LERAY-SCHAUDER RESULTS FOR MULTIVALUED NONLINEAR CONTRACTIONS DEFINED ON CLOSED SUBSETS OF A FRÉCHET SPACE

RAVI P. AGARWAL AND DONAL O'REGAN

Received 9 December 2005; Revised 21 February 2006; Accepted 25 April 2006

New Leray-Schauder results are presented for multivalued contractions defined on subsets of a Fréchet space *E*. The proof relies on fixed point results in Banach spaces and on viewing *E* as the projective limit of a sequence of Banach spaces.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In this paper, we present new fixed point results for nonlinear contractions (both single and multivalued) defined on subsets X (which may have empty interior) of a Fréchet space E. Some results for single-valued maps were presented in [2, 3] and the approach in these papers was based on constructing a specific map F_n (for each $n \in \mathbb{N} = \{1, 2, ...\}$) whose fixed points converge to a fixed point of the original operator F. In the approach in this paper, the maps $\{F_n\}_{n\in\mathbb{N}}$ only need to satisfy a closure property and are specified in a completely different way. The advantage of this approach is that multivalued maps can also be discussed. Our theory is based on results in Banach spaces and on viewing a Fréchet space E as a projective limit of a sequence of Banach spaces $\{E_n\}_{n\in\mathbb{N}}$.

For the remainder of this section, we present some definitions and some known facts. Let (X,d) be a metric space and S a nonempty subset of X. For $x \in X$, let $d(x,S) = \inf_{y \in S} d(x, y)$. Also diam $S = \sup\{d(x, y) : x, y \in S\}$. We let B(x, r) denote the open ball in X centered at x of radius r and by B(S, r) we denote $\bigcup_{x \in S} B(x, r)$. For two nonempty subsets S_1 and S_2 of X, we define the generalized Hausdorff distance H to be

$$H(S_1, S_2) = \inf \{ \epsilon > 0 : S_1 \subseteq B(S_2, \epsilon), S_2 \subseteq B(S_1, \epsilon) \}.$$

$$(1.1)$$

Now suppose $G: S \to 2^X$; here 2^X denotes the family of nonempty subsets of *X*. Then *G* is said to be hemicompact if each sequence $\{x_n\}_{n \in \mathbb{N}}$ in *S* has a convergent subsequence whenever $d(x_n, G(x_n)) \to 0$ as $n \to \infty$.

We now recall a result from the literature.

Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 43635, Pages 1–8 DOI 10.1155/IJMMS/2006/43635

THEOREM 1.1. Let (X,d) be a complete metric space, $\mathbb{C} \subseteq X$ closed, and $F : \mathbb{C} \to X$ with $F(\mathbb{C})$ bounded (i.e., there exists M > 0 with $d(z, w) \leq M$ for $z, w \in F(\mathbb{C})$). Suppose the following condition is satisfied:

there exists a continuous nondecreasing function

$$\phi : [0, \infty) \longrightarrow [0, \infty)$$
 satisfying $\phi(z) < z$ for $z > 0$ (1.2)
such that $d(Fx, Fy) \le \phi(d(x, y))$ for $x, y \in \mathbb{C}$.

Then F is hemicompact.

Now let *I* be a directed set with order \leq and let $\{E_{\alpha}\}_{\alpha \in I}$ be a family of locally convex spaces. For each $\alpha \in I$, $\beta \in I$ for which $\alpha \leq \beta$, let $\pi_{\alpha,\beta} : E_{\beta} \to E_{\alpha}$ be a continuous map. Then the set

$$\left\{ x = (x_{\alpha}) \in \prod_{\alpha \in I} E_{\alpha} : x_{\alpha} = \pi_{\alpha,\beta}(x_{\beta}) \ \forall \alpha, \beta \in I, \ \alpha \leq \beta \right\}$$
(1.3)

is a closed subset of $\prod_{\alpha \in I} E_{\alpha}$ and is called the projective limit of $\{E_{\alpha}\}_{\alpha \in I}$ and is denoted by $\lim_{\alpha \in I} E_{\alpha}$ (or $\lim_{\alpha \in I} \{E_{\alpha}, \pi_{\alpha,\beta}\}$) or the generalized intersection [5, page 439] $\bigcap_{\alpha \in I} E_{\alpha}$).

