′(1)

g(1)

)

,

a4 = 1 +
14g′(1) + 18g′′(1) + 4g(3)(1)

g(1)
, a5 = 3,

a6 = 1 +
6g′′(1) + 10g′(1)

g(1)
, a7 = g′(1) + 7g′′(1) + 6g(3)(1) + g(4)(1)

g(1)
.

(2.3)

Lemmas 2.1 and 2.2 can be proved by means of successive partial differentiation with
respect to u in the generating relation (1.2), and putting then u= 1.

Lemma 2.3. For every fixed point x0 ∈ [0,∞),

lim
n→∞nPn

(
t− x0;x0

)= g′(1)
g(1)

, lim
n→∞nPn

((
t− x0

)2
;x0
)= x0. (2.4)

Proof. Because 1− tanh(nx)= 2/(e2nx + 1), by Lemma 2.2 we have

nPn
(
t− x0;x0

)= −2nx0

e2nx0 + 1
+
g′(1)
g(1)

,

nPn
((
t− x0

)2
;x0
)= 2nx0

e2nx0 + 1

[

2x2
0 −

x0

n

(

1 + 2
g′(1)
g(1)

)]

+ x0 +
1
n
· g

′′(1) + g′(1)
g(1)

.

(2.5)

Therefore Lemma 2.3 holds. �
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Lemma 2.4. For each fixed point x0 ∈ [0,∞), there is a positive constant M1(x0), depending
only on x0 such that

Pn
((
t− x0

)4
;x0
)≤M1

(
x0
) 1
n2

(2.6)

for all n∈N.

Proof. For x ≥ 0 and r,n∈N, we have

xr
(
1− tanh(nx)

)≤ 21−r

nr
r!. (2.7)

By Lemma 2.2, it results that

Pn

((
t− x0

)4
;x0

)
≤ a1

2−3

n4
4!− a2

2−2

n4
3! + f3

2−1

n4
2!

− a4
1
n4

+ a5
x2

0

n2
+ a6

x0

n3
+ a7

1
n4
≤M1

(
x0
) 1
n2

.

(2.8)

We proved in [1] the following lemma. �

Lemma 2.5. Let p>0, let r > p, and let n0 be a natural number such that n0 > p/(lnr− ln p).
Then there exists a positive constant Mp,r depending only on p and r such that

e−rx
(
Pn(t− x)2ept;x

)≤Mp,r
x+ 1
n

(2.9)

for all x ≥ 0 and n≥ n0.

Lemma 2.6. Let x0 ∈ [0,∞) be a fixed point and ϕ(·;x0)∈ Cp a function such that

lim
t→x0

ϕ
(
t;x0

)= 0. (2.10)

Then

lim
n→∞Pn

(
ϕ
(
t;x0

)
;x0
)= 0. (2.11)

Proof. Let r > p > 0. For every fixed x0 ≥ 0 and n∈N, we have

e−rx0Pn
(
ϕ
(
t;x0

)
;x0
)= e−rx0

g(1)cosh(nx)

∞∑

k=0

pk
(
nx0
)
ϕ
(
k

n
;x0

)
. (2.12)

By the properties of function ϕ(·;x0), it results that for all ε > 0 there exists a positive
constant δ(ε) such that if |t− x0| < δ, then |ϕ(t;x0)| < ε/2, t ≥ 0. Moreover, there exists a
positive constant M2 ≡M2(p) such that

e−pt
∣
∣ϕ
(
t;x0

)∣∣≤M2 ∀t ≥ 0. (2.13)
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Now we can write

e−rx0Pn
(
ϕ
(
t;x0

)
;x0
)≤ e−rx0

g(1)cosh
(
nx0
)

∑

|k/n−x0|<δ
pk
((
nx0
))
∣
∣
∣
∣ϕ
(
k

n
;x0

)∣∣
∣
∣

+
e−rx0

g(1)coshnx0

∑

|k/n−x0|≥δ
pk
(
nx0
)
∣
∣
∣
∣ϕ
(
k

n
;x0

)∣∣
∣
∣ := S1 + S2.

(2.14)

By the above properties of function ϕ(·;x0), it follows that

S1 <
ε

2
· e−rx0

g(1)cosh
(
nx0
)

∑

|k/n−x0|<δ
pk
(
nx0
)
<
ε

2
e−rx0Pn

(
1,x0

)
<
ε

2
,

S2 = e−rx0

g(1)cosh
(
nx0
)

∑

|k/n−x0|≥δ
pk
((
nx0
))
∣
∣
∣
∣ϕ
(
k

n
;x0

)∣∣
∣
∣e
−pk/nepk/n

≤M2
e−rx0

g(1)coshnx0

∑

|k/n−x0|≥δ
pk
(
nx0
)
epk/n.

