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The fuzzy coloring of a fuzzy graph was defined by the authors in Eslahchi and Onagh
(2004). In this paper we define the chromatic fuzzy sum and strength of fuzzy graph.
Some properties of these concepts are studied. It is shown that there exists an upper (a
lower) bound for the chromatic fuzzy sum of a fuzzy graph.
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1. Introduction

The chromatic sum of a graph G,
∑

(G), is introduced in the dissertation of Kubicka
[3]. It is defined as the smallest possible total over all vertices that can occur among all
colorings of G using natural numbers for the colors. It is known that computing the
chromatic sum of an arbitrary graph is an NP-complete problem. The vertex-strength of
the graph G, denoted by s(G), is the smallest integer s such that

∑
(G) is attained using

colors {1,2, . . . ,s}.
In this article, we generalize these concepts to fuzzy graphs and wish to bound chro-

matic sum of a fuzzy graph with the e strong edges in G. We review some of the definitions
of fuzzy graphs as in [2, 6, 7] and introduce some new notations.

Let X be a nonempty set and E the collection of all two-element subsets of X . A fuzzy
set γ on X is a mapping γ : X → [0,1]. Given α∈ (0,1], the α-cut of γ is defined by γα =
{x ∈ X | γ(x)≥ α}. The support and height of γ are defined by suppγ = {x ∈ X | γ(x) >
0} and h(γ)=max{γ(x) | x ∈ X}, respectively. Fuzzy intersection of two fuzzy sets γ1 and
γ2 is denoted by γ1∧ γ2 =min{γ1,γ2}.

Let X be a finite nonempty set. The triple G = (X ,σ ,μ) is called a fuzzy graph on
X where σ and μ are fuzzy sets on X and E, respectively, such that μ({x, y})≤min{σ(x),
σ(y)} for all x, y ∈ X . Hereafter, we use μ(xy) for μ({x, y}). The fuzzy graphG′=(X ,σ ′,μ′)
is called a fuzzy subgraph of G if for each two elements x, y ∈ X , we have σ ′(x) ≤ σ(x)
and μ′(xy)≤ μ(xy). The fuzzy graph G= (X ,σ ,μ) is called connected if for every two ele-
ments x, y ∈ X , there exists a sequence of elements x0,x1, . . . ,xm such that x0 = x, xm = y
and μ(xixi+1) > 0 (0≤ i≤m− 1).
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2 Vertex-strength of fuzzy graphs

For any fuzzy graphG= (X ,σ ,μ) let �= {σ(x) > 0 | x ∈ X}∪{μ(xy) > 0 | x 	=y, x, y ∈
X} with k elements. Now assume � = {α1,α2, . . . ,αk} such that α1 < α2 < ··· < αk. The
sequence {α1,α2, . . . ,αk} and the set � are called the fundamental sequence and the fun-
damental set ofG, respectively. Given α∈ (0,1], the α-cut ofG is the graph Gα = (Xα,Uα),
where Xα = {x ∈ X | σ(x)≥ α} and Uα = {xy ∈ E | μ(xy)≥ α}. It is obvious that a fuzzy
graph will have a finite number of different α-cuts. In fact, the α-cuts do not change
through the following intervals: (0,α1], . . . , (αk−1,αk].

Let Γ = {γ1, . . . ,γk} be a finite family of fuzzy sets defined on X . The set of α-cuts of
γi’s is denoted by Γα = {γα1 , . . . ,γαk} and the fuzzy set

∨
Γ on X is defined by

∨
Γ(x) =

maxi γi(x).
For fuzzy graph G= (X ,σ ,μ) the elements of X and E are called vertices and edges of

G, respectively. Two vertices x and y in G are called adjacent if (1/2)min{σ(x),σ(y)} ≤
μ(xy). The edge xy of G is called strong if x and y are adjacent and it called weak other-
wise. The degree of vertex x in G, denoted by degG x, is the number of adjacent vertices to
x and the maximum degree of G is defined by Δ(G)=max{degG x | x ∈ X}. A connected
fuzzy graph G is called a cycle if every vertex of X has degree 2. The fuzzy graph G with
n vertices is called complete of order n if each vertex of G has degree n− 1 and it is called
r-partite, if a partition {A1, . . . ,Ar} of X exists such that for every two vertices x, y ∈ Ai,
the edge xy is weak (1≤ i≤ r).