Existence in Section 2 is based on the following fixed point results in the literature [1, 6].

THEOREM 1.2 [6, Theorem 3.9]. Let U be an open subset in a Banach space $(X, \|\cdot\|)$ and $F: \overline{U} \to X$. Assume $0 \in U$ and suppose there exists a continuous nondecreasing function $\phi: [0, \infty) \to [0, \infty)$ satisfying $\phi(z) < z$ for z > 0 such that $\|Fx - Fy\| \le \phi(\|x - y\|)$ for all $x, y \in \overline{U}$. In addition, assume $F(\overline{U})$ is bounded and $x \ne \lambda Fx$ for $x \in \partial U$ and $\lambda \in (0, 1)$. Then F has a fixed point in \overline{U} .

THEOREM 1.3 [1, Theorem 2.3 (and Remark 2.1)]. Let U be an open subset in a Banach space $(X, \|\cdot\|)$ and $F: \overline{U} \to \mathbb{C}(X)$ a closed map (i.e., has closed graph); here $\mathbb{C}(X)$ denotes the family of nonempty closed subsets of X. Assume $0 \in U$ and suppose there exists a continuous strictly increasing function $\phi: [0, \infty) \to [0, \infty)$ satisfying $\phi(z) < z$ for z > 0 such that $H(Fx, Fy) \leq \phi(\|x - y\|)$ for all $x, y \in \overline{U}$. In addition, assume the following conditions hold:

$$\Phi: [0,\infty) \longrightarrow [0,\infty), \text{ given by } \Phi(x) = x - \phi(x), \text{ is strictly increasing,}$$
(1.4)

$$\Phi^{-1}(a) + \Phi^{-1}(b) \le \Phi^{-1}(a+b) \quad \text{for } a, b \ge 0, \tag{1.5}$$

$$\sum_{i=0}^{\infty} \phi^i(t) < \infty \quad for \ t > 0, \tag{1.6}$$

$$\sum_{i=1}^{\infty} \phi^i \left(x - \phi(x) \right) \le \phi(x) \quad \text{for } x > 0, \tag{1.7}$$

 $F(\overline{U})$ is bounded, (1.8)

 $x \notin \lambda F x$ for $x \in \partial U$, $\lambda \in (0,1)$. (1.9)

Then F has a fixed point in \overline{U} .

Remark 1.4. In fact, the assumption that *F* is closed can be removed in Theorem 1.3. In [1, Theorem 2.3], we assume a more general contractive condition and the map $G: \overline{U} \times [0,1] \to \mathbb{C}(X)$ (given by $G(x,\lambda) = \lambda Fx$ in our situation) was assumed to be closed in order to guarantee that if $\{x_n\}_1^\infty \subseteq \overline{U}, \{\lambda\}_1^\infty \subseteq [0,1]$ with $x_n \in G(x_n,\lambda_n)$ and $(x_n,\lambda_n) \to (x,\lambda)$, then $x \in G(x,\lambda)$. However, this is automatically true in Theorem 1.3 since the contractive condition and (1.8) guarantee that *G* is continuous in the Hausdorff metric and as a result,

$$\operatorname{dist}\left(x, G(x, \lambda)\right) \le d(x, x_n) + H(G(x_n, \lambda_n), G(x, \lambda)).$$

$$(1.10)$$

Remark 1.5. If $\phi(t) = kt$, $0 \le k < 1$, then trivially (1.2)–(1.7) hold.