(2.15)

But if
∣
∣
∣
∣
k

n
− x0

∣
∣
∣
∣≥ δ, (2.16)

then

1≤ 1
δ2

(
k

n
− x0

)2

, (2.17)

and by Lemma 2.5, we can write

S2 ≤M2
1
δ2
· e−rx0

g(1)cosh
(
nx0
)

∑

|k/n−x0|≥δ
pk
(
nx0
)
(
k

n
− x0

)2

epk/n

≤M2
e−rx0

δ2
Pn
((
t− x0

)2
ept;x0

)≤M2
1
δ2

Mp,r
x0 + 1
n

(2.18)

for n ≥ n0, n0 > p/(lnr − ln p). It results that for a fixed x0, ε, δ there exists a natural
number n0 = n0(x0,ε,δ,M2, p,r) such that for all n > n0, we have S2 < ε/2.

Therefore, for all n > n0, we have

e−rx0Pn
(
ϕ
(
t;x0

)
;x0
)
< ε

(
i.e., lim

n→∞e
−rx0Pn

(
ϕ
(
t;x0

)
;x0
)= 0

)
. (2.19)

It results that limn→∞Pn(ϕ(t;x0);x0)= 0. �

3. A Voronovskaya-type theorem

Now we are in the position to state the main result of this paper.
For a fixed p > 0, let

C2
p =

{
f ∈ Cp such that f ′, f ′′ ∈ Cp

}
. (3.1)
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Theorem 3.1. If f ∈ C2
p, then

lim
n→∞n

{
Pn( f ;x)− f (x)

}= x

2
f ′′(x) + f ′(x)

g′(1)
g(1)

(3.2)

for every fixed x ∈ [0,∞).

Proof. We use the Taylor formula for a fixed point x0 ∈ [0,∞). For all t ∈ [0,∞), we have

f (t)= f
(
x0
)

+
(
t− x0

)
f ′
(
x0
)

+
1
2

(
t− x0

)2
f ′′
(
x0
)

+ g
(
t;x0

)(
t− x0

)2
, (3.3)

where g(t;x0) is the Peano form of the remainder, g(·;x0)∈ Cp, and limt→x0 g(t;x0)= 0.
Because Pn(e0;x)= 1, we can write

Pn
(
f ;x0

)− f
(
x0
)= f ′

(
x0
)
Pn
(
t− x0;x0

)
+

1
2
f ′′
(
x0
)
Pn
((
t− x0

)2
;x0
)

+Pn
(
g
(
t;x0

)(
t− x0

)2
;x0
)
.

(3.4)

By Cauchy’s inequality, we have

Pn
(
g
(
t;x0

)(
t− x0

)2
;x0
)≤ {Pn

(
g2(t;x0

)
;x0)

}1/2{
Pn
((
t− x0

)4
;x0)

}1/2
. (3.5)

The function ϕ(t;x0)= g2(t;x0), t ≥ 0, satisfies the conditions of Lemma 2.6; therefore

lim
n→∞Pn

(
g2(t;x0

)
;x0
)= 0. (3.6)

Moreover, by Lemma 2.4, we have

nPn
(
g
(
t;x0

)(
t− x0

)2
;x0
)≤ {Pn

(
g2(t;x0

)
;x0
)}1/2

(
n2M1

(
x0
) 1
n2

)1/2

. (3.7)

It results that limn→∞nPn(g(t;x0)(t− x0)2;x0)= 0. By the above results and by Lemma
2.3, we obtain

lim
n→∞n

(
Pn
(
f ;x0

)− f (x0)
)= f ′

(
x0
)g′(1)
g(1)

+
x0

2
f ′′
(
x0
)
. (3.8)

�

References

[1] A. Ciupa, A positive linear operator for approximation in exponential weight spaces, Mathematical
Analysis and Approximation Theory, the 5th Romanian-German Seminar on Approximation
Theory and Its Applications (RoGer, 2002), Burg, Sibiu, 2002, pp. 85–96.

[2] , Approximation by a generalized Szasz type operator, Journal of Computational Analysis
and Applications 5 (2003), no. 4, 413–424.



Alexandra Ciupa 7
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