Definition 1.1. A family Γ= {γ1, . . . ,γk} of fuzzy sets on X is called a k-fuzzy coloring of
G= (X ,σ ,μ) if

(a)
∨
Γ= σ ,

(b) γi∧ γj = 0,
(c) for every strong edge xy of G, min{γi(x),γi(y)} = 0 (1≤ i≤ k).

The least value of k for which G has a k-fuzzy coloring, denoted by χ f (G), is called the
fuzzy chromatic number of G.

When σ and μ take their values in {1} and {0,1}, respectively, G is a crisp graph
Definition 1.1(c) implies that for every i, suppγi is an independent set in G. Therefore, in
this case, Γ induces a k-coloring of graph G.

The concept of chromatic number of fuzzy graphs was introduced by Muñoz et al.
in [5]. They consider only fuzzy graphs with crisp vertices (σ(i) = 1 for all i ∈ X) and
fuzzy edges. Let G= (X ,μ) be such a fuzzy graph where X = {1,2, . . . ,n} and μ is a fuzzy
number on the set of all 2-subsets of X . Assume that �= {α1 < α2 < ··· < αk} denote the
fundamental set of G and I =�∪{0}. For each α ∈ I , Gα denote the crisp graph Gα =
(X ,Eα) where Eα = {i j | 1 ≤ i < j ≤ n, μ(i j) ≥ α} and χα = χ(Gα) denote the chromatic
number of crisp graph Gα. By their definition the chromatic number of fuzzy graph G is
the following fuzzy number:

χ(G)= {(i,ν(i)
) | i∈ X

}
, (1.1)

where ν(i)=max{α∈ I | i∈Aα} and Aα = {1,2, . . . ,χα}.
In our definition, the chromatic number of fuzzy graph G is a number, but in their

definition they use a fuzzy number. It is easy to see that if we consider a fuzzy graphGwith
a crisp set of vertices and fuzzy set of edges, then there exist α∈ I such that χ f (G)= χα.
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But in a general fuzzy graph G = (X ,σ ,μ), it is possible that for each α ∈ I , χ f (G) 	= χα.
For example, consider the fuzzy graph G= (X ,σ ,μ) given by X = {1,2,3,4,5},

γ(i)=
⎧
⎨

⎩

1, i∈ {1,2,3},
0.4, i∈ {4,5}, μ(xy)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, xy ∈ {12,13},
0.3, xy ∈ {23,24,25,34,35},
0, otherwise.

(1.2)

We have χ0 = 5, χ0.3 = 4, χ1 = 2, but χ f (G)= 3. It is clear that for 0≤ c ≤ 1, χ f (G)= χα0 ,
where α0 = min{α ∈ I | c ≤ α}, whenever we change the definition of strong edges to
the following case: xy is strong if μ(xy) ≥ c. But if we define the strong edge by xy is
strong if μ(xy) ≥ cmin{σ(x),σ(y)}, then there always exists a fuzzy graph G such that
χ f (G) /∈ {χα | α ∈ I} (in the above example replace 0.3 by (c − ε)0.4 for positive and
enough small ε).