2. Fixed point theory in Fréchet spaces

Let $E = (E, \{|\cdot|_n\}_{n \in \mathbb{N}})$ be a Fréchet space with the topology generated by a family of seminorms $\{|\cdot|_n : n \in \mathbb{N}\}$. We assume that the family of seminorms satisfies

$$|x|_1 \le |x|_2 \le |x|_3 \le \cdots \quad \text{for every } x \in E.$$
(2.1)

A subset *X* of *E* is bounded if for every $n \in \mathbb{N}$ there exists $r_n > 0$ such that $|x|_n \le r_n$ for all $x \in X$. To *E* we associate a sequence of Banach spaces $\{(\mathbf{E}_n, |\cdot|_n)\}$ described as follows. For every $n \in \mathbb{N}$, we consider the equivalence relation \sim_n defined by

$$x \sim_n y \quad \text{iff } |x - y|_n = 0.$$
 (2.2)

We denote by $\mathbf{E}^n = (E/\sim_n) |\cdot|_n$ the quotient space, and by $(\mathbf{E}_n, |\cdot|_n)$ the completion of \mathbf{E}^n with respect to $|\cdot|_n$ (the norm on \mathbf{E}^n induced by $|\cdot|_n$ and its extension to \mathbf{E}_n are still denoted by $|\cdot|_n$). This construction defines a continuous map $\mu_n : E \to \mathbf{E}_n$. Now since (2.1) is satisfied, the seminorm $|\cdot|_n$ induces a seminorm on \mathbf{E}_m for every $m \ge n$ (again this seminorm is denoted by $|\cdot|_n$). Also (2.2) defines an equivalence relation on \mathbf{E}_m from which we obtain a continuous map $\mu_{n,m} : \mathbf{E}_m \to \mathbf{E}_n$ since \mathbf{E}_m/\sim_n can be regarded as a subset of \mathbf{E}_n . We now assume the following condition holds: for each $n \in \mathbb{N}$, there exists a Banach space $(E_n, |\cdot|_n)$ and an isomorphism (between normed spaces) $j_n : \mathbf{E}_n \to E_n$.

Remark 2.1. (i) For convenience, the norm on E_n is denoted by $|\cdot|_n$.

(ii) Usually in applications, $\mathbf{E}_n = \mathbf{E}^n$ for each $n \in \mathbb{N}$.

(iii) Note that if $x \in \mathbf{E}_n$ (or \mathbf{E}^n), then $x \in E$. However, if $x \in E_n$, then x is not necessarily in E and in fact, E_n is easier to use in applications (even though E_n is isomorphic to \mathbf{E}_n). For example, if $E = \mathbb{C}[0, \infty)$, then \mathbf{E}^n consists of the class of functions in E which coincide on the interval [0, n] and $E_n = \mathbb{C}[0, n]$.

Finally, we assume

$$E_1 \supseteq E_2 \supseteq \cdots$$
 and for each $n \in \mathbb{N}$, $|x|_n \le |x|_{n+1} \quad \forall x \in E_{n+1}$. (2.3)

Let $\lim_{n \to \infty} E_n$ (or $\bigcap_1^{\infty} E_n$ where \bigcap_1^{∞} is the generalized intersection [5]) denote the projective limit of $\{E_n\}_{n \in \mathbb{N}}$ (note that $\pi_{n,m} = j_n \mu_{n,m} j_m^{-1} : E_m \to E_n$ for $m \ge n$) and note that $\lim_{n \to \infty} E_n \ge E_n$, so for convenience, we write $E = \lim_{n \to \infty} E_n$.

For each $X \subseteq E$ and each $n \in \mathbb{N}$, we set $X_n = j_n \mu_n(X)$ and we let $\overline{X_n}$ and ∂X_n denote, respectively, the closure and the boundary of X_n with respect to $|\cdot|_n$ in E_n . Also the pseudo-interior of X is defined by [4]

pseudo-intt(X) = {
$$x \in X : j_n \mu_n(x) \in \overline{X_n} \setminus \partial X_n$$
 for every $n \in \mathbb{N}$ }. (2.4)

Also, here H_n and diam_n denote the Hausdorff metric and the diameter induced by $|\cdot|_n$ on E_n .

We begin with single-valued maps and present two results. The first was motivated by Volterra type operators.