2. Chromatic fuzzy sum of fuzzy graphs

Let G be an undirected simple graph with n vertices. A coloring of the vertices of G is
a mapping f : V(G)→N such that adjacent vertices are assigned different colors. In the
minimum sum coloring problem (MSC), we are looking for a coloring in which the sum
of the assigned colors of all the vertices of G is minimized. The MSC problem has a nat-
ural application in scheduling theory. One of the application is the problem of resource
allocation with constraints imposed by conflicting resource requirements. In a common
representation of the distributed resource allocation problem [1, 4], the constraints are
given by a conflict graph G, in which the vertices represent processors, and the edges in-
dicate competition on resources, that is, two vertices are adjacent if the corresponding
processors cannot run their jobs simultaneously. The objective is to minimize the average
response time, or equivalently to minimize the sum of the job completion times. Assum-
ing some fix execution time for the jobs, this problem is MSC problem. Now consider
scheduling n jobs on a single machine. At any given time the machine capable to perform
any number of tasks, as long as these tasks are independent or the conflicts between the
tasks are less than a number which depend on the choice of the problem. Any of the tasks
consume some time of the machine. Let x and y be two tasks with some conflict. Sup-
pose that the machine is capable to perform on x and y simultaneously. In this case, the
amount of time that machine spends on x (or y) depends on the individual amount of
time which previously was spent on x (or y) together with the measure of the conflict
between x and y. Our goal is to minimize the average response time, or equivalently to
minimize the sum of the task completion time. In order to solve this problem we define
the fuzzy graph G = (X ,σ ,μ), where X is the set of all tasks, σ(x) is the amount of the
consuming time of the machine for each x ∈ X , and μ(xy) is the measure of the conflict
between the tasks x and y. Finding the minimum value of the job completion times for
this problem is equivalent to the chromatic fuzzy sum of G which we will study in this
section.

Let G= (X ,σ ,μ) be a fuzzy graph, U ⊆ X and X ′ = X −U . The fuzzy graph (X ′,σ ′,μ′),
where for every two distinct vertices x, y ∈ X ′, σ ′(x) = σ(x) and μ′(xy) = μ(xy), is de-
noted by G−U .
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Definition 2.1. For a k-fuzzy coloring Γ = {γ1, . . . ,γk} of the fuzzy graph G, Γ-chromatic
fuzzy sum of G, denoted by

∑
Γ(G), is defined as

∑

Γ

(G)= 1
∑

x∈C1

θ1(x) + ···+ k
∑

x∈Ck

θk(x), (2.1)

where Ci = suppγi and θi(x)=max{σ(x) +μ(xy) | y ∈ Ci}.
Definition 2.2. The chromatic fuzzy sum of G, denoted by

∑
(G), is defined as follows:

∑
(G)= inf

{
∑

Γ

(G) | Γ is a fuzzy coloring of G

}

. (2.2)

The number of fuzzy colorings of G is finite and therefore, there exists a fuzzy coloring
Γ0 which is called a minimal fuzzy sum coloring of G such that

∑
(G)=∑Γ0

(G).

Definition 2.3. The vertex-strength of fuzzy graph G, denoted by s(G), is defined to be as
follows:

s(G)=min

{

|Γ| |
∑

(G)=
∑

Γ

(G)

}

. (2.3)

It means that s(G) is the minimum number of colors such that we can find the minimal
fuzzy sum coloring of G by it. It is obvious that s(G) ≥ χ f (G). Note that this inequality
can be strict. The fuzzy graph introduced in Example 2.13 has fuzzy chromatic number
2, but its vertex-strength is 3.

Definition 2.4. Let G be a fuzzy graph and x a vertex of G. The neighbor of x in G is
defined to be the set N(x)={y | xy is a strong edge of G}.

Theorem 2.5. Let G be a fuzzy graph and Γ0 = {γ1, . . . ,γs} a minimal fuzzy sum coloring of
G. Then the following results are true.

(1)
∑

x∈C1
θ1(x)≥∑x∈C2

θ2(x)≥ ··· ≥∑x∈Cs
θs(x).

(2) Let x0 ∈ Ci. Then for each j < i one of the following happens:
(a) Cj ∩N(x0) 	= ∅,
(b) Cj∩N(x0)=∅ and j[

∑
x∈C′j θ j(x)−∑x∈Cj

θj(x)]≥ i[
∑

x∈Ci
θi(x)−∑x∈C′i θi(x)]

where C′i = Ci−{x0} and C′j = Cj ∪{x0}.
Proof. (1) Suppose that for some i < j we have

∑
x∈Ci

θi(x) <
∑

x∈Cj
θj(x). Consider the

fuzzy coloring Γ′0 = {γ′1, . . . ,γ′s} defined by

γ′r =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γr , r /∈ {i, j},
γj , r = i,

γi, r = j.

(2.4)
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Now we have

∑

Γ′0

(G)−
∑

Γ0

(G)= (i− j)

[
∑

x∈Cj

θj(x)−
∑

x∈Ci

θi(x)

]

< 0. (2.5)

Therefore,
∑

Γ′0 (G) <
∑

Γ0
(G) which contradicts the minimality of Γ0.

(2) Let j < i and Cj ∩N(x0)=∅. Consider the fuzzy coloring Γ′ = {γ′1, . . . ,γ′s} defined
by γ′k = γk if k /∈ {i, j},

γ′i (x)=
⎧
⎨

⎩

γi(x), x 	= x0,

0, x = x0,
γ′j(x)=

⎧
⎨

⎩

γj(x), x 	= x0,

σ
(
x0
)
, x = x0.

(2.6)

Now since Γ0 is the minimal fuzzy coloring, we have

0≤
∑

Γ′
(G)−

∑

Γ0

(G)= j

[
∑

x∈C′j
θ j(x)−

∑

x∈Cj

θj(x)

]

− i

[
∑

x∈Ci

θi(x)−
∑

x∈C′i
θi(x)

]

(2.7)

and the proof is complete. �

It seems that by the hypothesis of Theorem 2.5, we have
∑

(G − C1) = ∑Γ0
(G) −

∑s
i=1[

∑
x∈Ci

θi(x)] and s(G−C1)= s(G)− 1. But, in the following example, we show that
these equalities do not always hold.

Example 2.6. Let X = {x1,x2, . . . ,x26}. Construct the fuzzy graph G= (X ,σ ,μ) as follows:

σ
(
xi
)= 1, 1≤ i≤ 26,

μ
(
xixj

)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 1≤ i≤ 10, 11≤ j ≤ 26,

1, 11≤ i≤ 17, 19≤ j ≤ 26,

1, i= 18, 20≤ j ≤ 26,

0.2, i= 18, j = 19,

0, 1≤ i < j ≤ 10,

0.3, 11≤ i < j ≤ 17 or 20≤ i < j ≤ 26,

0.4, i= 18, 11≤ j ≤ 17 or i= 19, 20≤ j ≤ 26.

(2.8)

One can check that s(G)= 4 and Γ0 = {γ1, . . . ,γ4} is the minimal fuzzy sum coloring of G
where

γ1
(
xi
)=

⎧
⎨

⎩

1, 1≤ i≤ 10,

0, otherwise,
γ2
(
xi
)=

⎧
⎨

⎩

1, 11≤ i≤ 17,

0, otherwise,

γ3
(
xi
)=

⎧
⎨

⎩

1, 20≤ i≤ 26,

0, otherwise,
γ4
(
xi
)=

⎧
⎨

⎩

1, 18≤ i≤ 19,

0, otherwise,

(2.9)
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and
∑

Γ0
(G)= 65.1. But s(G−C1)= 2 and Γ1 = {ξ1,ξ2} is a minimal fuzzy sum coloring

of G−C1 where

ξ1
(
xi
)=

⎧
⎨

⎩

1, 11≤ i≤ 18,

0, otherwise,
ξ2
(
xi
)=

⎧
⎨

⎩

1, 19≤ i≤ 26,

0, otherwise,
(2.10)

and
∑

Γ(G−C1)= 33.6. (If Γ is a 3-fuzzy coloring of G−C1, one can check that
∑

Γ(G−
C1) > 33.6, therefore s(G−C1) = 2.) On the other hand,

∑
Γ0

(G)−∑4
i=1[

∑
x∈Ci

θi(x)] =
34.5, hence

∑
(G−C1) <

∑
Γ0

(G)−∑4
i=1[

∑
x∈Ci

θi(x)].
Actually, we never achieved minimal fuzzy sum coloring of G by extending Γ1 to a

fuzzy coloring of G. If by extending Γ1 we find a minimal fuzzy sum coloring of G, then
by Theorem 2.5(1), this extension is as Γ′ = {ξ′1,ξ′2,ξ′3} where,

ξ′1
(
xi
)=

⎧
⎨

⎩

1, if x ∈ C1,

0, otherwise,

ξ′2
(
xi
)=

⎧
⎨

⎩

ξ1
(
xi
)
, if xi ∈G−C1,

0, otherwise,

ξ′3
(
xi
)=

⎧
⎨

⎩

ξ2
(
xi
)
, if xi ∈G−C2,

0, otherwise.