THEOREM 2.2. Let *E* and *E_n* be as described above and let $F : X \to E$ with $X \subseteq E$ and for each $n \in \mathbb{N}$ assume that $F : \overline{X_n} \to E_n$. Suppose the following conditions are satisfied:

(a) $0 \in pseudo-intt(X)$,

(b) for each $n \in \mathbb{N}$, $F(\overline{X_n})$ is bounded,

(c) for each $n \in \mathbb{N}$, $F : \overline{X_n} \to E_n$ and there exists a continuous nondecreasing function $\phi_n : [0, \infty) \to [0, \infty)$ satisfying $\phi_n(z) < z$ for z > 0 such that $|Fx - Fy|_n \le \phi_n(|x - y|_n)$ for all $x, y \in \overline{X_n}$ for each $n \in \mathbb{N}$, $y \ne \lambda Fy$, in E_n for all $\lambda \in (0, 1)$, $y \in \partial X_n$,

(d) for each $n \in \{2, 3, ...\}$, if $y \in \overline{X_n}$ solves y = Fy in E_n , then $y \in \overline{X_k}$ for $k \in \{1, ..., n-1\}$. Then F has a fixed point in E.

Remark 2.3. If F(X) is bounded, then clearly Theorem 2.2(b) holds.

Proof. Fix $n \in \mathbb{N}$. From Theorem 1.2, there exists $y_n \in \overline{X_n}$ with $y_n = Fy_n$ (note that $0 \in \overline{X_n} \setminus \partial X_n$ and $F(\overline{X_n})$ is bounded). Let us look at $\{y_n\}_{n \in \mathbb{N}}$. Notice that $y_1 \in \overline{X_1}$ and $y_k \in \overline{X_1}$ for $k \in \mathbb{N} \setminus \{1\}$ from Theorem 2.2(d). As a result, $y_n \in \overline{X_1}$ for $n \in \mathbb{N}$, $y_n = Fy_n$ in E_n together with Theorem 1.1 implies there is a subsequence \mathbb{N}_1^* of \mathbb{N} and a $z_1 \in \overline{X_1}$ with $y_n \to z_1$ in E_1 as $n \to \infty$ in \mathbb{N}_1^* . Let $\mathbb{N}_1 = \mathbb{N}_1^* \setminus \{1\}$. Now $y_n \in \overline{X_2}$ for $n \in \mathbb{N}_1$ together with Theorem 1.1 guarantees that there exists a subsequence \mathbb{N}_2^* of \mathbb{N}_1 and a $z_2 \in \overline{X_2}$ with $y_n \to z_2$ in E_2 as $n \to \infty$ in \mathbb{N}_2^* . Note from (2.3) that $z_2 = z_1$ in E_1 since $\mathbb{N}_2^* \subseteq \mathbb{N}_1$. Let $\mathbb{N}_2 = \mathbb{N}_2^* \setminus \{2\}$. Proceed inductively to obtain subsequences of integers

$$\mathbb{N}_{1}^{\star} \supseteq \mathbb{N}_{2}^{\star} \supseteq \cdots,$$

$$\mathbb{N}_{k}^{\star} \subseteq \{k, k+1, \dots\},$$
(2.5)

and $z_k \in \overline{X_k}$ with $y_n \to z_k$ in E_k as $n \to \infty$ in \mathbb{N}_k^* . Note that $z_{k+1} = z_k$ in E_k for $k \in \{1, 2, ...\}$. Also let $\mathbb{N}_k = \mathbb{N}_k^* \setminus \{k\}$.

Fix $k \in \mathbb{N}$. Let $y = z_k$ in E_k . Notice that y is well defined and $y \in \lim_{k \to \infty} E_n = E$. Now $y_n = Fy_n$ in E_n for $n \in \mathbb{N}_k$ and $y_n \to y$ in E_k as $n \to \infty$ in \mathbb{N}_k (since $y = z_k$ in E_k) together with the fact that $F : \overline{X_k} \to E_k$ is continuous (note that $y_n \in \overline{X_k}$ for $n \in \mathbb{N}_k$) implies y = Fy in E_k . We can do this for each $k \in \mathbb{N}$, so y = Fy in E.

Our next result was motivated by contractions considered in [3]. In this case, the map F_n will be related to F by the closure property Theorem 2.4(f).

THEOREM 2.4. Let *E* and E_n be as described in the beginning of Section 2 and let $F : X \to E$ with $X \subseteq E$. Also for each $n \in \mathbb{N}$ assume there exists $F_n : \overline{X_n} \to E_n$. Suppose the following conditions are satisfied:

- (a) $0 \in pseudo-intt(X)$,
- (b) $\overline{X_1} \supseteq \overline{X_2} \supseteq \cdots$,
- (c) for each $n \in \mathbb{N}$, $F_n(\overline{X_n})$ is bounded, for each $n \in \mathbb{N}$, $F_n : \overline{X_n} \to E_n$ and there exists a continuous nondecreasing function $\phi_n : [0, \infty) \to [0, \infty)$ satisfying $\phi_n(z) < z$ for z > 0 such that $|F_n x F_n y|_n \le \phi_n(|x y|_n)$ for all $x, y \in \overline{X_n}$ for each $n \in \mathbb{N}$, $y \ne \lambda F_n y$ in E_n for all $\lambda \in (0, 1)$, $y \in \partial X_n$,
- (d) for each $n \in \mathbb{N}$, the map $\mathscr{K}_n : \overline{X_n} \to 2^{E_n}$ given by $\mathscr{K}_n(y) = \bigcup_{m=n}^{\infty} F_m(y)$ (see Remark 2.5) satisfies $H_n(\mathscr{K}_n(x), \mathscr{K}_n(y)) \le \psi_n(|x y|_n)$ for all $x, y \in \overline{X_n}$; here $\psi_n : [0, \infty) \to [0, \infty)$ is continuous, $\psi_n(z) < z$ for z > 0 with the map $\Psi_n : [0, \infty) \to [0, \infty)$, defined by $\Psi_n(x) = x \psi_n(x)$, strictly increasing,
- (e) for each $k \in \mathbb{N}$, for every $\epsilon > 0$, and sequence $\{x_n\}_{n \in S}$, $S = \{k, k+1, k+2, ...\}$, with $x_n \in \overline{X_n}$ and $x_n \in \mathcal{H}_n x_n$ in E_n , there exists $n_k \in S$ such that $\operatorname{diam}_k(\mathcal{H}_k x_n) < \epsilon$ for each $n \in S$ with $n \ge n_k$,
- (f) if there exists $w \in E$ and a sequence $\{y_n\}_{n \in \mathbb{N}}$ with $y_n \in \overline{X_n}$ and $y_n = F_n y_n$ in E_n such that for every $k \in \mathbb{N}$ with $y_n \to w$ in E_k as $n \to \infty$ in $S = \{k + 1, k + 2, ...\}$, then w = Fw in E.

Then F has a fixed point in E.

Remark 2.5. The definition of \mathscr{K}_n in Theorem 2.4(d) is as follows. If $y \in \overline{X_n}$ and $y \notin \overline{X_{n+1}}$, then $\mathscr{K}_n(y) = F_n(y)$, whereas if $y \in \overline{X_{n+1}}$ and $y \notin \overline{X_{n+2}}$, then $\mathscr{K}_n(y) = F_n(y) \cup F_{n+1}(y)$, and so on.

Proof. Fix $n \in \mathbb{N}$. From Theorem 1.2 there exists $y_n \in \overline{X_n}$ with $y_n = F_n y_n$ in E_n . Let us look at $\{y_n\}_{n\in\mathbb{N}}$. From Theorem 2.4(b) we know that $y_n \in \overline{X_1}$ for $n \in \mathbb{N}$. Note as well that $y_n \in \mathcal{K}_1 y_n$ for $n \in \mathbb{N}$ since $|x|_1 \le |x|_n$ for all $x \in E_n$ and $y_n = F_n y_n$ in E_n . We claim

$$\exists z_1 \in E_1 \quad \text{with } y_n \longrightarrow z_1 \text{ in } E_1, \quad n \longrightarrow \infty \text{ in } \mathbb{N}.$$
(2.6)