(2.11)

But
∑

Γ′(G)= 66 and Γ′ is not a minimal fuzzy sum coloring of G.

Definition 2.7. Let G be a fuzzy graph with the fuzzy chromatic number χ f (G). Define
∑

χ f (G)(G) as

∑

χ f (G)

(G)=min

{
∑

Γ

(G) | |Γ| = χ f (G)

}

. (2.12)

Theorem 2.8. For fuzzy graph G= (X ,σ ,μ),

∑

χ f (G)

(G)≤ 3
(
χ f (G) + 1

)

4
h(σ)|X|. (2.13)

Proof. Let Γ1 be a χ f (G)-fuzzy coloring of G such that
∑

χ f (G)(G) =∑Γ1
(G). Similar to

Theorem 2.5(1), we have
∑

x∈C1
θ1(x) ≥∑x∈C2

θ2(x) ≥ ··· ≥∑x∈C
χ f (G)

θχ f (G)(x). Hence,

for each i, 1≤ i≤ χ f (G), we have

i
∑

x∈Ci

θi(x) +
(
χ f (G)− i+ 1

) ∑

x∈C
χ f (G)

θχ f (G)(x)

≤ χ f (G) + 1
2

[
∑

x∈Ci

θi(x) +
∑

x∈C
χ f (G)

θχ f (G)(x)

]

.
(2.14)
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So,

χ f (G)∑

i=1

[

i
∑

xınCi

θi(x) +
(
χ f (G)− i+ 1

) ∑

x∈C
χ f (G)

θχ f (G)(x)

]

≤
χ f (G)∑

i=1

χ f (G) + 1
2

[
∑

x∈Ci

θi(x) +
∑

x∈C
χ f (G)

θχ f (G)(x)

]

.

(2.15)

Then,

χ f (G)∑

i=1

i
∑

x∈Ci

θi(x)≤ χ f (G) + 1
2

χ f (G)∑

i=1

∑

x∈Ci

θi(x). (2.16)

But since θi(x) ≤ 3h(σ)/2, we have
∑χ f (G)

i=1

∑
x∈Ci

θi(x) ≤ (3h(σ)/2)|X| and the proof is
complete. �

Now by Theorem 2.8, we find an upper bound for
∑

(G).

Corollary 2.9. For the fuzzy graph G,

∑
(G)≤ 3

(
χ f (G) + 1

)

4
h(σ)|X|. (2.17)

Definition 2.10. For the fuzzy graph G= (X ,σ ,μ), define

w =min
{
σ(x) +μ(xy) > 0 | x ∈ X , xy is a weak edge of G

}
. (2.18)

Theorem 2.11. Let G= (X ,σ ,μ) be a connected fuzzy graph with e strong edges. Then,

w
√

8e ≤
∑

(G). (2.19)

Proof. Let � be the fundamental set of G. Among all connected fuzzy graphs with e
strong edges, fundamental set �′ ⊂�, and minimum chromatic fuzzy sum value, se-
lect G0 = (X0,σ0,μ0) and its minimal fuzzy coloring Γ = {γ1, . . . ,γs} to have the largest
∑

x∈suppγ1 θ1(x). Suppose s(G0)≥ 3,C3 = suppγ3 = {x1, . . . ,xk}, and y1, . . . , yk are new ver-
tices. Consider the fuzzy graph G1 = (X1,σ1,μ1) with X1 = X0∪{y1, . . . , yk} as follows:

σ1(a)=
⎧
⎨

⎩

σ0(a), a∈ X0,

σ0
(
xi
)
, a= yi,

μ1(xy)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0(xy), x, y /∈ C3∪
{
y1, . . . , yk

}
,

min
{
σ0(x),σ0(y)

}
, x = xi, y ∈ C1,

min
{
σ1
(
yi
)
,σ0(y)

}
, x = yi, y ∈ C2,

μ0(xy), x, y ∈ C3,

μ0
(
xixj

)
, x = yi, y = yj ,

0, otherwise.

(2.20)
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Now Γ1 = {γ′1, . . . ,γ′s−1} defined by

γ′1(x)=
⎧
⎨

⎩

γ1(x), x ∈ X0,

σ1
(
yi
)
, x = yi,

γ′2(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ2(x), x ∈ X0−C3,

σ0(x), x ∈ C3,

0, otherwise,

γ′i = γi−1, 4≤ i≤ s.

(2.21)

Γ1 is a fuzzy coloring of G1 with
∑

Γ1
(G1)=∑Γ(G0). But, G1 has at least e strong edges. By

deleting some strong edges from G1, we find a connected fuzzy graph G2 with exactly e
strong edges and fundamental set �′ ⊂� such that

∑
(G2)≤∑Γ1

(G1)=∑(G0). But, by
the minimality of

∑
(G0), we have

∑
(G2)=∑(G0). On the other hand,

∑
x∈suppγ′1 θ1(x) is

greater than
∑

x∈suppγ1
θ1(x) which is a contradiction. Therefore, s(G0) ≤ 2, Γ = {γ1,γ2}

and G0 is bipartite. Hence,
∑(

G0
)=

∑

x∈suppγ1

θ1(x) + 2
∑

x∈suppγ2

θ2(x)

≥w
∣
∣suppγ1

∣
∣+ 2w

∣
∣suppγ2

∣
∣

=w
(∣
∣suppγ1

∣
∣+ 2

∣
∣suppγ2

∣
∣
)
.

(2.22)

Now since the number of strong edges in a bipartite fuzzy graph with fuzzy coloring
{γ1,γ2} is at most |suppγ1| · |suppγ2|, then

√
8e ≤ |suppγ1|+2|suppγ2|. Hence

∑
(G0)≥

w
√

8e and the proof is complete. �

We will end this section by giving a counter example to show that a well-known the-
orem in graph theory is no longer valid in the case of fuzzy graphs. Also we will give a
conjecture for upper bond of s(G).

We have known the following theorem for graphs [2].

Theorem 2.12. Let G be a connected graph. Then, s(G)≤ Δ(G) + 1 and equality hold if and
only if G is a complete graph or an odd cycle.

In the following example, we show that the above theorem is not hold for fuzzy version.

Example 2.13. Let G= (σ ,μ) be a fuzzy graph with vertex set X = {1,2,3,4,5,6}, σ(i)= 1
for each i∈ X and

μ(xy)=
⎧
⎨

⎩

0.49, xy ∈ {13,35,24,46},
1, otherwise.

(2.23)

We have Δ(G) = 2. If s(G) = 2 we have a fuzzy coloring Γ of size 2 such that
∑

Γ(G) =
∑

(G). But every 2-fuzzy coloring of G is as Γ= {γ1,γ2},

γ1 =
⎧
⎨

⎩

1, x ∈ A,

0, x ∈ B,
γ2 =

⎧
⎨

⎩

0, x ∈ A,

1, x ∈ B,
(2.24)
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(or γ1 |B= 1 and γ2 |A= 1) where A = {1,3,5} and B = {2,4,6}. In this case,
∑

Γ(G) =
13.41. Now, consider the fuzzy coloring Γ′ = {γ1,γ2,γ3} as

γ1(x)=
⎧
⎨

⎩

1, x ∈ {1,4},
0, otherwise,

γ2(x)=
⎧
⎨

⎩

1, x ∈ {2,5},
0, otherwise,

γ3(x)=
⎧
⎨

⎩

1, x ∈ {3,6},
0, otherwise.

(2.25)

In this case,
∑

Γ′(G)= 12 which implies s(G) > 2. It is easy to show that s(G)= 3. But, G
is neither an odd cycle nor a complete fuzzy graph.

Conjecture 2.14. Let G be a fuzzy graph. Then,
(1) s(G)≤ 2Δ(G) + 1,
(2) for every integer k ≥ 2, there exists a fuzzy graph Gk such that k− 1 ≤ Δ(Gk) and

s(Gk)= Δ(Gk) + k.
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