To see this, let $\epsilon > 0$ be given. Let $m, n \in \mathbb{N}$. It is easy to see, since $y_n \in \mathcal{K}_1 y_n$ and $y_m \in \mathcal{K}_1 y_m$, that

$$\left| y_n - y_m \right|_1 \le H_1(\mathcal{K}_1 y_n, \mathcal{K}_1 y_m) + \operatorname{diam}_1(\mathcal{K}_1 y_n) + \operatorname{diam}_1(\mathcal{K}_1 y_m), \tag{2.7}$$

so Theorem 2.4(d) yields

$$\left| y_n - y_m \right|_1 \le \Psi_1^{-1} (\operatorname{diam}_1 (\mathcal{K}_1 y_n) + \operatorname{diam}_1 (\mathcal{K}_1 y_m)).$$

$$(2.8)$$

Now Theorem 2.4(e) guarantees that there exists $n_1 \in \mathbb{N}$ such that

$$|y_n - y_m|_1 \le \Psi_1^{-1}(2\epsilon) \quad \text{for } m, n \ge n_1.$$
 (2.9)

Consequently, $\{y_n\}_{n \in \mathbb{N}}$ is Cauchy, so (2.6) holds. Let $\mathbb{N}_1 = \mathbb{N} \setminus \{1\}$.

Now $y_n \in \mathcal{K}_2 y_n$ for $n \in \mathbb{N}_1$. Let $m, n \in \mathbb{N}_1$ and since $y_n \in \mathcal{K}_2 y_n$ and $y_m \in \mathcal{K}_2 y_m$ we have

$$|y_n - y_m|_2 \le \Psi_2^{-1}(\operatorname{diam}_2(\mathscr{K}_2 y_n) + \operatorname{diam}_2(\mathscr{K}_2 y_m)).$$
 (2.10)

This together with Theorem 2.4(e) guarantees that $\{y_n\}_{n\in\mathbb{N}_1}$ is Cauchy, so there exists a $z_2 \in E_2$ with $y_n \to z_2$ in E_2 as $n \to \infty$ in \mathbb{N}_1 . Note that $z_2 = z_1$ in E_1 since $\mathbb{N}_1 \subseteq \mathbb{N}$. Let $\mathbb{N}_2 = \mathbb{N}_1 \setminus \{2\}$. Proceed inductively to obtain $z_k \in E_k$ with $y_n \to z_k$ in E_k as $n \to \infty$ in $\mathbb{N}_{k-1} = \{k, k+1, \ldots\}$. Note that $z_{k+1} = z_k$ in E_k for $k \in \mathbb{N}$. Also let $\mathbb{N}_k = \mathbb{N}_{k-1} \setminus \{k\}$.

Fix $k \in \mathbb{N}$. Let $y = z_k$ in E_k . Notice that y is well defined and $y \in \lim_{k \to \infty} E_n = E$. Now $y_n = F_n y_n$ in E_n for $n \in \mathbb{N}_k$ and $y_n \to y$ in E_k as $n \to \infty$ in \mathbb{N}_k (since $y = z_k$ in E_k) together with Theorem 2.4(f) implies y = Fy in E.

Our next two results are for multivalued maps.

THEOREM 2.6. Let *E* and *E_n* be as described above and let $F : X \to 2^E$ with $X \subseteq E$ and for each $n \in \mathbb{N}$, assume $F : \overline{X_n} \to \mathbb{C}(E_n)$. Suppose the following conditions are satisfied:

- (a) $0 \in pseudo-intt(X)$,
- (b) for each $n \in \mathbb{N}$, $F(\overline{X_n})$ is bounded,
- (c) for each $n \in \mathbb{N}$, $F : \overline{X_n} \to \mathbb{C}(E_n)$, and there exists a continuous strictly increasing function $\phi_n : [0, \infty) \to [0, \infty)$ satisfying $\phi_n(z) < z$ for z > 0 such that $H_n(Fx, Fy) \le \phi_n(|x y|_n)$ for all $x, y \in \overline{X_n}$,
- (d) for each $n \in \mathbb{N}$, the map $\Phi_n : [0, \infty) \to [0, \infty)$ given by $\Phi_n(x) = x \phi_n(x)$ is strictly increasing, $\Phi_n^{-1}(a) + \Phi_n^{-1}(b) \le \Phi_n^{-1}(a+b)$ for $a, b \ge 0$, with $\sum_{i=0}^{\infty} \phi_n^i(t) < \infty$ for t > 0 and $\sum_{i=1}^{\infty} \phi_n^i(x \phi(x)) \le \phi_n(x)$ for x > 0,
- (e) for each $n \in \mathbb{N}$, $y \notin \lambda F y$ in E_n for all $\lambda \in (0,1)$, $y \in \partial X_n$,
- (f) for each $n \in \{2, 3, ...\}$, if $y \in \overline{X_n}$ solves $y \in Fy$ in E_n , then $y \in \overline{X_k}$ for $k \in \{1, ..., n-1\}$,
- (g) for each $k \in \mathbb{N}$, for every $\epsilon > 0$ and sequence $\{x_n\}_{n \in S}$, $S = \{k, k+1, k+2, ...\}$, with $x_n \in \overline{X_n}$ and $x_n \in Fx_n$ in E_n there exists $n_k \in S$ such that $\operatorname{diam}_k(Fx_n) < \epsilon$ for each $n \in S$ with $n \ge n_k$.

Then F has a fixed point in E.

Proof. Fix $n \in \mathbb{N}$. From Theorem 1.3 (and Remark 1.4) there exists $y_n \in \overline{X_n}$ with $y_n \in Fy_n$ in E_n . Let us look at $\{y_n\}_{n \in \mathbb{N}}$. Notice that $y_n \in \overline{X_1}$ for $n \in \mathbb{N}$ from Theorem 2.6(f). Let $\epsilon > 0$ be given and $m, n \in \mathbb{N}$. Now since $y_n \in Fy_n$ and $y_m \in Fy_m$, we have

$$|y_n - y_m|_1 \le H_1(Fy_n, Fy_m) + \operatorname{diam}_1(Fy_n) + \operatorname{diam}_1(Fy_m)$$
 (2.11)

so

$$|y_n - y_m|_1 \le \Phi_1^{-1}(\operatorname{diam}_1(Fy_n) + \operatorname{diam}_1(Fy_m)).$$
 (2.12)

This, together with Theorem 2.6(g), guarantees that $\{y_n\}_{n \in \mathbb{N}}$ is Cauchy, so there exists a $z_1 \in E_1$ with $y_n \to z_1$ in E_1 as $n \to \infty$ in \mathbb{N} . Let $\mathbb{N}_1 = \mathbb{N} \setminus \{1\}$. Proceed inductively to obtain $z_k \in E_k$ with $y_n \to z_k$ in E_k as $n \to \infty$ in $\mathbb{N}_{k-1} = \{k, k+1, \ldots\}$. Note that $z_{k+1} = z_k$ in E_k for $k \in \mathbb{N}$. Also let $\mathbb{N}_k = \mathbb{N}_{k-1} \setminus \{k\}$.

Fix $k \in \mathbb{N}$. Let $y = z_k$ in E_k . Notice that $y_n \in Fy_n$ in E_n for $n \in \mathbb{N}_k$ and $y_n \to y$ in E_k as $n \to \infty$ in \mathbb{N}_k together with Remark 1.4 (note that $F : \overline{X_k} \to \mathbb{C}(E_k)$) implies $y \in Fy$ in E_k . We can do this for each $k \in \mathbb{N}$, so $y \in Fy$ in E.

THEOREM 2.7. Let *E* and *E_n* be as described in the beginning of Section 2 and let $F : X \to 2^E$ with $X \subseteq E$. Also for each $n \in \mathbb{N}$ assume there exists $F_n : \overline{X_n} \to \mathbb{C}(E_n)$. Suppose the following conditions are satisfied:

- (a) $0 \in pseudo-intt(X)$,
- (b) $\overline{X_1} \supseteq \overline{X_2} \supseteq \cdots$,
- (c) for each $n \in \mathbb{N}$, $F_n(\overline{X_n})$ is bounded,
- (d) for each $n \in \mathbb{N}$, $F_n : \overline{X_n} \to \mathbb{C}(E_n)$ and there exists a continuous strictly increasing function $\phi_n : [0, \infty) \to [0, \infty)$ satisfying $\phi_n(z) < z$ for z > 0 such that $H_n(F_n x, F_n y) \le \phi_n(|x y|_n)$ for all $x, y \in \overline{X_n}$,
- (e) for each $n \in \mathbb{N}$, the map $\Phi_n : [0, \infty) \to [0, \infty)$ given by $\Phi_n(x) = x \phi_n(x)$ is strictly increasing, $\Phi_n^{-1}(a) + \Phi_n^{-1}(b) \le \Phi_n^{-1}(a+b)$ for $a, b \ge 0$, with $\sum_{i=0}^{\infty} \phi_n^i(t) < \infty$ for t > 0 and $\sum_{i=1}^{\infty} \phi_n^i(x \phi(x)) \le \phi_n(x)$ for x > 0,
- (f) for each $n \in \mathbb{N}$, $y \notin \lambda F_n y$ in E_n for all $\lambda \in (0,1)$ and $y \in \partial X_n$,
- (g) for each $n \in \mathbb{N}$, the map $\mathscr{K}_n : \overline{X_n} \to 2^{E_n}$ given by $\mathscr{K}_n(y) = \bigcup_{m=n}^{\infty} F_m(y)$ satisfies $H_n(\mathscr{K}_n(x), \mathscr{K}_n(y)) \le \psi_n(|x y|_n)$ for all $x, y \in \overline{X_n}$; here $\psi_n : [0, \infty) \to [0, \infty)$ is continuous, $\psi_n(z) < z$ for z > 0 with the map $\Psi_n : [0, \infty) \to [0, \infty)$ defined by $\Psi_n(x) = x \psi_n(x)$ is strictly increasing,
- (h) for each $k \in \mathbb{N}$, for every $\epsilon > 0$ and sequence $\{x_n\}_{n \in S}$, $S = \{k, k+1, k+2, ...\}$, with $x_n \in \overline{X_n}$ and $x_n \in \mathcal{H}_n x_n$ in E_n there exists $n_k \in S$ such that $\operatorname{diam}_k(\mathcal{H}_k x_n) < \epsilon$ for each $n \in S$ with $n \ge n_k$,
- (i) if there exists a $w \in E$ and a sequence $\{y_n\}_{n \in \mathbb{N}}$ with $y_n \in \overline{X_n}$ and $y_n \in F_n y_n$ in E_n such that for every $k \in \mathbb{N}$ with $y_n \to w$ in E_k as $n \to \infty$ in $S = \{k + 1, k + 2, ...\}$, then $w \in Fw$ in E.

Then F has a fixed point in E.

Proof. The proof is essentially the same as in Theorem 2.4 (except that here we use Theorem 1.3 (and Remark 1.4) instead of Theorem 1.2). \Box

References

- R. P. Agarwal, J. Dshalalow, and D. O'Regan, *Fixed point and homotopy results for generalized contractive maps of Reich type*, Applicable Analysis 82 (2003), no. 4, 329–350.
- [2] R. P. Agarwal and D. O'Regan, Various homotopy results for generalized single valued contractions on Fréchet spaces, Journal of Concrete and Applicable Mathematics 1 (2003), no. 2, 101–111.
- [3] M. Frigon, Fixed point results for generalized contractions in gauge spaces and applications, Proceedings of the American Mathematical Society 128 (2000), no. 10, 2957–2965.
- [4] ______, Fixed point results for compact maps on closed subsets of Fréchet spaces and applications to differential and integral equations, Bulletin of the Belgian Mathematical Society. Simon Stevin 9 (2002), no. 1, 23–37.
- [5] L. V. Kantorovich and G. P. Akilov, *Functional Analysis in Normed Spaces*, Pergamon Press, Oxford, 1964.

[6] D. O'Regan, *Fixed point theorems for nonlinear operators*, Journal of Mathematical Analysis and Applications **202** (1996), no. 2, 413–432.

Ravi P. Agarwal: Department of Mathematical Science, Florida Institute of Technology, Melbourne, FL 32901, USA

E-mail address: agarwal@fit.edu

Donal O'Regan: Department of Mathematics, National University of Ireland, Galway, Ireland *E-mail address*: donal.oregan@nuigalway.ie